Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 20(3): e1011879, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38437239

RESUMEN

Placental accumulation of Plasmodium falciparum infected erythrocytes results in maternal anemia, low birth weight, and pregnancy loss. The parasite protein VAR2CSA facilitates the accumulation of infected erythrocytes in the placenta through interaction with the host receptor chondroitin sulfate A (CSA). Antibodies that prevent the VAR2CSA-CSA interaction correlate with protection from placental malaria, and VAR2CSA is a high-priority placental malaria vaccine antigen. Here, structure-guided design leveraging the full-length structures of VAR2CSA produced a stable immunogen that retains the critical conserved functional elements of VAR2CSA. The design expressed with a six-fold greater yield than the full-length protein and elicited antibodies that prevent adhesion of infected erythrocytes to CSA. The reduced size and adaptability of the designed immunogen enable efficient production of multiple variants of VAR2CSA for use in a cocktail vaccination strategy to increase the breadth of protection. These designs form strong foundations for the development of potent broadly protective placental malaria vaccines.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Humanos , Embarazo , Femenino , Placenta/metabolismo , Malaria Falciparum/parasitología , Anticuerpos Antiprotozoarios , Plasmodium falciparum/metabolismo , Antígenos de Protozoos , Sulfatos de Condroitina/metabolismo , Eritrocitos/parasitología
2.
J Infect Dis ; 226(3): 521-527, 2022 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-35290467

RESUMEN

Plasmodium falciparum-infected erythrocytes that display the variant surface antigen VAR2CSA bind chondroitin sulfate A (CSA) to sequester in placental intervillous spaces, causing severe sequelae for mother and offspring. Here, we establish a placental malaria (PM) monkey model. Pregnant Aotus infected with CSA-binding P. falciparum CS2 parasites during the third trimester developed pronounced sequestration of late-stage parasites in placental intervillous spaces that express VAR2CSA and bind specifically to CSA. Similar to immune multigravid women, a monkey infected with P. falciparum CS2 parasites over successive pregnancies acquired antibodies against VAR2CSA, with potent functional activity that was boosted upon subsequent pregnancy infections. Aotus also developed functional antibodies after multiple acute PM episodes and subsequent VAR2CSA immunization. In summary, P. falciparum infections in pregnant Aotus monkeys recapitulate all the prominent features of human PM infection and immunity, and this model can be useful for basic mechanistic studies and preclinical studies to qualify candidate PM vaccines. Clinical Trials Registration: NCT02471378.


Asunto(s)
Malaria Falciparum , Malaria , Complicaciones Parasitarias del Embarazo , Animales , Anticuerpos Antiprotozoarios , Antígenos de Protozoos , Aotidae , Sulfatos de Condroitina , Eritrocitos , Femenino , Humanos , Placenta , Plasmodium falciparum , Embarazo
3.
Malar J ; 21(1): 247, 2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030292

RESUMEN

BACKGROUND: Plasmodium falciparum (Pf) sporozoite (SPZ) vaccines are the only candidate malaria vaccines that induce > 90% vaccine efficacy (VE) against controlled human malaria infection and the only malaria vaccines to have achieved reproducible VE against malaria in adults in Africa. The goal is to increase the impact and reduce the cost of PfSPZ vaccines by optimizing vaccine potency and manufacturing, which will benefit from identification of immunological responses contributing to protection in humans. Currently, there is no authentic animal challenge model for assessing P. falciparum malaria VE. Alternatively, Plasmodium knowlesi (Pk), which infects humans and non-human primates (NHPs) in nature, can be used to experimentally infect rhesus macaques (Macaca mulatta) to assess VE. METHODS: Sanaria has, therefore, produced purified, vialed, cryopreserved PkSPZ and conducted challenge studies in several naïve NHP cohorts. In the first cohort, groups of three rhesus macaques each received doses of 5 × 102, 2.5 × 103, 1.25 × 104 and 2.5 × 104 PkSPZ administered by direct venous inoculation. The infectivity of 1.5 × 103 PkSPZ cryopreserved with an altered method and of 1.5 × 103 PkSPZ cryopreserved for four years was tested in a second and third cohort of rhesus NHPs. The lastly, three pig-tailed macaques (Macaca nemestrina), a natural P. knowlesi host, were challenged with 2.5 × 103 PkSPZ cryopreserved six years earlier. RESULTS: In the first cohort, all 12 animals developed P. knowlesi parasitaemia by thick blood smear, and the time to positivity (prepatent period) followed a non-linear 4-parameter logistic sigmoidal model with a median of 11, 10, 8, and 7 days, respectively (r2 = 1). PkSPZ cryopreserved using a modified rapid-scalable method infected rhesus with a pre-patent period of 10 days, as did PkSPZ cryopreserved four years prior to infection, similar to the control group. Cryopreserved PkSPZ infected pig-tailed macaques with median time to positivity by thin smear, of 11 days. CONCLUSION: This study establishes the capacity to consistently infect NHPs with purified, vialed, cryopreserved PkSPZ, providing a foundation for future studies to probe protective immunological mechanisms elicited by PfSPZ vaccines that cannot be established in humans.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Plasmodium knowlesi , Adulto , Animales , Humanos , Macaca mulatta , Plasmodium falciparum , Esporozoítos
4.
J Med Primatol ; 51(2): 93-100, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34971004

RESUMEN

BACKGROUND: Owl monkeys are commonly used in biomedical research which is affected by the high incidence of cardiomyopathy in this species. Occasionally, owl monkeys with no clinical signs of heart disease are found dead and at necropsy show no, or very mild, cardiomyopathy. A possible explanation for sudden death is acute myocardial infarction; however, early myocardial changes may be difficult to assess by conventional stains and light microscopy. METHODS: Complement component C9 immunohistochemistry was performed in paraffin-embedded heart tissue samples from owl monkeys who died suddenly, or were euthanized due to sickness, to determine whether these animals suffered from acute myocardial infarcts. RESULTS AND CONCLUSION: C9 deposits were found in the myocardium of 19 out of 20 (95%) animals. The findings in this study suggest owl monkeys suffer from acute myocardial infarcts, and complement component C9 immunohistochemistry may be a useful diagnostic tool.


Asunto(s)
Cardiomiopatías , Infarto del Miocardio , Animales , Aotidae/fisiología , Muerte Celular , Formaldehído , Inmunohistoquímica , Infarto del Miocardio/diagnóstico , Miocardio , Adhesión en Parafina , Estudios Retrospectivos
5.
Infect Immun ; 89(11): e0016521, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34310889

RESUMEN

Preerythrocytic vaccines prevent malaria by targeting parasites in the clinically silent sporozoite and liver stages and preventing progression to the virulent blood stages. The leading preerythrocytic vaccine, RTS,S/AS01E (Mosquirix), entered implementation programs in 2019 and targets the major sporozoite surface antigen, circumsporozoite protein (CSP). However, in phase III clinical trials, RTS,S conferred partial protection with limited durability, indicating a need to improve CSP-based vaccination. Previously, we identified highly expressed liver-stage proteins that could potentially be used in combination with CSP; they are referred to as preerythrocytic vaccine antigens (PEVAs). Here, we developed heterologous prime-boost CSP vaccination models to confer partial sterilizing immunity against Plasmodium yoelii (protein prime-adenovirus 5 [Ad5] boost) and Plasmodium berghei (DNA prime-Ad5 boost) in mice. When combined as individual antigens with P. yoelii CSP (PyCSP), three of eight P. yoelii PEVAs significantly enhanced sterile protection against sporozoite challenge, compared to PyCSP alone. Similar results were obtained when three P. berghei PEVAs and P. berghei CSP were combined in a single vaccine regimen. In general, PyCSP antibody responses were similar after CSP alone versus CSP plus PEVA vaccinations. Both P. yoelii and P. berghei CSP plus PEVA combination vaccines induced robust CD8+ T cell responses, including signature gamma interferon (IFN-γ) increases. In the P. berghei model system, IFN-γ responses were significantly higher in hepatic versus splenic CD8+ T cells. The addition of novel antigens may enhance the degree and duration of sterile protective immunity conferred by a human vaccine such as RTS,S.


Asunto(s)
Antígenos de Protozoos/inmunología , Vacunas contra la Malaria/inmunología , Proteínas Protozoarias/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Interferón gamma/biosíntesis , Activación de Linfocitos , Malaria/prevención & control , Ratones , Ratones Endogámicos BALB C , Vacunación
6.
J Med Primatol ; 47(6): 423-426, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30187922

RESUMEN

Eosinophilic aortitis is a rare condition in animals and humans, and it has been occasionally reported associated with parasitic migration and with a poorly understood complex group of autoimmune vasculitides. Here, we describe a case of eosinophilic aortitis with thoracic aortic aneurysm and rupture in a captive-born owl monkey and discuss the differential diagnoses.


Asunto(s)
Aneurisma de la Aorta Torácica/veterinaria , Rotura de la Aorta/veterinaria , Aortitis/veterinaria , Aotidae , Eosinófilos/patología , Enfermedades de los Monos/diagnóstico , Animales , Animales de Laboratorio , Aneurisma de la Aorta Torácica/diagnóstico , Aneurisma de la Aorta Torácica/etiología , Rotura de la Aorta/diagnóstico , Rotura de la Aorta/etiología , Rotura de la Aorta/patología , Aortitis/diagnóstico , Aortitis/etiología , Masculino , Enfermedades de los Monos/etiología , Enfermedades de los Monos/patología
7.
J Med Primatol ; 45(6): 312-317, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27477611

RESUMEN

BACKGROUND: Klebsiella pneumoniae can be a serious pathogen in non-human primates, particularly Neotropical monkeys. METHODS: During a K. pneumoniae outbreak in an owl monkey research colony, 13 K. pneumoniae isolates were DNA fingerprinted by automated repetitive extragenic palindromic-polymerase chain reaction and the profiles compared to isolates obtained from other non-human primate species during the same time period and isolates from previous outbreaks. RESULTS: Eleven different types of K. pneumoniae were circulating in the owl monkey colony at the time of the outbreak. When comparing owl monkey isolates relatedness to previous colony outbreak isolates and squirrel monkey and capuchin monkey isolates, all were different. CONCLUSIONS: These results agree with recent reports where K. pneumoniae nosocomial isolates in hospital settings can have high genetic diversity, and multiple strains can be circulating simultaneously. This potential genetic diversity should be considered when designing strategies for controlling K. pneumoniae outbreaks in captive non-human primate colonies.


Asunto(s)
Aotidae , Brotes de Enfermedades , Variación Genética , Infecciones por Klebsiella/epidemiología , Klebsiella pneumoniae/genética , Enfermedades de los Monos/epidemiología , Animales , Animales de Laboratorio , Femenino , Infecciones por Klebsiella/microbiología , Masculino , Enfermedades de los Monos/microbiología
8.
Vaccines (Basel) ; 12(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38793797

RESUMEN

Malaria is caused by eukaryotic protozoan parasites of the genus Plasmodium. There are 249 million new cases and 608,000 deaths annually, and new interventions are desperately needed. Malaria vaccines can be divided into three categories: liver stage, blood stage, or transmission-blocking vaccines. Transmission-blocking vaccines prevent the transmission of disease by the mosquito vector from one human to another. Pfs230 is one of the leading transmission-blocking vaccine antigens for malaria. Here, we describe the development of a 24-copy self-assembling nanoparticle vaccine comprising domain 1 of Pfs230 genetically fused to H. pylori ferritin. The single-component Pfs230D1-ferritin construct forms a stable and homogenous 24-copy nanoparticle with good production yields. The nanoparticle is highly immunogenic, as two low-dose vaccinations of New Zealand White rabbits elicited a potent and durable antibody response with high transmission-reducing activity when formulated in two distinct adjuvants suitable for translation to human use. This single-component 24-copy Pfs230D1-ferritin nanoparticle vaccine has the potential to improve production pipelines and the cost of manufacturing a potent and durable transmission-blocking vaccine for malaria control.

9.
NPJ Vaccines ; 9(1): 9, 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184666

RESUMEN

Malaria transmission-blocking vaccines (TBV) are designed to inhibit the sexual stage development of the parasite in the mosquito host and can play a significant role in achieving the goal of malaria elimination. Preclinical and clinical studies using protein-protein conjugates of leading TBV antigens Pfs25 and Pfs230 domain 1 (Pfs230D1) have demonstrated the feasibility of TBV. Nevertheless, other promising vaccine platforms for TBV remain underexplored. The recent success of mRNA vaccines revealed the potential of this technology for infectious diseases. We explored the mRNA platform for TBV development. mRNA constructs of Pfs25 and Pfs230D1 variously incorporating signal peptides (SP), GPI anchor, and Trans Membrane (TM) domain were assessed in vitro for antigen expression, and selected constructs were evaluated in mice. Only mRNA constructs with GPI anchor or TM domain that resulted in high cell surface expression of the antigens yielded strong immune responses in mice. These mRNA constructs generated higher transmission-reducing functional activity versus the corresponding alum-adjuvanted protein-protein conjugates used as comparators. Pfs25 mRNA with GPI anchor or TM maintained >99% transmission reducing activity through 126 days, the duration of the study, demonstrating the potential of mRNA platform for TBV.

10.
Antiviral Res ; 228: 105937, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38901738

RESUMEN

Most COVID-19 vaccines contain the SARS-CoV-2 spike protein as an antigen, but they lose efficacy as neutralizing antibody titers wane and escape variants emerge. Modifying the spike antigen to increase neutralizing antibody titers would help counteract this decrease in titer. We previously used a structure-based computational design method to identify nine amino acid changes in the receptor-binding domain (RBD) of spike that stabilize the RBD and increase the neutralizing antibody titers elicited by vaccination. Here, we introduce those enhancing amino acid changes into a full-length spike (FL-S-2P) ectodomain representative of most approved vaccine antigens. These amino acid changes can be incorporated into the FL-S-2P protein without negatively effecting expression or stability. Furthermore, the amino acid changes improved functional antibody titers in both mice and monkeys following vaccination. These amino acid changes could increase the duration of protection conferred by most COVID-19 vaccines.

11.
Antimicrob Agents Chemother ; 57(1): 425-35, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23129054

RESUMEN

Malaria is a deadly infectious disease in many tropical and subtropical countries. Previous efforts to eradicate malaria have failed, largely due to the emergence of drug-resistant parasites, insecticide-resistant mosquitoes and, in particular, the lack of drugs or vaccines to block parasite transmission. ATP-binding cassette (ABC) transporters are known to play a role in drug transport, metabolism, and resistance in many organisms, including malaria parasites. To investigate whether a Plasmodium falciparum ABC transporter (Pf14_0244 or PfABCG2) modulates parasite susceptibility to chemical compounds or plays a role in drug resistance, we disrupted the gene encoding PfABCG2, screened the recombinant and the wild-type 3D7 parasites against a library containing 2,816 drugs approved for human or animal use, and identified an antihistamine (ketotifen) that became less active against the PfABCG2-disrupted parasite in culture. In addition to some activity against asexual stages and gametocytes, ketotifen was highly potent in blocking oocyst development of P. falciparum and the rodent parasite Plasmodium yoelii in mosquitoes. Tests of structurally related tricyclic compounds identified additional compounds with similar activities in inhibiting transmission. Additionally, ketotifen appeared to have some activity against relapse of Plasmodium cynomolgi infection in rhesus monkeys. Further clinical evaluation of ketotifen and related compounds, including synthetic new derivatives, in blocking malaria transmission may provide new weapons for the current effort of malaria eradication.


Asunto(s)
Antimaláricos/farmacología , Cetotifen/farmacología , Malaria Falciparum/prevención & control , Malaria/prevención & control , Oocistos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Plasmodium yoelii/efectos de los fármacos , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Antialérgicos/farmacología , Transporte Biológico/efectos de los fármacos , Reposicionamiento de Medicamentos , Ensayos Analíticos de Alto Rendimiento , Humanos , Cetotifen/análogos & derivados , Macaca mulatta , Malaria/metabolismo , Malaria/parasitología , Malaria/transmisión , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Ratones , Oocistos/crecimiento & desarrollo , Plasmodium cynomolgi/efectos de los fármacos , Plasmodium cynomolgi/crecimiento & desarrollo , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium yoelii/crecimiento & desarrollo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
12.
NPJ Vaccines ; 8(1): 124, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37596283

RESUMEN

Malaria transmission-blocking vaccines (TBVs) reduce disease transmission by breaking the continuous cycle of infection between the human host and the mosquito vector. Domain 1 (D1) of Pfs230 is a leading TBV candidate and comprises the majority of transmission-reducing activity (TRA) elicited by Pfs230. Here we show that the fusion of Pfs230D1 to a 60-copy multimer of the catalytic domain of dihydrolipoyl acetyltransferase protein (E2p) results in a single-component nanoparticle composed of 60 copies of the fusion protein with high stability, homogeneity, and production yields. The nanoparticle presents a potent human transmission-blocking epitope within Pfs230D1, indicating the antigen is correctly oriented on the surface of the nanoparticle. Two vaccinations of New Zealand White rabbits with the Pfs230D1 nanoparticle elicited a potent and durable antibody response with high TRA when formulated in two distinct adjuvants suitable for translation to human use. This single-component nanoparticle vaccine may play a key role in malaria control and has the potential to improve production pipelines and the cost of manufacturing of a potent and durable TBV.

13.
NPJ Vaccines ; 8(1): 20, 2023 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-36808125

RESUMEN

A malaria vaccine that blocks parasite transmission from human to mosquito would be a powerful method of disrupting the parasite lifecycle and reducing the incidence of disease in humans. Pfs48/45 is a promising antigen in development as a transmission blocking vaccine (TBV) against the deadliest malaria parasite Plasmodium falciparum. The third domain of Pfs48/45 (D3) is an established TBV candidate, but production challenges have hampered development. For example, to date, a non-native N-glycan is required to stabilize the domain when produced in eukaryotic systems. Here, we implement a SPEEDesign computational design and in vitro screening pipeline that retains the potent transmission blocking epitope in Pfs48/45 while creating a stabilized non-glycosylated Pfs48/45 D3 antigen with improved characteristics for vaccine manufacture. This antigen can be genetically fused to a self-assembling single-component nanoparticle, resulting in a vaccine that elicits potent transmission-reducing activity in rodents at low doses. The enhanced Pfs48/45 antigen enables many new and powerful approaches to TBV development, and this antigen design method can be broadly applied towards the design of other vaccine antigens and therapeutics without interfering glycans.

14.
iScience ; 26(7): 107192, 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37485364

RESUMEN

Malaria transmission-blocking vaccine candidates Pfs25-EPA and Pfs230D1-EPA target sexual stage development of Plasmodium falciparum parasites in the mosquito host, thereby reducing mosquito infectivity. When formulated on Alhydrogel, Pfs25-EPA has demonstrated safety and immunogenicity in a phase 1 field trial, while Pfs230D1-EPA has shown superior activity to Pfs25-EPA in a phase 1 US trial and has entered phase 2 field trials. Development continues to enhance immunogenicity of these candidates toward producing a vaccine to reduce malaria transmission (VRMT) with both pre-erythrocytic (i.e., anti-infection) and transmission-blocking components. GSK Adjuvant Systems have demonstrated successful potency in pre-erythrocytic vaccine trials and might offer a common platform for VRMT development. Here, we describe preclinical evaluations of Pfs25-EPA and Pfs230D1-EPA nanoparticles with GSK platforms. Formulations were stable after a series of assessments and induced superior antibody titers and functional activity in CD-1 mice, compared to Alhydrogel formulations of the same antigens.

15.
Nat Commun ; 14(1): 5345, 2023 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660103

RESUMEN

Apical membrane antigen 1 (AMA1) is a key malaria vaccine candidate and target of neutralizing antibodies. AMA1 binds to a loop in rhoptry neck protein 2 (RON2L) to form the moving junction during parasite invasion of host cells, and this complex is conserved among apicomplexan parasites. AMA1-RON2L complex immunization achieves higher growth inhibitory activity than AMA1 alone and protects mice against Plasmodium yoelii challenge. Here, three single-component AMA1-RON2L immunogens were designed that retain the structure of the two-component AMA1-RON2L complex: one structure-based design (SBD1) and two insertion fusions. All immunogens elicited high antibody titers with potent growth inhibitory activity, yet these antibodies did not block RON2L binding to AMA1. The SBD1 immunogen induced significantly more potent strain-transcending neutralizing antibody responses against diverse strains of Plasmodium falciparum than AMA1 or AMA1-RON2L complex vaccination. This indicates that SBD1 directs neutralizing antibody responses to strain-transcending epitopes in AMA1 that are independent of RON2L binding. This work underscores the importance of neutralization mechanisms that are distinct from RON2 blockade. The stable single-component SBD1 immunogen elicits potent strain-transcending protection that may drive the development of next-generation vaccines for improved malaria and apicomplexan parasite control.


Asunto(s)
Vacunas contra la Malaria , Animales , Ratones , Anticuerpos Neutralizantes , Membrana Celular , Epítopos , Inmunización
16.
Cell Rep ; 42(3): 112266, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36943870

RESUMEN

Waning immunity and emerging variants necessitate continued vaccination against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Improvements in vaccine safety, tolerability, and ease of manufacturing would benefit these efforts. Here, we develop a potent and easily manufactured nanoparticle vaccine displaying the spike receptor-binding domain (RBD). Computational design to stabilize the RBD, eliminate glycosylation, and focus the immune response to neutralizing epitopes results in an RBD immunogen that resolves issues hindering the efficient nanoparticle display of the native RBD. This non-glycosylated RBD can be genetically fused to diverse single-component nanoparticle platforms, maximizing manufacturing ease and flexibility. All engineered RBD nanoparticles elicit potently neutralizing antibodies in mice that far exceed monomeric RBDs. A 60-copy particle (noNAG-RBD-E2p) also elicits potently neutralizing antibodies in non-human primates. The neutralizing antibody titers elicited by noNAG-RBD-E2p are comparable to a benchmark stabilized spike antigen and reach levels against Omicron BA.5 that suggest that it would provide protection against emerging variants.


Asunto(s)
COVID-19 , Nanopartículas , Animales , Ratones , Vacunas contra la COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Nanopartículas/química
17.
NPJ Vaccines ; 8(1): 56, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37061547

RESUMEN

Development of a malaria vaccine that blocks transmission of different parasite stages to humans and mosquitoes is considered critical for elimination efforts. A vaccine using Pfs25, a protein on the surface of zygotes and ookinetes, is under investigation as a transmission-blocking vaccine (TBV) that would interrupt parasite passage from mosquitoes to humans. The most extensively studied Pfs25 TBVs use Pichia pastoris-produced recombinant forms of Pfs25, chemically conjugated to a recombinant carrier protein, ExoProtein A (EPA). The recombinant form of Pfs25 first used in humans was identified as Pfs25H, which contained a total of 14 heterologous amino acid residues located at the amino- and carboxyl-termini including a His6 affinity tag. A second recombinant Pfs25, identified as Pfs25M, was produced to remove the heterologous amino acid residues and conjugated to EPA (Pfs25M-EPA). Here, monomeric Pfs25M was characterized biochemically and biophysically for identity, purity, and integrity including protein structure to assess its comparability with Pfs25H. Although the biological activities of Pfs25H and Pfs25M, whether generated by monomeric forms or conjugated nanoparticles, appeared similar, fine-mapping studies with two transmission-blocking monoclonal antibodies detected structural and immunological differences. In addition, evaluation of antisera generated against conjugated Pfs25H or Pfs25M nanoparticles in nonhuman primates identified polyclonal IgG that recognized these structural differences.

18.
Lab Anim (NY) ; 52(12): 315-323, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37932470

RESUMEN

Placental malaria vaccines (PMVs) are being developed to prevent severe sequelae of placental malaria (PM) in pregnant women and their offspring. The leading candidate vaccine antigen VAR2CSA mediates parasite binding to placental receptor chondroitin sulfate A (CSA). Despite promising results in small animal studies, recent human trials of the first two PMV candidates (PAMVAC and PRIMVAC) generated limited cross-reactivity and cross-inhibitory activity to heterologous parasites. Here we immunized Aotus nancymaae monkeys with three PMV candidates (PAMVAC, PRIMVAC and ID1-ID2a_M1010) adjuvanted with Alhydrogel, and exploited the model to investigate boosting of functional vaccine responses during PM episodes as well as with nanoparticle antigens. PMV candidates induced high levels of antigen-specific IgG with significant cross-reactivity across PMV antigens by enzyme-linked immunosorbent assay. Conversely, PMV antibodies recognized native VAR2CSA and blocked CSA adhesion of only homologous parasites and not of heterologous parasites. PM episodes did not significantly boost VAR2CSA antibody levels or serum functional activity; nanoparticle and monomer antigens alike boosted serum reactivity but not functional activities. Overall, PMV candidates induced functional antibodies with limited heterologous activity in Aotus monkeys, similar to responses reported in humans. The Aotus model appears suitable for preclinical downselection of PMV candidates and assessment of antibody boosting by PM episodes.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Animales , Humanos , Femenino , Embarazo , Placenta/parasitología , Malaria Falciparum/prevención & control , Malaria Falciparum/parasitología , Plasmodium falciparum , Antígenos de Protozoos , Anticuerpos Antiprotozoarios , Malaria/prevención & control , Aotidae , Inmunidad
19.
Sci Adv ; 8(37): eabq8276, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36103542

RESUMEN

The receptor binding domain (RBD) of the SARS-CoV-2 spike protein is the primary target of neutralizing antibodies and is a component of almost all current vaccines. Here, RBD immunogens were created with stabilizing amino acid changes that improve the neutralizing antibody response, as well as characteristics for production, storage, and distribution. A computational design and in vitro screening platform identified three improved immunogens, each with approximately nine amino acid changes relative to the native RBD sequence, and four key changes conserved between immunogens. The changes are adaptable to all vaccine platforms and compatible with mutations in emerging variants of concern. The immunogens elicit higher levels of neutralizing antibodies than native RBD, focus the immune response to structured neutralizing epitopes, and have increased production yields and thermostability. Incorporating these variant-independent amino acid changes in next-generation COVID vaccines may enhance the neutralizing antibody response and lead to longer duration and broader protection.


Asunto(s)
COVID-19 , Vacunas Virales , Aminoácidos , Anticuerpos Neutralizantes , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
20.
iScience ; 25(8): 104739, 2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-35846379

RESUMEN

Several effective SARS-CoV-2 vaccines have been developed using different technologies. Although these vaccines target the isolates collected early in the pandemic, many have protected against serious illness from newer variants. Nevertheless, efficacy has diminished against successive variants and the need for effective and affordable vaccines persists especially in the developing world. Here, we adapted our protein-protein conjugate vaccine technology to generate a vaccine based on receptor-binding domain (RBD) antigen. RBD was conjugated to a carrier protein, EcoCRM®, to generate two types of conjugates: crosslinked and radial conjugates. In the crosslinked conjugate, antigen and carrier are chemically crosslinked; in the radial conjugate, the antigen is conjugated to the carrier by site-specific conjugation. With AS01 adjuvant, both conjugates showed enhanced immunogenicity in mice compared to RBD, with a Th1 bias. In hACE2 binding inhibition and pseudovirus neutralization assays, sera from mice vaccinated with the radial conjugate demonstrated strong functional activity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA