RESUMEN
Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.
Asunto(s)
Proteínas de Unión al Calcio , Enfermedades Mitocondriales , Proteínas de Unión al Calcio/genética , Homeostasis/genética , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistema Nervioso/metabolismo , Saccharomyces cerevisiae/metabolismoRESUMEN
Leigh syndrome spectrum (LSS) is a primary mitochondrial disorder defined neuropathologically by a subacute necrotizing encephalomyelopathy and characterized by bilateral basal ganglia and/or brainstem lesions. LSS is associated with variants in several mitochondrial DNA genes and more than 100 nuclear genes, most often related to mitochondrial complex I (CI) dysfunction. Rarely, LSS has been reported in association with primary Leber hereditary optic neuropathy (LHON) variants of the mitochondrial DNA, coding for CI subunits (m.3460G>A in MT-ND1, m.11778G>A in MT-ND4 and m.14484T>C in MT-ND6). The underlying mechanism by which these variants manifest as LSS, a severe neurodegenerative disease, as opposed to the LHON phenotype of isolated optic neuropathy, remains an open question. Here, we analyse the exome sequencing of six probands with LSS carrying primary LHON variants, and report digenic co-occurrence of the m.11778G > A variant with damaging heterozygous variants in nuclear disease genes encoding CI subunits as a plausible explanation. Our findings suggest a digenic mechanism of disease for m.11778G>A-associated LSS, consistent with recent reports of digenic disease in individuals manifesting with LSS due to biallelic variants in the recessive LHON-associated disease gene DNAJC30 in combination with heterozygous variants in CI subunits.
Asunto(s)
Enfermedad de Leigh , Atrofia Óptica Hereditaria de Leber , Humanos , Enfermedad de Leigh/genética , Atrofia Óptica Hereditaria de Leber/genética , Masculino , Femenino , Adulto , ADN Mitocondrial/genética , Complejo I de Transporte de Electrón/genética , Niño , Adolescente , NADH Deshidrogenasa/genética , Mutación , Adulto Joven , Secuenciación del Exoma , PreescolarRESUMEN
The 2-oxoglutarate dehydrogenase-like (OGDHL) protein is a rate-limiting enzyme in the Krebs cycle that plays a pivotal role in mitochondrial metabolism. OGDHL expression is restricted mainly to the brain in humans. Here, we report nine individuals from eight unrelated families carrying bi-allelic variants in OGDHL with a range of neurological and neurodevelopmental phenotypes including epilepsy, hearing loss, visual impairment, gait ataxia, microcephaly, and hypoplastic corpus callosum. The variants include three homozygous missense variants (p.Pro852Ala, p.Arg244Trp, and p.Arg299Gly), three compound heterozygous single-nucleotide variants (p.Arg673Gln/p.Val488Val, p.Phe734Ser/p.Ala327Val, and p.Trp220Cys/p.Asp491Val), one homozygous frameshift variant (p.Cys553Leufs∗16), and one homozygous stop-gain variant (p.Arg440Ter). To support the pathogenicity of the variants, we developed a novel CRISPR-Cas9-mediated tissue-specific knockout with cDNA rescue system for dOgdh, the Drosophila ortholog of human OGDHL. Pan-neuronal knockout of dOgdh led to developmental lethality as well as defects in Krebs cycle metabolism, which was fully rescued by expression of wild-type dOgdh. Studies using the Drosophila system indicate that p.Arg673Gln, p.Phe734Ser, and p.Arg299Gly are severe loss-of-function alleles, leading to developmental lethality, whereas p.Pro852Ala, p.Ala327Val, p.Trp220Cys, p.Asp491Val, and p.Arg244Trp are hypomorphic alleles, causing behavioral defects. Transcript analysis from fibroblasts obtained from the individual carrying the synonymous variant (c.1464T>C [p.Val488Val]) in family 2 showed that the synonymous variant affects splicing of exon 11 in OGDHL. Human neuronal cells with OGDHL knockout exhibited defects in mitochondrial respiration, indicating the essential role of OGDHL in mitochondrial metabolism in humans. Together, our data establish that the bi-allelic variants in OGDHL are pathogenic, leading to a Mendelian neurodevelopmental disease in humans.
Asunto(s)
Ataxia/genética , Epilepsia/genética , Pérdida Auditiva/genética , Complejo Cetoglutarato Deshidrogenasa/genética , Mutación , Trastornos del Neurodesarrollo/genética , Trastornos de la Visión/genética , Alelos , Animales , Células Cultivadas , Niño , Estudios de Cohortes , Análisis Mutacional de ADN , Drosophila melanogaster/genética , Salud de la Familia , Femenino , Fibroblastos , Humanos , Masculino , Empalme del ARNRESUMEN
BACKGROUND AND PURPOSE: Primary mitochondrial diseases (PMDs) are common inborn errors of energy metabolism, with an estimated prevalence of one in 4300. These disorders typically affect tissues with high energy requirements, including heart, muscle and brain. Epilepsy may be the presenting feature of PMD, can be difficult to treat and often represents a poor prognostic feature. The aim of this study was to develop guidelines and consensus recommendations on safe medication use and seizure management in mitochondrial epilepsy. METHODS: A panel of 24 experts in mitochondrial medicine, pharmacology and epilepsy management of adults and/or children and two patient representatives from seven countries was established. Experts were members of five different European Reference Networks, known as the Mito InterERN Working Group. A Delphi technique was used to allow the panellists to consider draft recommendations on safe medication use and seizure management in mitochondrial epilepsy, using two rounds with predetermined levels of agreement. RESULTS: A high level of consensus was reached regarding the safety of 14 out of all 25 drugs reviewed, resulting in endorsement of National Institute for Health and Care Excellence guidelines for seizure management, with some modifications. Exceptions including valproic acid in POLG disease, vigabatrin in patients with γ-aminobutyric acid transaminase deficiency and topiramate in patients at risk for renal tubular acidosis were highlighted. CONCLUSIONS: These consensus recommendations describe our intent to improve seizure control and reduce the risk of drug-related adverse events in individuals living with PMD-related epilepsy.
Asunto(s)
Anticonvulsivantes , Enfermedades Mitocondriales , Convulsiones , Humanos , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/terapia , Convulsiones/terapia , Convulsiones/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Consenso , Epilepsia/terapia , Epilepsia/tratamiento farmacológico , Técnica DelphiRESUMEN
Mitochondrial fission and fusion are vital dynamic processes for mitochondrial quality control and for the maintenance of cellular respiration; they also play an important role in the formation and maintenance of cells with high energy demand including cardiomyocytes and neurons. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family that is responsible for the fission of mitochondria; it is ubiquitous but highly expressed in the developing neonatal heart. De novo heterozygous pathogenic variants in the DNM1L gene have been previously reported to be associated with neonatal or infantile-onset encephalopathy characterized by hypotonia, developmental delay and refractory epilepsy. However, cardiac involvement has been previously reported only in one case. Next-Generation Sequencing (NGS) was used to genetically assess a baby girl characterized by developmental delay with spastic-dystonic, tetraparesis and hypertrophic cardiomyopathy of the left ventricle. Histochemical analysis and spectrophotometric determination of electron transport chain were performed to characterize the muscle biopsy; moreover, the morphology of mitochondria and peroxisomes was evaluated in cultured fibroblasts as well. Herein, we expand the phenotype of DNM1L-related disorder, describing the case of a girl with a heterozygous mutation in DNM1L and affected by progressive infantile encephalopathy, with cardiomyopathy and fatal paroxysmal vomiting correlated with bulbar transitory abnormal T2 hyperintensities and diffusion-weighted imaging (DWI) restriction areas, but without epilepsy. In patients with DNM1L mutations, careful evaluation for cardiac involvement is recommended.
Asunto(s)
Cardiomiopatías , Dinaminas , Mutación , Humanos , Femenino , Dinaminas/genética , Cardiomiopatías/genética , Mutación/genética , Lactante , Resultado Fatal , Encefalopatías/genética , Encefalopatías/patología , GTP Fosfohidrolasas/genéticaRESUMEN
BACKGROUND AND PURPOSE: Mitochondrial diseases (MDs) are heterogeneous disorders caused by mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) associated with specific syndromes. However, especially in childhood, patients often display heterogeneity. Several reports on the biochemical and molecular profiles in children have been published, but studies tend not to differentiate between mtDNA- and nDNA-associated diseases, and focus is often on a specific phenotype. Thus, large cohort studies specifically focusing on mtDNA defects in the pediatric population are lacking. METHODS: We reviewed the clinical, metabolic, biochemical, and neuroimaging data of 150 patients with MDs due to mtDNA alterations collected at our neurological institute over the past 20 years. RESULTS: mtDNA impairment is less frequent than nDNA impairment in pediatric MDs. Ocular involvement is extremely frequent in our cohort, as is classical Leber hereditary optic neuropathy, especially with onset before 12 years of age. Extraneurological manifestations and isolated myopathy appear to be rare, unlike adult phenotypes. Deep gray matter involvement, early disease onset, and specific phenotypes, such as Pearson syndrome and Leigh syndrome, represent unfavorable prognostic factors. Phenotypes related to single large scale mtDNA deletions appear to be very frequent in the pediatric population. Furthermore, we report for the first time an mtDNA pathogenic variant associated with cavitating leukodystrophy. CONCLUSIONS: We report on a large cohort of pediatric patients with mtDNA defects, adding new data on the phenotypical characterization of mtDNA defects and suggestions for diagnostic workup and therapeutic approach.
Asunto(s)
Enfermedad de Leigh , Enfermedades Mitocondriales , Enfermedades Musculares , Niño , Humanos , ADN Mitocondrial/genética , Estudios de Cohortes , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/complicaciones , Enfermedad de Leigh/genética , Enfermedades Musculares/complicaciones , MutaciónRESUMEN
BACKGROUND AND PURPOSE: Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of disorders caused by mutations in at least 100 genes. However, approximately 60% of cases with axonal neuropathies (CMT2) still remain without a genetic diagnosis. We aimed at identifying novel disease genes responsible for CMT2. METHODS: We performed whole exome sequencing and targeted next generation sequencing panel analyses on a cohort of CMT2 families with evidence for autosomal recessive inheritance. We also performed functional studies to explore the pathogenetic role of selected variants. RESULTS: We identified rare, recessive variants in the MYO9B (myosin IX) gene in two families with CMT2. MYO9B has not yet been associated with a human disease. MYO9B is an unconventional single-headed processive myosin motor protein with signaling properties, and, consistent with this, our results indicate that a variant occurring in the MYO9B motor domain impairs protein expression level and motor activity. Interestingly, a Myo9b-null mouse has degenerating axons in sciatic nerves and optic nerves, indicating that MYO9B plays an essential role in both peripheral nervous system and central nervous system axons, respectively. The degeneration observed in the optic nerve prompted us to screen for MYO9B mutations in a cohort of patients with optic atrophy (OA). Consistent with this, we found compound heterozygous variants in one case with isolated OA. CONCLUSIONS: Novel or very rare variants in MYO9B are associated with CMT2 and isolated OA.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Miosinas , Animales , Humanos , Ratones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Mutación/genética , Linaje , Fenotipo , Proteínas , Nervio Ciático/patología , Miosinas/genéticaRESUMEN
Leber's hereditary optic neuropathy (LHON) is a disease that affects the optical nerve, causing visual loss. The diagnosis of LHON is mostly defined by the identification of three pathogenic variants in the mitochondrial DNA. Idebenone is widely used to treat LHON patients, but only some of them are responders to treatment. In our study, we assessed the maximal respiration rate (MRR) and other respiratory parameters in eight fibroblast lines from subjects carrying LHON pathogenic variants. We measured also the effects of idebenone treatment on cell growth and mtDNA amounts. Results showed that LHON fibroblasts had significantly reduced respiratory parameters in untreated conditions, but no significant gain in MRR after idebenone supplementation. No major toxicity toward mitochondrial function and no relevant compensatory effect in terms of mtDNA quantity were found for the treatment at the tested conditions. Our findings confirmed that fibroblasts from subjects harboring LHON pathogenic variants displayed impaired respiration, regardless of the disease penetrance and severity. Testing responsiveness to idebenone treatment in cultured cells did not fully recapitulate in vivo data. The in-depth evaluation of cellular respiration in fibroblasts is a good approach to evaluating novel mtDNA variants associated with LHON but needs further evaluation as a potential biomarker for disease prognosis and treatment responsiveness.
Asunto(s)
Atrofia Óptica Hereditaria de Leber , Humanos , Atrofia Óptica Hereditaria de Leber/tratamiento farmacológico , Atrofia Óptica Hereditaria de Leber/genética , ADN Mitocondrial/genética , Mitocondrias/genética , FibroblastosRESUMEN
BACKGROUND AND PURPOSE: Rare diseases affect up to 29 million people in the European Union, and almost 50% of them affect the nervous system or muscles. Delays in diagnosis and treatment onset and insufficient treatment choices are common. Clinical practice guidelines (CPGs) may improve the diagnosis and treatment of patients and optimize care pathways, delivering the best scientific evidence to all clinicians treating these patients. Recommendations are set for developing and reporting high-quality CPGs on rare neurological diseases (RNDs) within the European Academy of Neurology (EAN), through a consensus procedure. METHODS: A group of 27 experts generated an initial list of items that were evaluated through a two-step Delphi consensus procedure and a face-to-face meeting. The final list of items was reviewed by an external review group of 58 members. RESULTS: The consensus procedure yielded 63 final items. Items are listed according to the domains of the AGREE instruments and concern scope and purpose, stakeholder involvement, rigour of development, and applicability. Additional items consider reporting and ethical issues. Recommendations are supported by practical examples derived from published guidelines and are presented in two tables: (1) items specific to RND CPGs, and general guideline items of special importance for RNDs, or often neglected; (2) items for guideline development within the EAN. CONCLUSIONS: This guidance aims to provide solutions to the issues specific to RNDs. This consensus document, produced by many experts in various fields, is considered to serve as a starting point for further harmonization and for increasing the quality of CPGs in the field of RNDs.
Asunto(s)
Enfermedades del Sistema Nervioso , Neurología , Consenso , Humanos , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/terapia , Guías de Práctica Clínica como Asunto , Enfermedades Raras/diagnóstico , Enfermedades Raras/terapiaRESUMEN
OBJECTIVE: Dominant optic atrophy (DOA) is the most common inherited optic neuropathy, with a prevalence of 1:12,000 to 1:25,000. OPA1 mutations are found in 70% of DOA patients, with a significant number remaining undiagnosed. METHODS: We screened 286 index cases presenting optic atrophy, negative for OPA1 mutations, by targeted next generation sequencing or whole exome sequencing. Pathogenicity and molecular mechanisms of the identified variants were studied in yeast and patient-derived fibroblasts. RESULTS: Twelve cases (4%) were found to carry novel variants in AFG3L2, a gene that has been associated with autosomal dominant spinocerebellar ataxia 28 (SCA28). Half of cases were familial with a dominant inheritance, whereas the others were sporadic, including de novo mutations. Biallelic mutations were found in 3 probands with severe syndromic optic neuropathy, acting as recessive or phenotype-modifier variants. All the DOA-associated AFG3L2 mutations were clustered in the ATPase domain, whereas SCA28-associated mutations mostly affect the proteolytic domain. The pathogenic role of DOA-associated AFG3L2 mutations was confirmed in yeast, unraveling a mechanism distinct from that of SCA28-associated AFG3L2 mutations. Patients' fibroblasts showed abnormal OPA1 processing, with accumulation of the fission-inducing short forms leading to mitochondrial network fragmentation, not observed in SCA28 patients' cells. INTERPRETATION: This study demonstrates that mutations in AFG3L2 are a relevant cause of optic neuropathy, broadening the spectrum of clinical manifestations and genetic mechanisms associated with AFG3L2 mutations, and underscores the pivotal role of OPA1 and its processing in the pathogenesis of DOA. ANN NEUROL 2020 ANN NEUROL 2020;88:18-32.
Asunto(s)
Proteasas ATP-Dependientes/genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , GTP Fosfohidrolasas/genética , Atrofia Óptica/genética , Enfermedades del Nervio Óptico/genética , Adolescente , Adulto , Anciano , Niño , Femenino , Pruebas Genéticas , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Persona de Mediana Edad , Mutación , Linaje , Secuenciación del Exoma , Adulto JovenRESUMEN
Coenzyme Q (CoQ) is a key component of the respiratory chain of all eukaryotic cells. Its function is closely related to mitochondrial respiration, where it acts as an electron transporter. However, the cellular functions of coenzyme Q are multiple: it is present in all cell membranes, limiting the toxic effect of free radicals, it is a component of LDL, it is involved in the aging process, and its deficiency is linked to several diseases. Recently, it has been proposed that coenzyme Q contributes to suppressing ferroptosis, a type of iron-dependent programmed cell death characterized by lipid peroxidation. In this review, we report the latest hypotheses and theories analyzing the multiple functions of coenzyme Q. The complete knowledge of the various cellular CoQ functions is essential to provide a rational basis for its possible therapeutic use, not only in diseases characterized by primary CoQ deficiency, but also in large number of diseases in which its secondary deficiency has been found.
Asunto(s)
Ataxia/metabolismo , Enfermedades Mitocondriales/metabolismo , Debilidad Muscular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Animales , Membrana Celular/metabolismo , Respiración de la Célula/fisiología , Humanos , Peroxidación de Lípido/fisiología , Mitocondrias/metabolismo , Ubiquinona/metabolismoRESUMEN
Biallelic mutations in the C1QBP gene have been associated with mitochondrial cardiomyopathy and combined respiratory-chain deficiencies, with variable onset (including intrauterine or neonatal forms), phenotypes, and severity. We studied two unrelated adult patients from consanguineous families, presenting with progressive external ophthalmoplegia (PEO), mitochondrial myopathy, and without any heart involvement. Muscle biopsies from both patients showed typical mitochondrial alterations and the presence of multiple mitochondrial DNA deletions, whereas biochemical defects of the respiratory chain were present only in one subject. Using next-generation sequencing approaches, we identified homozygous mutations in C1QBP. Immunoblot analyses in patients' muscle samples revealed a strong reduction in the amount of the C1QBP protein and varied impairment of respiratory chain complexes, correlating with disease severity. Despite the original study indicated C1QBP mutations as causative for mitochondrial cardiomyopathy, our data indicate that mutations in C1QBP have to be considered in subjects with PEO phenotype or primary mitochondrial myopathy and without cardiomyopathy.
Asunto(s)
Proteínas Portadoras , Miopatías Mitocondriales , Proteínas Mitocondriales , Oftalmoplejía Externa Progresiva Crónica , Oftalmoplejía , Proteínas Portadoras/genética , ADN Mitocondrial/genética , Homocigoto , Humanos , Miopatías Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Oftalmoplejía/genética , Oftalmoplejía Externa Progresiva Crónica/genética , Oftalmoplejía Externa Progresiva Crónica/patologíaRESUMEN
Many aspects of epilepsy in mitochondrial disorders (MDs) need to be further clarified. To this aim, we explored retrospectively a cohort of individuals with MDs querying the "Nationwide Italian Collaborative Network of Mitochondrial Diseases" (NICNMD) database (1467 patients included since 2010 to December 2016). We collected information on age at epilepsy onset, seizure type and frequency, genetic findings, and antiepileptic drugs (AEDs). At the time of our survey, 147/1467 (10%) patients in the NICNMD database had epilepsy. Complete information was available only for 98 patients, 52 males and 46 females, aged 5-92 years (mean age 40.4 ± 18.4; 14/98 children/teenagers and 84 adults). Epilepsy was the presenting feature of MD in 46/98 (47%) individuals, with onset at a median age of 19 years (range, 0.2-68; < 3 years in 14/97 (14%), 3-19 years in 36/97 (37%), > 19 years in 47/97 (49%)). Moreover, 91/98 patients (93%) displayed multiple seizures, with daily or weekly frequency in 25/91 (28%). Interictal EEG was abnormal in 70/78 (90%) patients, displaying abnormal background (47/70; 67%) and/or interictal paroxysms (53/70; 76%). Eighty of 90 patients (89%) displayed a 50-100% reduction of seizures on AEDs; levetiracetam was the most commonly used. Forty-one patients (42%) carried the m.3243A>G mutation, 16 (16%) the m.8344A>G, and 9 (9%) nuclear DNA (nDNA) mutations. Individuals with early-onset seizures mainly carried nDNA mutations and had a more severe epilepsy phenotype, higher seizure frequency, and disorganized background EEG activity. A better definition of epilepsy in MDs may foster the diagnostic workup, management, and treatment of affected patients, and allow more homogeneous patient stratification.
Asunto(s)
Epilepsia/epidemiología , Enfermedades Mitocondriales/epidemiología , Convulsiones/epidemiología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Estudios Transversales , Epilepsia/complicaciones , Femenino , Humanos , Italia/epidemiología , Masculino , Persona de Mediana Edad , Enfermedades Mitocondriales/complicaciones , Estudios Retrospectivos , Convulsiones/complicaciones , Encuestas y Cuestionarios , Adulto JovenRESUMEN
Clinical guidance is often sought when prescribing drugs for patients with primary mitochondrial disease. Theoretical considerations concerning drug safety in patients with mitochondrial disease may lead to unnecessary withholding of a drug in a situation of clinical need. The aim of this study was to develop consensus on safe medication use in patients with a primary mitochondrial disease. A panel of 16 experts in mitochondrial medicine, pharmacology, and basic science from six different countries was established. A modified Delphi technique was used to allow the panellists to consider draft recommendations anonymously in two Delphi rounds with predetermined levels of agreement. This process was supported by a review of the available literature and a consensus conference that included the panellists and representatives of patient advocacy groups. A high level of consensus was reached regarding the safety of all 46 reviewed drugs, with the knowledge that the risk of adverse events is influenced both by individual patient risk factors and choice of drug or drug class. This paper details the consensus guidelines of an expert panel and provides an important update of previously established guidelines in safe medication use in patients with primary mitochondrial disease. Specific drugs, drug groups, and clinical or genetic conditions are described separately as they require special attention. It is important to emphasise that consensus-based information is useful to provide guidance, but that decisions related to drug prescribing should always be tailored to the specific needs and risks of each individual patient. We aim to present what is current knowledge and plan to update this regularly both to include new drugs and to review those currently included.
Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/inducido químicamente , Preparaciones Farmacéuticas , Consenso , Técnica Delphi , Diseño de Fármacos , Humanos , Internacionalidad , Mitocondrias/metabolismo , Guías de Práctica Clínica como Asunto , Pruebas de ToxicidadRESUMEN
Rare neurological diseases (RNDs) are a heterogeneous group of disorders mainly affecting the central and peripheral nervous systems, representing almost 50% of all rare diseases; this explains why neurologists are very often involved in their diagnosis, treatment and research. The purpose of this study was to quantitatively describe the awareness of RNDs among the neurological community of the Italian Society of Neurology (SIN). A survey of the Italian Neurogenetics and Rare diseases group of the SIN, similar to what was submitted to the members of the EAN Task Force on Rare Neurologic Diseases and to EAN Panels Scientific Committee Management Groups, was launched in January 2019 in order to verify the specific Italian situations and possibly the regional differences. Answers were collected online. We observed that Italian Members of the SIN Neurogenetics and Rare Neurologic Diseases Scientific Group are well aware of the burden posed by RNDs but at the national and regional level, the relative awareness is sketchy and disparate. Although many national initiatives have been undertaken to facilitate the diagnosis and management in Italy, our survey reveals that much works has to be done in supporting RNDs patients, including a deeper collaboration between politics, universities and all stakeholders in the field.
Asunto(s)
Actitud del Personal de Salud , Conocimientos, Actitudes y Práctica en Salud , Enfermedades del Sistema Nervioso , Neurólogos/estadística & datos numéricos , Pautas de la Práctica en Medicina/estadística & datos numéricos , Enfermedades Raras , Adulto , Estudios Transversales , Encuestas de Atención de la Salud , Humanos , Italia , Persona de Mediana Edad , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/terapia , Enfermedades Raras/diagnóstico , Enfermedades Raras/terapia , Sociedades MédicasRESUMEN
Mitochondria are highly dynamic organelles, undergoing continuous fission and fusion. The DNM1L (dynamin-1 like) gene encodes for the DRP1 protein, an evolutionary conserved member of the dynamin family, responsible for fission of mitochondria, and having a role in the division of peroxisomes, as well. DRP1 impairment is implicated in several neurological disorders and associated with either de novo dominant or compound heterozygous mutations. In five patients presenting with severe epileptic encephalopathy, we identified five de novo dominant DNM1L variants, the pathogenicity of which was validated in a yeast model. Fluorescence microscopy revealed abnormally elongated mitochondria and aberrant peroxisomes in mutant fibroblasts, indicating impaired fission of these organelles. Moreover, a very peculiar finding in our cohort of patients was the presence, in muscle biopsy, of core like areas with oxidative enzyme alterations, suggesting an abnormal distribution of mitochondria in the muscle tissue.
Asunto(s)
Dinaminas/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Encefalomiopatías Mitocondriales/diagnóstico , Encefalomiopatías Mitocondriales/genética , Músculos/metabolismo , Músculos/patología , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Encéfalo/patología , Análisis Mutacional de ADN , Dinaminas/química , Fibroblastos/metabolismo , Estudios de Asociación Genética/métodos , Humanos , Imagen por Resonancia Magnética/métodos , Modelos Biológicos , Músculos/ultraestructura , Mutación , Conformación Proteica , Relación Estructura-ActividadRESUMEN
ATPase family AAA-domain containing protein 3A (ATAD3A) is a nuclear-encoded mitochondrial membrane protein implicated in mitochondrial dynamics, nucleoid organization, protein translation, cell growth, and cholesterol metabolism. We identified a recurrent de novo ATAD3A c.1582C>T (p.Arg528Trp) variant by whole-exome sequencing (WES) in five unrelated individuals with a core phenotype of global developmental delay, hypotonia, optic atrophy, axonal neuropathy, and hypertrophic cardiomyopathy. We also describe two families with biallelic variants in ATAD3A, including a homozygous variant in two siblings, and biallelic ATAD3A deletions mediated by nonallelic homologous recombination (NAHR) between ATAD3A and gene family members ATAD3B and ATAD3C. Tissue-specific overexpression of borR534W, the Drosophila mutation homologous to the human c.1582C>T (p.Arg528Trp) variant, resulted in a dramatic decrease in mitochondrial content, aberrant mitochondrial morphology, and increased autophagy. Homozygous null bor larvae showed a significant decrease of mitochondria, while overexpression of borWT resulted in larger, elongated mitochondria. Finally, fibroblasts of an affected individual exhibited increased mitophagy. We conclude that the p.Arg528Trp variant functions through a dominant-negative mechanism that results in small mitochondria that trigger mitophagy, resulting in a reduction in mitochondrial content. ATAD3A variation represents an additional link between mitochondrial dynamics and recognizable neurological syndromes, as seen with MFN2, OPA1, DNM1L, and STAT2 mutations.
Asunto(s)
Adenosina Trifosfatasas/genética , Alelos , Proteínas de la Membrana/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Mutación , Enfermedades del Sistema Nervioso/genética , ATPasas Asociadas con Actividades Celulares Diversas , Adulto , Animales , Axones/patología , Cardiomiopatías/genética , Niño , Preescolar , Variaciones en el Número de Copia de ADN/genética , Discapacidades del Desarrollo/genética , Drosophila melanogaster/genética , Femenino , Fibroblastos , Homocigoto , Humanos , Lactante , Recién Nacido , Masculino , Hipotonía Muscular/genética , Músculos/patología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Neuronas/patología , Atrofia Óptica/genética , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Síndrome , Adulto JovenRESUMEN
Here we report on a singleton patient affected by a complicated congenital syndrome characterized by growth delay, retinal dystrophy, sensorineural deafness, myopathy, ataxia, combined pituitary hormone deficiency, associated with mitochondrial impairment. Targeted clinical exome sequencing led to the identification of a homozygous missense variant in OTX2. Since only dominant mutations within OTX2 have been associated with cases of syndromic microphthalmia, retinal dystrophy with or without pituitary dysfunctions, this represents the first report of an OTX2 recessive mutation. Part of the phenotype, including ataxia, myopathy and multiple mitochondrial respiratory chain defects, seemed not related to OTX2. Further analysis of next generation sequencing (NGS) data revealed additional candidate variants: a homozygous variant in LETM1, and heterozygous rare variants in AFG3L2 and POLG. All three genes encode mitochondrial proteins and the last two are known to be associated with ataxia, a neurological sign present also in the father of the proband. With our study, we aim to encourage the integration of NGS data with a detailed analysis of clinical description and family history in order to unravel composite genotypes sometimes associated with complicated phenotypes.
Asunto(s)
Ataxia/genética , Homocigoto , Hipopituitarismo/genética , Mitocondrias/genética , Enfermedades Musculares/genética , Mutación , Factores de Transcripción Otx/genética , Distrofias Retinianas/genética , Adulto , Anciano , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Ataxia/diagnóstico , ADN Mitocondrial , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Hipopituitarismo/diagnóstico , Cariotipificación , Masculino , Mitocondrias/metabolismo , Enfermedades Musculares/diagnóstico , Factores de Transcripción Otx/química , Linaje , Fenotipo , Distrofias Retinianas/diagnósticoRESUMEN
With a combined carrier frequency of 1:200, heteroplasmic mitochondrial DNA (mtDNA) mutations cause human disease in â¼1:5000 of the population. Rapid shifts in the level of heteroplasmy seen within a single generation contribute to the wide range in the severity of clinical phenotypes seen in families transmitting mtDNA disease, consistent with a genetic bottleneck during transmission. Although preliminary evidence from human pedigrees points towards a random drift process underlying the shifting heteroplasmy, some reports describe differences in segregation pattern between different mtDNA mutations. However, based on limited observations and with no direct comparisons, it is not clear whether these observations simply reflect pedigree ascertainment and publication bias. To address this issue, we studied 577 mother-child pairs transmitting the m.11778G>A, m.3460G>A, m.8344A>G, m.8993T>G/C and m.3243A>G mtDNA mutations. Our analysis controlled for inter-assay differences, inter-laboratory variation and ascertainment bias. We found no evidence of selection during transmission but show that different mtDNA mutations segregate at different rates in human pedigrees. m.8993T>G/C segregated significantly faster than m.11778G>A, m.8344A>G and m.3243A>G, consistent with a tighter mtDNA genetic bottleneck in m.8993T>G/C pedigrees. Our observations support the existence of different genetic bottlenecks primarily determined by the underlying mtDNA mutation, explaining the different inheritance patterns observed in human pedigrees transmitting pathogenic mtDNA mutations.
Asunto(s)
ADN Mitocondrial/genética , Patrón de Herencia , Enfermedades Mitocondriales/genética , Modelos Genéticos , Mutación Puntual , Teorema de Bayes , Niño , Femenino , Humanos , Enfermedades Mitocondriales/patología , Linaje , Fenotipo , Polimorfismo de Longitud del Fragmento de Restricción , Sesgo de PublicaciónRESUMEN
Chronic progressive external ophthalmoplegia (CPEO) is common in mitochondrial disorders and is frequently associated with multiple mtDNA deletions. The onset is typically in adulthood, and affected subjects can also present with general muscle weakness. The underlying genetic defects comprise autosomal-dominant or recessive mutations in several nuclear genes, most of which play a role in mtDNA replication. Next-generation sequencing led to the identification of compound-heterozygous RNASEH1 mutations in two singleton subjects and a homozygous mutation in four siblings. RNASEH1, encoding ribonuclease H1 (RNase H1), is an endonuclease that is present in both the nucleus and mitochondria and digests the RNA component of RNA-DNA hybrids. Unlike mitochondria, the nucleus harbors a second ribonuclease (RNase H2). All affected individuals first presented with CPEO and exercise intolerance in their twenties, and these were followed by muscle weakness, dysphagia, and spino-cerebellar signs with impaired gait coordination, dysmetria, and dysarthria. Ragged-red and cytochrome c oxidase (COX)-negative fibers, together with impaired activity of various mitochondrial respiratory chain complexes, were observed in muscle biopsies of affected subjects. Western blot analysis showed the virtual absence of RNase H1 in total lysate from mutant fibroblasts. By an in vitro assay, we demonstrated that altered RNase H1 has a reduced capability to remove the RNA from RNA-DNA hybrids, confirming their pathogenic role. Given that an increasing amount of evidence indicates the presence of RNA primers during mtDNA replication, this result might also explain the accumulation of mtDNA deletions and underscores the importance of RNase H1 for mtDNA maintenance.