Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
PLoS Pathog ; 19(2): e1011124, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36854028

RESUMEN

The prolyl-tRNA synthetase (PRS) is a validated drug target for febrifugine and its synthetic analog halofuginone (HFG) against multiple apicomplexan parasites including Plasmodium falciparum and Toxoplasma gondii. Here, a novel ATP-mimetic centered on 1-(pyridin-4-yl) pyrrolidin-2-one (PPL) scaffold has been validated to bind to Toxoplasma gondii PRS and kill toxoplasma parasites. PPL series exhibited potent inhibition at the cellular (T. gondii parasites) and enzymatic (TgPRS) levels compared to the human counterparts. Cell-based chemical mutagenesis was employed to determine the mechanism of action via a forward genetic screen. Tg-resistant parasites were analyzed with wild-type strain by RNA-seq to identify mutations in the coding sequence conferring drug resistance by computational analysis of variants. DNA sequencing established two mutations, T477A and T592S, proximal to terminals of the PPL scaffold and not directly in the ATP, tRNA, or L-pro sites, as supported by the structural data from high-resolution crystal structures of drug-bound enzyme complexes. These data provide an avenue for structure-based activity enhancement of this chemical series as anti-infectives.


Asunto(s)
Aminoacil-ARNt Sintetasas , Toxoplasma , Toxoplasmosis , Humanos , Toxoplasma/genética , Descubrimiento de Drogas , Aminoacil-ARNt Sintetasas/genética , Adenosina Trifosfato
2.
PLoS Pathog ; 18(3): e1010363, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35333915

RESUMEN

Toxoplasmosis is caused by Toxoplasma gondii and in immunocompromised patients it may lead to seizures, encephalitis or death. The conserved enzyme prolyl-tRNA synthetase (PRS) is a validated druggable target in Toxoplasma gondii but the traditional 'single target-single drug' approach has its caveats. Here, we describe two potent inhibitors namely halofuginone (HFG) and a novel ATP mimetic (L95) that bind to Toxoplasma gondii PRS simultaneously at different neighbouring sites to cover all three of the enzyme substrate subsites. HFG and L95 act as one triple-site inhibitor in tandem and form an unusual ternary complex wherein HFG occupies the 3'-end of tRNA and the L-proline (L-pro) binding sites while L95 occupies the ATP pocket. These inhibitors exhibit nanomolar IC50 and EC50 values independently, and when given together reveal an additive mode of action in parasite inhibition assays. This work validates a novel approach and lays a structural framework for further drug development based on simultaneous targeting of multiple pockets to inhibit druggable proteins.


Asunto(s)
Aminoacil-ARNt Sintetasas , Toxoplasma , Toxoplasmosis , Adenosina Trifosfato/metabolismo , Aminoacil-ARNt Sintetasas/química , Aminoacil-ARNt Sintetasas/metabolismo , Desarrollo de Medicamentos , Humanos , Toxoplasma/metabolismo
3.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38892422

RESUMEN

OBJECTIVES: Eumycetoma is a neglected tropical disease (NTD) characterized by subcutaneous lesions and the formation of grains. Attempts to treat eumycetoma involve a combination of antifungal treatment and surgery, although the outcome is frequently disappointing. Therefore, there is a need to identify novel antifungal drugs to treat eumycetoma. In this respect, Medicines for Malaria Venture (MMV) has assembled libraries of compounds for researchers to use in drug discovery research against NTD. Therefore, we screened two MMVOpen compound libraries to identify novel leads for eumycetoma. METHODS: A total of 400 compounds from the COVID Box and the Global Health Priority Box were screened in vitro at 100 µM and 25 µM against the most common causative agents of eumycetoma, namely Madurella mycetomatis and Falciformispora senegalensis, and the resulting IC50 and MIC50 values were obtained. Compounds with an IC50 < 8 µM were identified for possible in vivo efficacy studies using an M. mycetomatis grain model in Galleria mellonella larvae. RESULTS: Out of the 400 compounds, 22 were able to inhibit both M. mycetomatis and F. senegalensis growth at 100 µM and 25 µM, with compounds MMV1593278, MMV020335, and MMV1804559 being selected for in vivo testing. Of these three, only the pyrazolopyrimidine derivative MMV1804559 was able to prolong the survival of M. mycetomatis-infected G. mellonella larvae. Furthermore, the grains in MMV1804559-treated larvae were significantly smaller compared to the PBS-treated group. CONCLUSION: MMV1804559 shows promising in vitro and in vivo activity against M. mycetomatis.


Asunto(s)
Antifúngicos , Madurella , Micetoma , Madurella/efectos de los fármacos , Micetoma/tratamiento farmacológico , Micetoma/microbiología , Antifúngicos/farmacología , Animales , Pruebas de Sensibilidad Microbiana , Larva/efectos de los fármacos , Larva/microbiología , Humanos
4.
PLoS Pathog ; 17(4): e1009384, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33886696

RESUMEN

It is estimated that more than 1 billion people across the world are affected by a neglected tropical disease (NTD) that requires medical intervention. These diseases tend to afflict people in areas with high rates of poverty and cost economies billions of dollars every year. Collaborative drug discovery efforts are required to reduce the burden of these diseases in endemic regions. The release of "Open Access Boxes" is an initiative launched by Medicines for Malaria Venture (MMV) in collaboration with its partners to catalyze new drug discovery in neglected diseases. These boxes are mainly requested by biology researchers across the globe who may not otherwise have access to compounds to screen nor knowledge of the workflow that needs to be followed after identification of actives from their screening campaigns. Here, we present guidelines on how to move such actives beyond the hit identification stage, to help in capacity strengthening and enable a greater impact of the initiative.


Asunto(s)
Descubrimiento de Drogas , Malaria/tratamiento farmacológico , Enfermedades Desatendidas/tratamiento farmacológico , Estudios de Validación como Asunto , Acceso a la Información , Humanos , Medicina Tropical/métodos
5.
Molecules ; 27(19)2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36235118

RESUMEN

New drugs are urgently needed for the treatment of human African trypanosomiasis (HAT). In line with our quest for novel inhibitors of trypanosomes, a small library of analogs of the antitrypanosomal hit (MMV675968) available at MMV as solid materials was screened for antitrypanosomal activity. In silico exploration of two potent antitrypanosomal structural analogs (7-MMV1578647 and 10-MMV1578445) as inhibitors of dihydrofolate reductase (DHFR) was achieved, together with elucidation of other antitrypanosomal modes of action. In addition, they were assessed in vitro for tentative inhibition of DHFR in a crude trypanosome extract. Their ADMET properties were also predicted using dedicated software. Overall, the two diaminoquinazoline analogs displayed approximately 40-fold and 60-fold more potency and selectivity in vitro than the parent hit, respectively (MMV1578445 (10): IC50 = 0.045 µM, SI = 1737; MMV1578467 (7): IC50 = 0.06 µM; SI = 412). Analogs 7 and 10 were also strong binders of the DHFR enzyme in silico, in all their accessible protonation states, and interacted with key DHFR ligand recognition residues Val32, Asp54, and Ile160. They also exhibited significant activity against trypanosome protein isolate. MMV1578445 (10) portrayed fast and irreversible trypanosome growth arrest between 4-72 h at IC99. Analogs 7 and 10 induced in vitro ferric iron reduction and DNA fragmentation or apoptosis induction, respectively. The two potent analogs endowed with predicted suitable physicochemical and ADMET properties are good candidates for further deciphering their potential as starting points for new drug development for HAT.


Asunto(s)
Tripanocidas , Trypanosoma brucei brucei , Trypanosoma , Tripanosomiasis Africana , Animales , Humanos , Hierro/uso terapéutico , Ligandos , Quinazolinas , Relación Estructura-Actividad , Tetrahidrofolato Deshidrogenasa/metabolismo , Tripanocidas/química , Trypanosoma/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico
6.
Antimicrob Agents Chemother ; 65(8): e0067621, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34001512

RESUMEN

New, more-effective drugs for the treatment of lung disease caused by nontuberculous mycobacteria (NTM) are needed. Among NTM opportunistic pathogens, Mycobacterium abscessus is the most difficult to cure and intrinsically multidrug resistant. In a whole-cell screen of a compound collection active against Mycobacterium tuberculosis, we previously identified the piperidine-4-carboxamide (P4C) MMV688844 (844) as a hit against M. abscessus. Here, we identified a more potent analog of 844 and showed that both the parent and improved analog retain activity against strains representing all three subspecies of the M. abscessus complex. Furthermore, P4Cs showed bactericidal and antibiofilm activity. Spontaneous resistance against the P4Cs emerged at a frequency of 10-8/CFU and mapped to gyrA and gyrB encoding the subunits of DNA gyrase. Biochemical studies with recombinant M. abscessus DNA gyrase showed that P4Cs inhibit the wild-type enzyme but not the P4C-resistant mutant. P4C-resistant strains showed limited cross-resistance to the fluoroquinolone moxifloxacin, which is in clinical use for the treatment of macrolide-resistant M. abscessus disease, and no cross-resistance to the benzimidazole SPR719, a novel DNA gyrase inhibitor in clinical development for the treatment of mycobacterial diseases. Analyses of P4Cs in recA promoter-based DNA damage reporter strains showed induction of recA promoter activity in the wild type but not in the P4C-resistant mutant background. This indicates that P4Cs, similar to fluoroquinolones, cause DNA gyrase-mediated DNA damage. Together, our results show that P4Cs present a novel class of mycobacterial DNA gyrase inhibitors with attractive antimicrobial activities against the M. abscessus complex.


Asunto(s)
Infecciones por Mycobacterium no Tuberculosas , Mycobacterium abscessus , Antibacterianos/farmacología , Girasa de ADN/genética , Humanos , Pruebas de Sensibilidad Microbiana , Infecciones por Mycobacterium no Tuberculosas/tratamiento farmacológico , Mycobacterium abscessus/genética , Micobacterias no Tuberculosas , Piperidinas/farmacología
7.
Bioorg Chem ; 115: 105244, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34452759

RESUMEN

Malaria is a devastating parasitic disease caused by parasites from the genus Plasmodium. Therapeutic resistance has been reported against all clinically available antimalarials, threatening our ability to control the disease and therefore there is an ongoing need for the development of novel antimalarials. Towards this goal, we identified the 2-(N-phenyl carboxamide) triazolopyrimidine class from a high throughput screen of the Janssen Jumpstarter library against the asexual stages of the P. falciparum parasite. Here we describe the structure activity relationship of the identified class and the optimisation of asexual stage activity while maintaining selectivity against the human HepG2 cell line. The most potent analogues from this study were shown to exhibit equipotent activity against P. falciparum multidrug resistant strains and P. knowlesi asexual parasites. Asexual stage phenotyping studies determined the triazolopyrimidine class arrests parasites at the trophozoite stage, but it is likely these parasites are still metabolically active until the second asexual cycle, and thus have a moderate to slow onset of action. Non-NADPH dependent degradation of the central carboxamide and low aqueous solubility was observed in in vitro ADME profiling. A significant challenge remains to correct these liabilities for further advancement of the 2-(N-phenyl carboxamide) triazolopyrimidine scaffold as a potential moderate to slow acting partner in a curative or prophylactic antimalarial treatment.


Asunto(s)
Antimaláricos/farmacología , Eritrocitos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium knowlesi/efectos de los fármacos , Purinas/farmacología , Antimaláricos/síntesis química , Antimaláricos/química , Relación Dosis-Respuesta a Droga , Eritrocitos/parasitología , Humanos , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Purinas/síntesis química , Purinas/química , Relación Estructura-Actividad
8.
Clin Microbiol Rev ; 30(3): 647-669, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28446445

RESUMEN

In the last 2 decades, renewed attention to neglected tropical diseases (NTDs) has spurred the development of antiparasitic agents, especially in light of emerging drug resistance. The need for new drugs has required in vitro screening methods using parasite culture. Furthermore, clinical laboratories sought to correlate in vitro susceptibility methods with treatment outcomes, most notably with malaria. Parasites with their various life cycles present greater complexity than bacteria, for which standardized susceptibility methods exist. This review catalogs the state-of-the-art methodologies used to evaluate the effects of drugs on key human parasites from the point of view of drug discovery as well as the need for laboratory methods that correlate with clinical outcomes.


Asunto(s)
Antiparasitarios/farmacología , Parásitos/efectos de los fármacos , Animales , Descubrimiento de Drogas , Humanos , Enfermedades Desatendidas/parasitología
9.
iScience ; 27(7): 110049, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39104570

RESUMEN

The prolyl-tRNA synthetase (PRS) is an essential enzyme for protein translation and a validated target against malaria parasite. We describe five ATP mimetics (L95, L96, L97, L35, and L36) against PRS, exhibiting enhanced thermal stabilities in co-operativity with L-proline. L35 displays the highest thermal stability akin to halofuginone, an established inhibitor of Plasmodium falciparum PRS. Four compounds exhibit nanomolar inhibitory potency against PRS. L35 exhibits the highest potency of ∼1.6 nM against asexual-blood-stage (ABS) and ∼100-fold (effective concentration [EC50]) selectivity for the parasite. The macromolecular structures of PfPRS with L95 and L97 in complex with L-pro reveal their binding modes and catalytic site malleability. Arg401 of PfPRS oscillates between two rotameric configurations when in complex with L95, whereas it is locked in one of the configurations due to the larger size of L97. Harnessing such specific and selective chemical features holds significant promise for designing potential inhibitors and expediting drug development efforts.

10.
mBio ; 15(3): e0316923, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38323831

RESUMEN

Malaria parasites have adaptive mechanisms to modulate their intracellular redox status to tolerate the enhanced oxidizing effects created by malaria fever, hemoglobinopathies and other stress conditions, including antimalaria drugs. Emerging artemisinin (ART) resistance in Plasmodium falciparum is a complex phenotype linked to the parasite's tolerance of the activated drug's oxidative damage along with changes in vesicular transport, lipid metabolism, DNA repair, and exported proteins. In an earlier study, we discovered that many of these metabolic processes are induced in P. falciparum to respond to the oxidative damage caused by artemisinin, which exhibited a highly significant overlap with the parasite's adaptive response mechanisms to survive febrile temperatures. In addition, there was a significant overlap with the parasite's survival responses to oxidative stress. In this study, we investigated these relationships further using an in vitro model to evaluate if oxidative stress and heat-shock conditions could alter the parasite's response to artemisinin. The results revealed that compared to ideal culture conditions, the antimalarial efficacy of artemisinin was significantly reduced in parasites growing in intraerythrocytic oxidative stress but not in heat-shock condition. In contrast, heat shock significantly reduced the efficacy of lumefantrine that is an important ART combination therapy partner drug. We propose that prolonged exposure to intraerythrocytic microenvironmental oxidative stress, as would occur in endemic regions with high prevalence for sickle trait and other hemoglobinopathies, can predispose malaria parasites to develop tolerance to the oxidative damage caused by antimalarial drugs like artemisinin. IMPORTANCE: Emerging resistance to the frontline antimalarial drug artemisinin represents a significant threat to worldwide malaria control and elimination. The patterns of parasite changes associated with emerging resistance represent a complex array of metabolic processes evident in various genetic mutations and altered transcription profiles. Genetic factors identified in regulating P. falciparum sensitivity to artemisinin overlap with the parasite's responses to malarial fever, sickle trait, and other types of oxidative stresses, suggesting conserved inducible survival responses. In this study we show that intraerythrocytic stress conditions, oxidative stress and heat shock, can significantly decrease the sensitivity of the parasite to artemisinin and lumefantrine, respectively. These results indicate that an intraerythrocytic oxidative stress microenvironment and heat-shock condition can alter antimalarial drug efficacy. Evaluating efficacy of antimalarial drugs under ideal in vitro culture conditions may not accurately predict drug efficacy in all malaria patients.


Asunto(s)
Anemia de Células Falciformes , Antimaláricos , Artemisininas , Antagonistas del Ácido Fólico , Hemoglobinopatías , Malaria Falciparum , Malaria , Humanos , Antimaláricos/farmacología , Plasmodium falciparum/genética , Artemisininas/farmacología , Malaria Falciparum/tratamiento farmacológico , Malaria/tratamiento farmacológico , Lumefantrina/farmacología , Lumefantrina/uso terapéutico , Combinación de Medicamentos , Proteínas Protozoarias/genética , Antagonistas del Ácido Fólico/farmacología , Estrés Oxidativo , Hemoglobinopatías/tratamiento farmacológico , Anemia de Células Falciformes/tratamiento farmacológico , Resistencia a Medicamentos/genética
11.
Toxicol Sci ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976647

RESUMEN

Quinoline-related antimalarial drugs have been associated with cardiotoxicity risk, in particular QT prolongation and QRS complex widening. In collaboration with Medicines for Malaria Venture (MMV), we discovered novel plasmepsin X (PMX) inhibitors for malaria treatment. The first lead compounds tested in anesthetized guinea pigs (GP) induced profound QRS widening, although exhibiting weak inhibition of NaV1.5-mediated currents in standard patch clamp assays. To understand the mechanism(s) underlying QRS widening to identify further compounds devoid of such liability, we established a set of in vitro models including CaV1.2, NaV1.5 rate-dependence and NaV1.8 patch clamp assays, human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM), and Langendorff-perfused isolated GP hearts. Six compounds were tested in all models including anesthetized GP, and 8 additional compounds were tested in vitro only. All compounds tested in anesthetized GP and isolated hearts showed a similar cardiovascular profile, consisting of QRS widening, bradycardia, negative inotropy, hypotension, and for some, QT prolongation. However, a left shift of the concentration-response curves was noted from in vitro to in vivo GP data. When comparing in vitro models, there was a good consistency between decrease in sodium spike amplitude in hiPSC-CM and QRS widening in isolated hearts. Patch clamp assay results showed that the QRS widening observed with PMX inhibitors is likely multifactorial, primarily due to NaV1.8 and NaV1.5 rate-dependent sodium blockade and/or calcium channel-mediated mechanisms. In conclusion, early de-risking of QRS widening using a set of different in vitro assays allowed to identify novel PMX inhibitors with improved cardiac safety profile.

12.
Toxicol Sci ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38976649

RESUMEN

Within drug development, high off-target promiscuity as well as potent cytotoxicity, are associated with a high attrition rate. We investigated the safety profile of novel plasmepsin X (PMX) inhibitors for the treatment of malaria. In our screening cascade, a total of 249 PMX compounds were profiled in a panel of in vitro secondary pharmacology assays containing 44 targets (SafetyScreen44™ panel) and in a cytotoxicity assay in HepG2 cells using ATP as an endpoint. Six of the lead compounds were subsequently tested in a 7-day rat toxicology study, and/or in a cardiovascular study in guinea pigs. Overall, compounds with high cytotoxicity in HepG2 cells correlated with high promiscuity (off-target hit rate >20%) in the SafetyScreen44™ panel and were associated with poor tolerability in vivo (decedents, morbidity, adverse clinical signs, or severe cardiovascular effects). Some side effects observed in rats or guinea pigs could putatively be linked with hits in the secondary pharmacological profiling, such as the M1 or M2 muscarinic acetylcholine receptor, opioid µ and/or κreceptors or hERG/CaV1.2/Na+ channels, which were common to > 50% the compounds tested in vivo. In summary, compounds showing high cytotoxicity and high promiscuity are likely to be poorly tolerated in vivo. However, such associations do not necessarily imply a causal relationship. Identifying the targets that cause these undesirable effects is key for early safety risk assessment. A tiered approach, based on a set of in vitro assays, helps selecting the compounds with highest likelihood of success to proceed to in vivo toxicology studies.

13.
Eur J Med Chem ; 276: 116677, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39024967

RESUMEN

Emerging resistance to current antimalarials is reducing their effectiveness and therefore there is a need to develop new antimalarial therapies. Toward this goal, high throughput screens against the P. falciparum asexual parasite identified the pyrazolopyridine 4-carboxamide scaffold. Structure-activity relationship analysis of this chemotype defined that the N1-tert-butyl group and aliphatic foliage in the 3- and 6-positions were necessary for activity, while the inclusion of a 7'-aza-benzomorpholine on the 4-carboxamide motif resulted in potent anti-parasitic activity and increased aqueous solubility. A previous report that resistance to the pyrazolopyridine class is associated with the ABCI3 transporter was confirmed, with pyrazolopyridine 4-carboxamides showing an increase in potency against parasites when the ABCI3 transporter was knocked down. The low metabolic stability intrinsic to the pyrazolopyridine scaffold and the slow rate by which the compounds kill asexual parasites resulted in poor performance in a P. berghei asexual blood stage mouse model. Lowering the risk of resistance and mitigating the metabolic stability and cytochrome P450 inhibition will be challenges in the future development of the pyrazolopyrimidine antimalarial class.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Pirazoles , Piridinas , Antimaláricos/farmacología , Antimaláricos/química , Antimaláricos/síntesis química , Plasmodium falciparum/efectos de los fármacos , Relación Estructura-Actividad , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Animales , Piridinas/farmacología , Piridinas/química , Piridinas/síntesis química , Ratones , Pruebas de Sensibilidad Parasitaria , Estructura Molecular , Resistencia a Medicamentos/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos
14.
Cell Chem Biol ; 31(8): 1503-1517.e19, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39084225

RESUMEN

Malaria remains a global health concern as drug resistance threatens treatment programs. We identified a piperidine carboxamide (SW042) with anti-malarial activity by phenotypic screening. Selection of SW042-resistant Plasmodium falciparum (Pf) parasites revealed point mutations in the Pf_proteasome ß5 active-site (Pfß5). A potent analog (SW584) showed efficacy in a mouse model of human malaria after oral dosing. SW584 had a low propensity to generate resistance (minimum inoculum for resistance [MIR] >109) and was synergistic with dihydroartemisinin. Pf_proteasome purification was facilitated by His8-tag introduction onto ß7. Inhibition of Pfß5 correlated with parasite killing, without inhibiting human proteasome isoforms or showing cytotoxicity. The Pf_proteasome_SW584 cryoelectron microscopy (cryo-EM) structure showed that SW584 bound non-covalently distal from the catalytic threonine, in an unexplored pocket at the ß5/ß6/ß3 subunit interface that has species differences between Pf and human proteasomes. Identification of a reversible, species selective, orally active series with low resistance propensity provides a path for drugging this essential target.


Asunto(s)
Antimaláricos , Piperidinas , Plasmodium falciparum , Inhibidores de Proteasoma , Piperidinas/química , Piperidinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/enzimología , Animales , Antimaláricos/farmacología , Antimaláricos/química , Humanos , Ratones , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Inhibidores de Proteasoma/síntesis química , Administración Oral , Complejo de la Endopetidasa Proteasomal/metabolismo , Malaria/tratamiento farmacológico , Malaria/parasitología , Amidas/química , Amidas/farmacología , Amidas/síntesis química , Malaria Falciparum/tratamiento farmacológico , Femenino , Estructura Molecular
15.
Hepatology ; 56(6): 2316-27, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22806357

RESUMEN

UNLABELLED: Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) generates reactive oxygen species (ROS) in hepatic stellate cells (HSCs) during liver fibrosis. In response to fibrogenic agonists, such as angiotensin II (Ang II), the NOX1 components form an active complex, including Ras-related botulinum toxin substrate 1 (Rac1). Superoxide dismutase 1 (SOD1) interacts with the NOX-Rac1 complex to stimulate NOX activity. NOX4 is also induced in activated HSCs/myofibroblast by increased gene expression. Here, we investigate the role of an enhanced activity SOD1 G37R mutation (SODmu) and the effects of GKT137831, a dual NOX1/4 inhibitor, on HSCs and liver fibrosis. To induce liver fibrosis, wild-type (WT) and SOD1mu mice were treated with CCl(4) or bile duct ligation (BDL). Then, to address the role of NOX-SOD1-mediated ROS production in HSC activation and liver fibrosis, mice were treated with a NOX1/4 inhibitor. Fibrosis and ROS generation was assessed by histology and measurement of thiobarbituric acid reactive substances and NOX-related genes. Primary cultured HSCs isolated from WT, SODmu, and NOX1 knockout (KO) mice were assessed for ROS production, Rac1 activity, and NOX gene expression. Liver fibrosis was increased in SOD1mu mice, and ROS production and Rac1 activity were increased in SOD1mu HSCs. The NOX1/4 inhibitor, GKT137831, attenuated liver fibrosis and ROS production in both SOD1mu and WT mice as well as messenger RNA expression of fibrotic and NOX genes. Treatment with GKT137831 suppressed ROS production and NOX and fibrotic gene expression, but not Rac1 activity, in SOD1mut and WT HSCs. Both Ang II and tumor growth factor beta up-regulated NOX4, but Ang II required NOX1. CONCLUSIONS: SOD1mu induces excessive NOX1 activation through Rac1 in HSCs, causing enhanced NOX4 up-regulation, ROS generation, and liver fibrosis. Treatment targeting NOX1/4 may be a new therapy for liver fibrosis.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/enzimología , NADH NADPH Oxidorreductasas/metabolismo , NADPH Oxidasas/metabolismo , Pirazoles/uso terapéutico , Piridinas/uso terapéutico , Superóxido Dismutasa/genética , Angiotensina II/farmacología , Animales , Inhibidores Enzimáticos/farmacología , Expresión Génica , Células Estrelladas Hepáticas/efectos de los fármacos , Cirrosis Hepática/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , NADH NADPH Oxidorreductasas/genética , NADPH Oxidasa 1 , NADPH Oxidasa 4 , NADPH Oxidasas/genética , Neuropéptidos/metabolismo , Pirazoles/farmacología , Pirazolonas , Piridinas/farmacología , Piridonas , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa-1 , Regulación hacia Arriba , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rac1
16.
Chemistry ; 19(22): 7173-80, 2013 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-23576271

RESUMEN

The interaction of a series of chiral cationic [4]helicene derivatives, which differ by their substituents, with double-stranded DNA has been investigated by using a combination of spectroscopic techniques, including time-resolved fluorescence, fluorescence anisotropy, and linear dichroism. Addition of DNA to helicene solutions results to a hypochromic shift of the visible absorption bands, an increase of fluorescence quantum yield and lifetime, a slowing down of fluorescence anisotropy decay, and a linear dichroism in flow-oriented DNA, which unambiguously points to the binding of these dyes to DNA. Both helicene monomers and dimeric aggregates, which form at higher concentration, bind to DNA, the former most probably upon intercalation and the latter upon groove binding. The binding constant depends substantially on the dye substituents and is, in all cases, larger with the M than the P enantiomer, by factors ranging from 1.2 to 2.3, depending on the dye.


Asunto(s)
ADN/química , Colorantes Fluorescentes/química , Dicroismo Circular , Fluorescencia , Polarización de Fluorescencia , Sustancias Intercalantes/química , Estructura Molecular , Análisis Espectral , Estereoisomerismo
17.
ACS Med Chem Lett ; 14(11): 1582-1588, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37974949

RESUMEN

Plasmepsin X (PMX) has been identified as a multistage antimalarial target. PMX is a malarial aspartyl protease essential for merozoite egress from infected red blood cells and invasion of the host erythrocytes. Previously, we reported the identification of PMX inhibitors by structure-based optimization of a cyclic guanidine core. Preclinical assessment of UCB7362, which displayed both in vitro and in vivo antimalarial activity, revealed a suboptimal dose paradigm (once daily dosing of 50 mg for 7 days for treatment of uncomplicated malaria) relative to current standard of care (three-dose regime). We report here the efforts toward extending the half-life (t1/2) by reducing metabolic clearance and increasing volume of distribution (Vss). Our efforts culminated in the identification of a biaryl series, with an expected longer t1/2 in human than UCB7362 while maintaining a similar in vitro off-target hit rate.

18.
ACS Med Chem Lett ; 14(12): 1733-1741, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38116432

RESUMEN

Efforts to tackle malaria must continue for a disease that threatens half of the global population. Parasite resistance to current therapies requires new chemotypes that are able to demonstrate effectiveness and safety. Previously, we developed a machine-learning-based approach to predict compound antimalarial activity, which was trained on the compound collections of several organizations. The resulting prediction platform, MAIP, was made freely available to the scientific community and offers a solution to prioritize molecules of interest in virtual screening and hit-to-lead optimization. Here, we experimentally validate MAIP and demonstrate how the approach was used in combination with a robust compound selection workflow and a recently introduced innovative high-throughput screening (HTS) cascade to select and purchase compounds from a public library for subsequent experimental screening. We observed a 12-fold enrichment compared with a randomly selected set of molecules, and the eight hits we ultimately selected exhibit good potency and absorption, distribution, metabolism, and excretion (ADME) profiles.

19.
ACS Infect Dis ; 9(3): 527-539, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36763526

RESUMEN

Current malaria treatments are threatened by drug resistance, and new drugs are urgently needed. In a phenotypic screen for new antimalarials, we identified (S)-SW228703 ((S)-SW703), a tyrosine amide with asexual blood and liver stage activity and a fast-killing profile. Resistance to (S)-SW703 is associated with mutations in the Plasmodium falciparum cyclic amine resistance locus (PfCARL) and P. falciparum acetyl CoA transporter (PfACT), similarly to several other compounds that share features such as fast activity and liver-stage activity. Compounds with these resistance mechanisms are thought to act in the ER, though their targets are unknown. The tyramine of (S)-SW703 is shared with some reported PfCARL-associated compounds; however, we observed that strict S-stereochemistry was required for the activity of (S)-SW703, suggesting differences in the mechanism of action or binding mode. (S)-SW703 provides a new chemical series with broad activity for multiple life-cycle stages and a fast-killing mechanism of action, available for lead optimization to generate new treatments for malaria.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria/tratamiento farmacológico , Hígado , Aminas/metabolismo
20.
Nat Commun ; 14(1): 3059, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244916

RESUMEN

In vitro evolution of drug resistance is a powerful approach for identifying antimalarial targets, however, key obstacles to eliciting resistance are the parasite inoculum size and mutation rate. Here we sought to increase parasite genetic diversity to potentiate resistance selections by editing catalytic residues of Plasmodium falciparum DNA polymerase δ. Mutation accumulation assays reveal a ~5-8 fold elevation in the mutation rate, with an increase of 13-28 fold in drug-pressured lines. Upon challenge with the spiroindolone PfATP4-inhibitor KAE609, high-level resistance is obtained more rapidly and at lower inocula than wild-type parasites. Selections also yield mutants with resistance to an "irresistible" compound, MMV665794 that failed to yield resistance with other strains. We validate mutations in a previously uncharacterised gene, PF3D7_1359900, which we term quinoxaline resistance protein (QRP1), as causal for resistance to MMV665794 and a panel of quinoxaline analogues. The increased genetic repertoire available to this "mutator" parasite can be leveraged to drive P. falciparum resistome discovery.


Asunto(s)
Antimaláricos , Malaria Falciparum , Parásitos , Animales , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Parásitos/metabolismo , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Antimaláricos/uso terapéutico , Mutación , Resistencia a Medicamentos/genética , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA