Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Immunol ; 199(11): 3883-3891, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29061764

RESUMEN

Complement is crucial to the immune response, but dysregulation of the system causes inflammatory disease. Complement is activated by three pathways: classical, lectin, and alternative. The classical and lectin pathways are initiated by the C1r/C1s (classical) and MASP-1/MASP-2 (lectin) proteases. Given the role of complement in disease, there is a requirement for inhibitors to control the initiating proteases. In this article, we show that a novel inhibitor, gigastasin, from the giant Amazon leech, potently inhibits C1s and MASP-2, whereas it is also a good inhibitor of MASP-1. Gigastasin is a poor inhibitor of C1r. The inhibitor blocks the active sites of C1s and MASP-2, as well as the anion-binding exosites of the enzymes via sulfotyrosine residues. Complement deposition assays revealed that gigastasin is an effective inhibitor of complement activation in vivo, especially for activation via the lectin pathway. These data suggest that the cumulative effects of inhibiting both MASP-2 and MASP-1 have a greater effect on the lectin pathway than the more potent inhibition of only C1s of the classical pathway.


Asunto(s)
Activación de Complemento/efectos de los fármacos , Complemento C1/antagonistas & inhibidores , Inactivadores del Complemento/química , Vía Clásica del Complemento/efectos de los fármacos , Lectina de Unión a Manosa de la Vía del Complemento/efectos de los fármacos , Sanguijuelas/química , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/antagonistas & inhibidores , Péptidos/química , Inhibidores de Serina Proteinasa/química , Animales , Dominio Catalítico/efectos de los fármacos , Células Cultivadas , Inactivadores del Complemento/farmacología , Endotelio Vascular/efectos de los fármacos , Humanos , Péptidos/farmacología , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacología , Inhibidores de Serina Proteinasa/farmacología
2.
Blood ; 128(13): 1766-76, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27338096

RESUMEN

The complement system plays a key role in innate immunity, inflammation, and coagulation. The system is delicately balanced by negative regulatory mechanisms that modulate the host response to pathogen invasion and injury. The serpin, C1-esterase inhibitor (C1-INH), is the only known plasma inhibitor of C1s, the initiating serine protease of the classical pathway of complement. Like other serpin-protease partners, C1-INH interaction with C1s is accelerated by polyanions such as heparin. Polyphosphate (polyP) is a naturally occurring polyanion with effects on coagulation and complement. We recently found that polyP binds to C1-INH, prompting us to consider whether polyP acts as a cofactor for C1-INH interactions with its target proteases. We show that polyP dampens C1s-mediated activation of the classical pathway in a polymer length- and concentration-dependent manner by accelerating C1-INH neutralization of C1s cleavage of C4 and C2. PolyP significantly increases the rate of interaction between C1s and C1-INH, to an extent comparable to heparin, with an exosite on the serine protease domain of the enzyme playing a major role in this interaction. In a serum-based cell culture system, polyP significantly suppressed C4d deposition on endothelial cells, generated via the classical and lectin pathways. Moreover, polyP and C1-INH colocalize in activated platelets, suggesting that their interactions are physiologically relevant. In summary, like heparin, polyP is a naturally occurring cofactor for the C1s:C1-INH interaction and thus an important regulator of complement activation. The findings may provide novel insights into mechanisms underlying inflammatory diseases and the development of new therapies.


Asunto(s)
Proteínas Inactivadoras del Complemento 1/metabolismo , Proteínas del Sistema Complemento/metabolismo , Polifosfatos/metabolismo , Sitios de Unión , Plaquetas/inmunología , Plaquetas/metabolismo , Células Cultivadas , Proteína Inhibidora del Complemento C1 , Complemento C1s/química , Complemento C1s/metabolismo , Complemento C2/metabolismo , Complemento C4/metabolismo , Vía Clásica del Complemento , Células Endoteliales/inmunología , Células Endoteliales/metabolismo , Heparina/metabolismo , Humanos , Técnicas In Vitro , Polifosfatos/química
3.
Proc Natl Acad Sci U S A ; 112(6): E576-85, 2015 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-25624472

RESUMEN

Unique to Gram-positive bacteria, wall teichoic acids are anionic glycopolymers cross-stitched to a thick layer of peptidoglycan. The polyol phosphate subunits of these glycopolymers are decorated with GlcNAc sugars that are involved in phage binding, genetic exchange, host antibody response, resistance, and virulence. The search for the enzymes responsible for GlcNAcylation in Staphylococcus aureus has recently identified TarM and TarS with respective α- and ß-(1-4) glycosyltransferase activities. The stereochemistry of the GlcNAc attachment is important in balancing biological processes, such that the interplay of TarM and TarS is likely important for bacterial pathogenicity and survival. Here we present the crystal structure of TarM in an unusual ternary-like complex consisting of a polymeric acceptor substrate analog, UDP from a hydrolyzed donor, and an α-glyceryl-GlcNAc product formed in situ. These structures support an internal nucleophilic substitution-like mechanism, lend new mechanistic insight into the glycosylation of glycopolymers, and reveal a trimerization domain with a likely role in acceptor substrate scaffolding.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Pared Celular/enzimología , Glicosiltransferasas/metabolismo , Modelos Moleculares , Staphylococcus aureus/enzimología , Ácidos Teicoicos/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular , Cristalización , Estabilidad de Enzimas , Glicosiltransferasas/química , Glicosiltransferasas/genética , Espectrometría de Masas , Metales/análisis , Resonancia Magnética Nuclear Biomolecular , Polimerizacion , Conformación Proteica
4.
J Biol Chem ; 290(16): 10406-17, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25678709

RESUMEN

The Gram-negative bacterium enteropathogenic Escherichia coli uses a syringe-like type III secretion system (T3SS) to inject virulence or "effector" proteins into the cytoplasm of host intestinal epithelial cells. To assemble, the T3SS must traverse both bacterial membranes, as well as the peptidoglycan layer. Peptidoglycan is made of repeating N-acetylmuramic acid and N-acetylglucosamine disaccharides cross-linked by pentapeptides to form a tight mesh barrier. Assembly of many macromolecular machines requires a dedicated peptidoglycan lytic enzyme (PG-lytic enzyme) to locally clear peptidoglycan. Here we have solved the first structure of a T3SS-associated PG-lytic enzyme, EtgA from enteropathogenic E. coli. Unexpectedly, the active site of EtgA has features in common with both lytic transglycosylases and hen egg white lysozyme. Most notably, the ß-hairpin region resembles that of lysozyme and contains an aspartate that aligns with lysozyme Asp-52 (a residue critical for catalysis), a conservation not observed in other previously characterized lytic transglycosylase families to which the conserved T3SS enzymes had been presumed to belong. Mutation of the EtgA catalytic glutamate, Glu-42, conserved across lytic transglycosylases and hen egg white lysozyme, and this differentiating aspartate diminishes type III secretion in vivo, supporting its essential role in clearing the peptidoglycan for T3SS assembly. Finally, we show that EtgA forms a 1:1 complex with the building block of the polymerized T3SS inner rod component, EscI, and that this interaction enhances PG-lytic activity of EtgA in vitro, collectively providing the necessary strict localization and regulation of the lytic activity to prevent overall cell lysis.


Asunto(s)
Escherichia coli Enteropatógena/genética , Proteínas de Escherichia coli/química , Regulación Bacteriana de la Expresión Génica , Glicosiltransferasas/química , Peptidoglicano/química , Secuencia de Aminoácidos , Sistemas de Secreción Bacterianos , Transporte Biológico , Membrana Celular/metabolismo , Pared Celular/metabolismo , Escherichia coli Enteropatógena/enzimología , Escherichia coli Enteropatógena/patogenicidad , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Muramidasa/química , Muramidasa/genética , Muramidasa/metabolismo , Mutación , Peptidoglicano/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Virulencia
5.
Blood ; 123(5): 768-76, 2014 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-24335501

RESUMEN

Polyphosphate, synthesized by all cells, is a linear polymer of inorganic phosphate. When released into the circulation, it exerts prothrombotic and proinflammatory activities by modulating steps in the coagulation cascade. We examined the role of polyphosphate in regulating the evolutionarily related proteolytic cascade complement. In erythrocyte lysis assays, polyphosphate comprising more than 1000 phosphate units suppressed total hemolytic activity with a concentration to reduce maximal lysis to 50% that was 10-fold lower than with monophosphate. In the ion- and enzyme-independent terminal pathway complement assay, polyphosphate suppressed complement in a concentration- and size-dependent manner. Phosphatase-treated polyphosphate lost its ability to suppress complement, confirming that polymer integrity is required. Sequential addition of polyphosphate to the terminal pathway assay showed that polyphosphate interferes with complement only when added before formation of the C5b-7 complex. Physicochemical analyses using native gels, gel filtration, and differential scanning fluorimetry revealed that polyphosphate binds to and destabilizes C5b,6, thereby reducing the capacity of the membrane attack complex to bind to and lyse the target cell. In summary, we have added another function to polyphosphate in blood, demonstrating that it dampens the innate immune response by suppressing complement. These findings further establish the complex relationship between coagulation and innate immunity.


Asunto(s)
Complemento C5/antagonistas & inhibidores , Proteínas del Sistema Complemento/metabolismo , Polifosfatos/metabolismo , Coagulación Sanguínea , Complemento C5/metabolismo , Eritrocitos/citología , Eritrocitos/metabolismo , Hemólisis , Humanos
6.
J Biol Chem ; 289(27): 19245-53, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24808177

RESUMEN

In bacteria, the synthesis of the protective peptidoglycan sacculus is a dynamic process that is tightly regulated at multiple levels. Recently, the lipoprotein co-factor LpoB has been found essential for the in vivo function of the major peptidoglycan synthase PBP1b in Enterobacteriaceae. Here, we reveal the crystal structures of Salmonella enterica and Escherichia coli LpoB. The LpoB protein can be modeled as a ball and tether, consisting of a disordered N-terminal region followed by a compact globular C-terminal domain. Taken together, our structural data allow us to propose new insights into LpoB-mediated regulation of peptidoglycan synthesis.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lipoproteínas/metabolismo , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Salmonella enterica/metabolismo , D-Ala-D-Ala Carboxipeptidasa de Tipo Serina/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Escherichia coli/citología , Modelos Moleculares , Datos de Secuencia Molecular , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Salmonella enterica/citología
7.
PLoS Pathog ; 7(9): e1002238, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21909279

RESUMEN

Lectins and adhesins are involved in bacterial adhesion to host tissues and mucus during early steps of infection. We report the characterization of BC2L-C, a soluble lectin from the opportunistic pathogen Burkholderia cenocepacia, which has two distinct domains with unique specificities and biological activities. The N-terminal domain is a novel TNF-α-like fucose-binding lectin, while the C-terminal part is similar to a superfamily of calcium-dependent bacterial lectins. The C-terminal domain displays specificity for mannose and l-glycero-d-manno-heptose. BC2L-C is therefore a superlectin that binds independently to mannose/heptose glycoconjugates and fucosylated human histo-blood group epitopes. The apo form of the C-terminal domain crystallized as a dimer, and calcium and mannose could be docked in the binding site. The whole lectin is hexameric and the overall structure, determined by electron microscopy and small angle X-ray scattering, reveals a flexible arrangement of three mannose/heptose-specific dimers flanked by two fucose-specific TNF-α-like trimers. We propose that BC2L-C binds to the bacterial surface in a mannose/heptose-dependent manner via the C-terminal domain. The TNF-α-like domain triggers IL-8 production in cultured airway epithelial cells in a carbohydrate-independent manner, and is therefore proposed to play a role in the dysregulated proinflammatory response observed in B. cenocepacia lung infections. The unique architecture of this newly recognized superlectin correlates with multiple functions including bacterial cell cross-linking, adhesion to human epithelia, and stimulation of inflammation.


Asunto(s)
Mediadores de Inflamación/fisiología , Lectinas/fisiología , Secuencia de Aminoácidos , Burkholderia cenocepacia , Cristalografía por Rayos X , Fucosa/metabolismo , Humanos , Interleucina-8 , Lectinas/química , Lectinas/metabolismo , Lectinas de Unión a Manosa/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína/fisiología , Mucosa Respiratoria/citología , Mucosa Respiratoria/metabolismo , Alineación de Secuencia , Factor de Necrosis Tumoral alfa/metabolismo
8.
J Biol Chem ; 286(43): 37237-48, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21880735

RESUMEN

The first x-ray crystallographic structure of a CAZY family-52 glycosyltransferase, that of the membrane associated α2,3/α2,6 lipooligosaccharide sialyltransferase from Neisseria meningitidis serotype L1 (NST), has been solved to 1.95 Å resolution. The structure of NST adopts a GT-B-fold common with other glycosyltransferase (GT) families but exhibits a novel domain swap of the N-terminal 130 residues to create a functional homodimeric form not observed in any other class to date. The domain swap is mediated at the structural level by a loop-helix-loop extension between residues Leu-108 and Met-130 (we term the swapping module) and a unique lipid-binding domain. NST catalyzes the creation of α2,3- or 2,6-linked oligosaccharide products from a CMP-sialic acid (Neu5Ac) donor and galactosyl-containing acceptor sugars. Our structures of NST bound to the non-hydrolyzable substrate analog CMP-3F((axial))-Neu5Ac show that the swapping module from one monomer of NST mediates the binding of the donor sugar in a composite active site formed at the dimeric interface. Kinetic analysis of designed point mutations observed in the CMP-3F((axial))-Neu5Ac binding site suggests potential roles of a requisite general base (Asp-258) and general acid (His-280) in the NST catalytic mechanism. A long hydrophobic tunnel adjacent to the dimer interface in each of the two monomers contains electron density for two extended linear molecules that likely belong to either the two fatty acyl chains of a diglyceride lipid or the two polyethylene glycol groups of the detergent Triton X-100. In this work, Triton X-100 maintains the activity and increases the solubility of NST during purification and is critical to the formation of ordered crystals. Together, the mechanistic implications of the NST structure provide insight into lipooligosaccharide sialylation with respect to the association of substrates and the essential membrane-anchored nature of NST on the bacterial surface.


Asunto(s)
Proteínas Bacterianas/química , Neisseria meningitidis/enzimología , Sialiltransferasas/química , Proteínas Bacterianas/metabolismo , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Ácido N-Acetilneuramínico Citidina Monofosfato/química , Ácido N-Acetilneuramínico Citidina Monofosfato/metabolismo , Glucolípidos/química , Glucolípidos/metabolismo , Oligosacáridos/química , Oligosacáridos/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Sialiltransferasas/metabolismo
9.
J Biol Chem ; 286(41): 35922-35932, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21832050

RESUMEN

Sialic acids play important roles in various biological processes and typically terminate the oligosaccharide chains on the cell surfaces of a wide range of organisms, including mammals and bacteria. Their attachment is catalyzed by a set of sialyltransferases with defined specificities both for their acceptor sugars and the position of attachment. However, little is known of how this specificity is encoded. The structure of the bifunctional sialyltransferase Cst-II of the human pathogen Campylobacter jejuni in complex with CMP and the terminal trisaccharide of its natural acceptor (Neu5Ac-α-2,3-Gal-ß-1,3-GalNAc) has been solved at 1.95 Å resolution, and its kinetic mechanism was shown to be iso-ordered Bi Bi, consistent with its dual acceptor substrate specificity. The trisaccharide acceptor is seen to bind to the active site of Cst-II through interactions primarily mediated by Asn-51, Tyr-81, and Arg-129. Kinetic and structural analyses of mutants modified at these positions indicate that these residues are critical for acceptor binding and catalysis, thereby providing significant new insight into the kinetic and catalytic mechanism, and acceptor specificity of this pathogen-encoded bifunctional GT-42 sialyltransferase.


Asunto(s)
Proteínas Bacterianas/química , Campylobacter jejuni/enzimología , Citidina Monofosfato/química , Sialiltransferasas/química , Trisacáridos/química , Sustitución de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Campylobacter jejuni/genética , Catálisis , Cristalografía por Rayos X , Citidina Monofosfato/genética , Citidina Monofosfato/metabolismo , Humanos , Cinética , Mutación Missense , Estructura Terciaria de Proteína , Sialiltransferasas/genética , Sialiltransferasas/metabolismo , Relación Estructura-Actividad , Trisacáridos/genética , Trisacáridos/metabolismo
10.
Glycobiology ; 22(7): 997-1006, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22504533

RESUMEN

Genome sequence data were used to clone and express two sialyltransferase enzymes of the GT-42 family from Helicobacter acinonychis ATCC 51104, a gastric disease isolate from Cheetahs. The deposited genome sequence for these genes contains a large number of tandem repeat sequences in each of them: HAC1267 (RQKELE)(15) and HAC1268 (EEKLLEFKNI)(13). We obtained two clones with different numbers of repeat sequences for the HAC1267 gene homolog and a single clone for the HAC1268 gene homolog. Both genes could be expressed in Escherichia coli and sialyltransferase activity was measured using synthetic acceptor substrates containing a variety of terminal sugars. Both enzymes were shown to have a preference for N-acetyllactosamine, and they each made a product with a different linkage to the terminal galactose. HAC1267 is a mono-functional α2,3-sialyltransferase, whereas HAC1268 is a mono-functional α2,6-sialyltransferase and is the first member of GT-42 to show α2,6-sialyltransferase activity.


Asunto(s)
Proteínas Bacterianas/química , Helicobacter/enzimología , Proteínas Recombinantes de Fusión/química , Sialiltransferasas/química , Amino Azúcares/química , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Conformación de Carbohidratos , Dominio Catalítico , Clonación Molecular , Glicosilación , Concentración de Iones de Hidrógeno , Magnesio/química , Manganeso/química , Modelos Moleculares , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Ácidos Siálicos/química , Sialiltransferasas/biosíntesis , Sialiltransferasas/genética , Homología Estructural de Proteína , Especificidad por Sustrato , beta-D-Galactósido alfa 2-6-Sialiltransferasa , beta-Galactosida alfa-2,3-Sialiltransferasa
11.
Glycobiology ; 22(10): 1387-98, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22763039

RESUMEN

Bacteria from the Burkholderia cepacia complex (Bcc) cause highly contagious pneumonia among cystic fibrosis (CF) patients. Among them, Burkholderia cenocepacia is one of the most dangerous in the Bcc and is the most frequent cause of morbidity and mortality in CF patients. Indeed, it is responsible of "cepacia syndrome", a deadly exacerbation of infection, that is the main cause of poor outcomes in lung transplantation. Burkholderia cenocepacia produces several soluble lectins with specificity for fucosylated and mannosylated glycoconjugates. These lectins are present on the bacterial cell surface and it has been proposed that they bind to lipopolysaccharide epitopes. In this work, we report on the interaction of one B. cenocepacia lectin, BC2L-A, with heptose and other manno configured sugar residues. Saturation transfer difference NMR spectroscopy studies of BC2L-A with different mono- and disaccharides demonstrated the requirement of manno configuration with the hydroxyl or glycol group at C6 for the binding process. The crystal structure of BC2L-A complexed with the methyl-heptoside confirmed the location of the carbohydrate ring in the binding site and elucidated the orientation of the glycol tail, in agreement with NMR data. Titration calorimetry performed on monosaccharides, heptose disaccharides and bacterial heptose-containing oligosaccharides and polysaccharides confirmed that bacterial cell wall contains carbohydrate epitopes that can bind to BC2L-A. Additionally, the specific binding of fluorescent BC2L-A lectin on B. cenocepacia bacterial surface was demonstrated by microscopy.


Asunto(s)
Burkholderia cenocepacia/química , Heptosas/química , Lectinas/química , Lipopolisacáridos/química , Sitios de Unión , Burkholderia cenocepacia/citología , Conformación de Carbohidratos , Modelos Moleculares
12.
Glycobiology ; 20(1): 87-98, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19770128

RESUMEN

The opportunistic pathogen Burkholderia cenocepacia contains three soluble carbohydrate-binding proteins, related to the fucose-binding lectin PA-IIL from Pseudomonas aeruginosa. All contain a PA-IIL-like domain and two of them have an additional N-terminal domain that displays no sequence similarities with known proteins. Printed arrays screening performed on the shortest one, B. cenocepacia lectin A (BC2L-A), demonstrated the strict specificity for oligomannose-type N-glycan structures (Lameignere E, Malinovská L, Sláviková M, Duchaud E, Mitchell EP, Varrot A, Sedo O, Imberty A, Wimmerová M. 2008. Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia. Biochem J. 411:307-318.). The disaccharides alphaMan1-2Man, alphaMan1-3Man, and alphaMan1-6Man and the trisaccharide alphaMan1-3(alphaMan1-6)Man were tested by titration microcalorimetry in order to evaluate their affinity for BC2L-A in solution and to characterize the thermodynamics of the binding. Oligomannose analogs presenting two mannoside residues separated by either flexible or rigid spacer were also tested. Only the rigid one yields to high affinity binding with a fast kinetics of clustering, while the flexible analog and the trimannoside display moderate affinities and no clustering effect on short time scale. The crystal structures of BC2L-A have been obtained in complex with alphaMan1-3Man disaccharide and alphaMan1(alphaMan1-6)-3Man trisaccharide. The lengthy time required for the co-crystallization with the trisaccharide allowed for the formation of cluster since in the BC2L-A-trimannose complex solved at 1.1 A resolution, the sugar creates a bridge between two adjacent dimers, yielding to molecular strings. AFM experiments were performed in order to visualize the filaments formed in solution by this type of interaction.


Asunto(s)
Burkholderia/metabolismo , Lectinas/química , Animales , Sitios de Unión , Cristalografía por Rayos X/métodos , Disacáridos/química , Fucosa/química , Humanos , Ligandos , Manosa/química , Ratones , Polisacáridos/química , Unión Proteica , Solubilidad , Termodinámica
13.
Biochem J ; 411(2): 307-18, 2008 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-18215132

RESUMEN

Chronic colonization of the lungs by opportunist bacteria such as Pseudomonas aeruginosa and members of the Bcc (Burkholderia cepacia complex) is the major cause of morbidity and mortality among CF (cystic fibrosis) patients. PA-IIL (lecB gene), a soluble lectin from Ps. aeruginosa, has been the subject of much interest because of its very strong affinity for fucose. Orthologues have been identified in the opportunist bacteria Ralstonia solanacearum, Chromobacterium violaceum and Burkholderia of Bcc. The genome of the J2315 strain of B. cenocepacia, responsible for epidemia in CF centres, contains three genes that code for proteins with PA-IIL domains. The shortest gene was cloned in Escherichia coli and pure recombinant protein, BclA (B. cenocepacia lectin A), was obtained. The presence of native BclA in B. cenocepacia extracts was checked using a proteomic approach. The specificity of recombinant BclA was characterized using surface plasmon resonance showing a preference for mannosides and supported with glycan array experiments demonstrating a strict specificity for oligomannose-type N-glycan structures. The interaction thermodynamics of BclA with methyl alpha-D-mannoside demonstrates a dissociation constant (K(d)) of 2.75 x 10(-6) M. The X-ray crystal structure of the complex with methyl alpha-D-mannoside was determined at 1.7 A (1 A=0.1 nm) resolution. The lectin forms homodimers with one binding site per monomer, acting co-operatively with the second dimer site. Each monomer contains two Ca2+ ions and one sugar ligand. Despite strong sequence similarity, the differences between BclA and PA-IIL in their specificity, binding site and oligomerization mode indicate that the proteins should have different roles in the bacteria.


Asunto(s)
Burkholderia/química , Lectinas/química , Lectinas/metabolismo , Manosa/química , Manosa/metabolismo , Secuencia de Aminoácidos , Burkholderia/genética , Calorimetría , Cromatografía en Gel , Clonación Molecular , Cristalografía por Rayos X , Genoma Bacteriano/genética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/aislamiento & purificación , Glicoproteínas de Membrana/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Sensibilidad y Especificidad , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína , Resonancia por Plasmón de Superficie , Termodinámica
14.
Nat Struct Mol Biol ; 22(8): 627-35, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26192331

RESUMEN

Sialyltransferases of the mammalian ST8Sia family catalyze oligo- and polysialylation of surface-localized glycoproteins and glycolipids through transfer of sialic acids from CMP-sialic acid to the nonreducing ends of sialic acid acceptors. The crystal structure of human ST8SiaIII at 1.85-Å resolution presented here is, to our knowledge, the first solved structure of a polysialyltransferase from any species, and it reveals a cluster of polysialyltransferase-specific structural motifs that collectively provide an extended electropositive surface groove for binding of oligo-polysialic acid chain products. The ternary complex of ST8SiaIII with a donor sugar analog and a sulfated glycan acceptor identified with a sialyltransferase glycan array provides insight into the residues involved in substrate binding, specificity and sialyl transfer.


Asunto(s)
Estructura Terciaria de Proteína , Ácidos Siálicos/metabolismo , Sialiltransferasas/química , Sialiltransferasas/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Células Cultivadas , Cromatografía en Capa Delgada , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Glicosilación , Humanos , Cinética , Espectrometría de Masas/métodos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Moléculas de Adhesión de Célula Nerviosa/química , Moléculas de Adhesión de Célula Nerviosa/genética , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Polisacáridos/química , Polisacáridos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Ácidos Siálicos/química , Sialiltransferasas/genética
15.
Structure ; 23(1): 161-172, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25533490

RESUMEN

The type III secretion system (T3SS) is a large macromolecular assembly found at the surface of many pathogenic Gram-negative bacteria. Its role is to inject toxic "effector" proteins into the cells of infected organisms. The molecular details of the assembly of this large, multimembrane-spanning complex remain poorly understood. Here, we report structural, biochemical, and functional analyses of PrgK, an inner-membrane component of the prototypical Salmonella typhimurium T3SS. We have obtained the atomic structures of the two ring building globular domains and show that the C-terminal transmembrane helix is not essential for assembly and secretion. We also demonstrate that structural rearrangement of the two PrgK globular domains, driven by an interconnecting linker region, may promote oligomerization into ring structures. Finally, we used electron microscopy-guided symmetry modeling to propose a structural model for the intimately associated PrgH-PrgK ring interaction within the assembled basal body.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cuerpos Basales/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Vías Secretoras , Cuerpos Basales/química , Microdominios de Membrana/química , Microdominios de Membrana/metabolismo , Modelos Moleculares , Multimerización de Proteína , Estructura Secundaria de Proteína , Salmonella typhimurium , Vesículas Secretoras/química , Vesículas Secretoras/metabolismo
16.
Structure ; 23(3): 571-583, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25684576

RESUMEN

Mycobacterium tuberculosis (Mtb) uses the ESX-1 type VII secretion system to export virulence proteins across its lipid-rich cell wall, which helps permeabilize the host's macrophage phagosomal membrane, facilitating the escape and cell-to-cell spread of Mtb. ESX-1 membranolytic activity depends on a set of specialized secreted Esp proteins, the structure and specific roles of which are not currently understood. Here, we report the X-ray and electron microscopic structures of the ESX-1-secreted EspB. We demonstrate that EspB adopts a PE/PPE-like fold that mediates oligomerization with apparent heptameric symmetry, generating a barrel-shaped structure with a central pore that we propose contributes to the macrophage killing functions of EspB. Our structural data also reveal unexpected direct interactions between the EspB bipartite secretion signal sequence elements that form a unified aromatic surface. These findings provide insight into how specialized proteins encoded within the ESX-1 locus are targeted for secretion, and for the first time indicate an oligomerization-dependent role for Esp virulence factors.


Asunto(s)
Proteínas Bacterianas/química , Sistemas de Secreción Bacterianos/química , Mycobacterium smegmatis/química , Mycobacterium tuberculosis/química , Secuencia de Aminoácidos , Proteínas Bacterianas/fisiología , Sistemas de Secreción Bacterianos/fisiología , Transporte Biológico , Cristalografía por Rayos X , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína
17.
Curr Opin Microbiol ; 14(1): 3-8, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21112241

RESUMEN

The bacterial injectisome is a specialized protein-export system utilized by many pathogenic Gram-negative bacteria for the delivery of virulence proteins into the hosts they infect. This needle-like molecular nanomachine comprises >20 proteins creating a continuous passage from bacterial to host cytoplasm. The last few years have witnessed significant progress in our understanding of the structure of the injectisome with important contributions from X-ray crystallography, NMR and EM. This review will present the current state of the structure of the injectisome with particular focus on the molecular structures of individual components and how these assemble together in a functioning T3SS.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacterias Gramnegativas/metabolismo , Transporte Biológico/fisiología , Modelos Moleculares , Factores de Virulencia/metabolismo
18.
Biomacromolecules ; 8(9): 2717-25, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17705426

RESUMEN

A novel bioeliminable amphiphilic poly(ethylene oxide)-b-poly(epsilon-caprolactone) (PEO-b-PCL) diblock copolymer end-capped by a mannose residue was synthesized by sequential controlled polymerization of ethylene oxide and epsilon-caprolactone, followed by the coupling of a reactive mannose derivative to the PEO chain end. The anionic polymerization of ethylene oxide was first initiated by potassium 2-dimethylaminoethanolate. The ring-opening polymerization of epsilon-caprolactone was then initiated by the omega-hydroxy end-group of PEO previously converted into an Al alkoxide. Finally, the saccharidic end-group was attached by quaternization of the tertiary amine alpha-end-group of the PEO-b-PCL with a brominated mannose derivative. The copolymer was fully characterized in terms of chemical composition and purity by high-resolution NMR spectroscopy and size exclusion chromatography. Furthermore, measurements with a pendant drop tensiometer showed that both the mannosylated copolymer and the non-mannosylated counterpart significantly decreased the dichloromethane/water interfacial tension. Moreover, these amphiphilic copolymers formed monodisperse spherical micelles in water with an average diameter of approximately 11 nm as measured by dynamic light scattering and cryo-transmission electron microscopy. The availability of mannose as a specific recognition site at the surface of the micelles was proved by isothermal titration microcalorimetry (ITC), using the BclA lectin (from Burkholderia cenocepacia), which interacts selectively with alpha-D-mannopyranoside derivatives. The thermodynamic parameters of the lectin/mannose interaction were extracted from the ITC data. These colloidal systems have great potential for drug targeting and vaccine delivery systems.


Asunto(s)
Materiales Biocompatibles/química , Lectinas/química , Poliésteres/química , Polietilenglicoles/química , Burkholderia/metabolismo , Calorimetría , Conformación de Carbohidratos , Lectinas/metabolismo , Manosa , Ensayo de Materiales , Micelas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA