Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 595(7865): 66-69, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34194020

RESUMEN

The Laacher See eruption (LSE) in Germany ranks among Europe's largest volcanic events of the Upper Pleistocene1,2. Although tephra deposits of the LSE represent an important isochron for the synchronization of proxy archives at the Late Glacial to Early Holocene transition3, uncertainty in the age of the eruption has prevailed4. Here we present dendrochronological and radiocarbon measurements of subfossil trees that were buried by pyroclastic deposits that firmly date the LSE to 13,006 ± 9 calibrated years before present (BP; taken as AD 1950), which is more than a century earlier than previously accepted. The revised age of the LSE necessarily shifts the chronology of European varved lakes5,6 relative to the Greenland ice core record, thereby dating the onset of the Younger Dryas to 12,807 ± 12 calibrated years BP, which is around 130 years earlier than thought. Our results synchronize the onset of the Younger Dryas across the North Atlantic-European sector, preclude a direct link between the LSE and Greenland Stadial-1 cooling7, and suggest a large-scale common mechanism of a weakened Atlantic Meridional Overturning Circulation under warming conditions8-10.

3.
Front Plant Sci ; 15: 1401833, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39166235

RESUMEN

Introduction: Soil drought during summer in Central Europe has become more frequent and severe over the last decades. European forests are suffering increasing damage, particularly Norway spruce. Douglas-fir (Pseudotsuga menziesii (Mirbel) Franco), a non-native tree species, is considered as a promising alternative to build drought-resilient forests. The main goal of this study was to investigate the intraannual radial stem growth and sap flow performance of Douglas-fir along a precipitation gradient across Germany under severe drought. Material and methods: Sap flow and stem radial changes of up to ten trees each at four sites with different precipitation regimes were measured in combination with volumetric soil water content during the growing season of 2022. Measurements of stem radial changes were used to calculate the trees' stem water deficit, a proxy for tree water status and drought stress. Results: The severe summer drought of 2022 led to an early growth cessation and a significant reduction in daily sap flow at all four sites monitored. We could identify a site-specific threshold in soil water availability ranging between 21.7 and 29.6% of relative extractable water (REW) under which stem water reserves cannot be replenished and thereby inhibiting radial growth. We could also demonstrate that at this threshold, sap flow is heavily reduced to between 43.5 and 53.3%, and for a REW below 50%, sap flow linearly decreases by 1.1-2.0% per 1% reduction in REW. This reduction tends to follow the humidity gradient, being more pronounced at the most oceanic characterized site and suggesting an adaptation to site conditions. Even though Douglas-fir is considered to be more drought stress resistant than Norway spruce, growth and sap flow are greatly reduced by severe summer drought, which became more frequent in recent years and their frequency and intensity is likely to increase. Conclusions: Our results suggest that timber production of Douglas-fir in Central Europe will decline considerably under projected climate change, and thus pointing to site specific growth constraints for a so far promising non-native tree species in Europe.

4.
Sci Total Environ ; 922: 171157, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38412879

RESUMEN

Throughout history, humans have relied on wood for constructions, tool production or as an energy source. How and to what extent these human activities have impacted plant abundance and composition over a long-term perspective is, however, not well known. To address this knowledge gap, we combined 44,239 precisely dated tree-ring samples from economically and ecologically important tree species (spruce, fir, pine, oak) from historical buildings, and pollen-based plant cover estimates using the REVEALS model from 169 records for a total of 34 1° × 1° grid cells for Central Europe. Building activity and REVEALS estimates were compared for the entire study region (4-15°E, 46-51°N), and for low (<500 m asl) and mid/high elevations (≥500 m asl) in 100-year time windows over the period 1150-1850. Spruce and oak were more widely used in wooden constructions, amounting to 35 % and 32 %, respectively, compared to pine and fir. Besides wood properties and species abundance, tree diameters of harvested individuals, being similar for all four species, were found to be the most crucial criterion for timber selection throughout the last millennium. Regarding land use changes, from the 1150-1250's onwards, forest cover generally decreased due to deforestation until 1850, especially at lower elevations, resulting in a more heterogeneous landscape. The period 1650-1750 marks a distinct change in the environmental history of Central Europe; increasing agriculture and intense forest management practices were introduced to meet the high demands of an increasing population and intensifying industrialization, causing a decrease in palynological diversity, especially at low elevations. Likely the characteristic vegetation structure and composition of contemporary landscapes originated from that period. We further show that land use has impacted vegetation composition and diversity at an increasing speed leading to a general homogenization of landscapes through time, highlighting the limited environmental benefits of even-aged plantation forestry.


Asunto(s)
Bosques , Pinus , Humanos , Anciano , Europa (Continente) , Madera , Polen , Agricultura Forestal , Conservación de los Recursos Naturales
5.
Sci Total Environ ; 937: 173321, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38782287

RESUMEN

The future performance of the widely abundant European beech (Fagus sylvatica L.) across its ecological amplitude is uncertain. Although beech is considered drought-sensitive and thus negatively affected by drought events, scientific evidence indicating increasing drought vulnerability under climate change on a cross-regional scale remains elusive. While evaluating changes in climate sensitivity of secondary growth offers a promising avenue, studies from productive, closed-canopy forests suffer from knowledge gaps, especially regarding the natural variability of climate sensitivity and how it relates to radial growth as an indicator of tree vitality. Since beech is sensitive to drought, we in this study use a drought index as a climate variable to account for the combined effects of temperature and water availability and explore how the drought sensitivity of secondary growth varies temporally in dependence on growth variability, growth trends, and climatic water availability across the species' ecological amplitude. Our results show that drought sensitivity is highly variable and non-stationary, though consistently higher at dry sites compared to moist sites. Increasing drought sensitivity can largely be explained by increasing climatic aridity, especially as it is exacerbated by climate change and trees' rank progression within forest communities, as (co-)dominant trees are more sensitive to extra-canopy climatic conditions than trees embedded in understories. However, during the driest periods of the 20th century, growth showed clear signs of being decoupled from climate. This may indicate fundamental changes in system behavior and be early-warning signals of decreasing drought tolerance. The multiple significant interaction terms in our model elucidate the complexity of European beech's drought sensitivity, which needs to be taken into consideration when assessing this species' response to climate change.


Asunto(s)
Cambio Climático , Sequías , Fagus , Fagus/crecimiento & desarrollo , Fagus/fisiología , Bosques , Árboles/crecimiento & desarrollo , Árboles/fisiología
6.
Nat Commun ; 13(1): 2015, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35440102

RESUMEN

The mechanistic pathways connecting ocean-atmosphere variability and terrestrial productivity are well-established theoretically, but remain challenging to quantify empirically. Such quantification will greatly improve the assessment and prediction of changes in terrestrial carbon sequestration in response to dynamically induced climatic extremes. The jet stream latitude (JSL) over the North Atlantic-European domain provides a synthetic and robust physical framework that integrates climate variability not accounted for by atmospheric circulation patterns alone. Surface climate impacts of north-south summer JSL displacements are not uniform across Europe, but rather create a northwestern-southeastern dipole in forest productivity and radial-growth anomalies. Summer JSL variability over the eastern North Atlantic-European domain (5-40E) exerts the strongest impact on European beech, inducing anomalies of up to 30% in modelled gross primary productivity and 50% in radial tree growth. The net effects of JSL movements on terrestrial carbon fluxes depend on forest density, carbon stocks, and productivity imbalances across biogeographic regions.


Asunto(s)
Fagus , Movimientos del Aire , Carbono , Cambio Climático , Bosques
7.
Sci Rep ; 10(1): 16284, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33004966

RESUMEN

Hydroclimate, the interplay of moisture supply and evaporative demand, is essential for ecological and agricultural systems. The understanding of long-term hydroclimate changes is, however, limited because instrumental measurements are inadequate in length to capture the full range of precipitation and temperature variability and by the uneven distribution of high-resolution proxy records in space and time. Here, we present a tree-ring-based reconstruction of interannual to centennial-scale groundwater level (GWL) fluctuations for south-western Germany and north-eastern France. Continuously covering the period of 265-2017 CE, our new record from the Upper Rhine Valley shows that the warm periods during late Roman, medieval and recent times were characterized by higher GWLs. Lower GWLs were found during the cold periods of the Late Antique Little Ice Age (LALIA; 536 to ~ 660 CE) and the Little Ice Age (LIA; between medieval and recent warming). The reconstructed GWL fluctuations are in agreement with multidecadal North Atlantic climate variability derived from independent proxies. Warm and wet hydroclimate conditions are found during warm states of the Atlantic Ocean and positive phases of the North Atlantic Oscillation on decadal scales.

8.
PLoS One ; 14(1): e0210438, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30699136

RESUMEN

Studying the dynamic of Neolithic settlement on a local scale and its connection to climate variability is often difficult due to missing on-site climate reconstructions from natural archives. Here we bring together archaeological settlement data and a regional climate reconstruction from precipitation-sensitive trees. Both archives hold information about regional settlement dynamics and hydroclimate variability spanning the time of the first farming communities, the so called Linearbandkeramik (LBK) in Bavaria, Germany. Precipitation-sensitive tree-ring series from subfossil oak are used to develop a spring-summer precipitation reconstruction (5700-4800 B.C.E.) representative for southern Germany. Early Neolithic settlement data from Bavaria, mainly for the duration of the LBK settlement activities, are critically evaluated and compared to this unique regional hydroclimate reconstruction as well as to reconstructions of Greenland temperature, summer sea surface temperature, delta 18O and global solar irradiance to investigate the potential impact of climate on Neolithic settlers and their settlement dynamic during the LBK. Our hydroclimate reconstruction demonstrates an extraordinarily high frequency of severe dry and wet spring-summer seasons during the entire LBK, with particularly high year-to-year variability from 5400 to 5101 B.C.E. and with lower fluctuations until 4801 B.C.E. A significant influence of regional climate on the dynamic of the LBK is possible (e.g. around 4960 B.C.E.), but should be interpreted very carefully due to asynchronous trends in settlement dynamics. Thus, we conclude that even when a climate proxy such as tree rings that has excellent spatio-temporal resolution is available, it remains difficult to establish potential connections between the settlement dynamic of the LBK and climate variability.


Asunto(s)
Lluvia , Estaciones del Año , Árboles/anatomía & histología , Agricultura , Calibración , Clima , Fósiles , Geografía , Alemania , Modelos Teóricos , Quercus/anatomía & histología , Reproducibilidad de los Resultados , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA