Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 80(9): 253, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37589787

RESUMEN

Environmental changes alter the sex fate in about 15% of vertebrate orders, mainly in ectotherms such as fish and reptiles. However, the effects of temperature changes on the endocrine and molecular processes controlling gonadal sex determination are not fully understood. Here, we provide evidence that thyroid hormones (THs) act as co-players in heat-induced masculinization through interactions with the stress axis to promote testicular development. We first demonstrated that the thyroid axis (through thyroid-related genes and T3 levels) is highly active in males during the gonadal development in medaka (Oryzias latipes). Similarly, T3 treatments promoted female-to-male sex reversal in XX embryos. Subsequently, embryonic exposure to temperature-induced stress up-regulated the genes related to the thyroid and stress axes with a final increase in T3 levels. In this context, we show that blocking the stress axis response by the loss of function of the corticotropin-releasing hormone receptors suppresses thyroid-stimulating hormone expression, therefore, heat-induced activation of the thyroid axis. Thus, our data showed that early activation of the stress axis and, in consequence, the TH axis, too, leaves us with that both being important endocrine players in inducing female-to-male reversal, which can help predict possible upcoming physiological impacts of global warming on fish populations.


Asunto(s)
Calor , Glándula Tiroides , Femenino , Masculino , Animales , Temperatura , Gónadas , Hojas de la Planta
2.
Ecotoxicol Environ Saf ; 250: 114487, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36587413

RESUMEN

Atlantic salmon is an important species for Canadian culture and economy and its importance extends beyond Canada to Scandinavia and Western Europe. However, it is a vulnerable species facing decline due to habitat contamination and destruction. Existing and new Canadian pipeline projects pose a threat to salmonid habitat. The effects of diluted bitumen (dilbit), the main oil circulating in pipelines, are less studied than those of conventional oils, especially during the critical early embryonic developmental stage occurring in freshwater ecosystems. Therefore, this study aimed to compare the effects of water-accommodated fractions (WAF) of the Clearwater McMurray dilbit and the Lloydminster Heavy conventional oil on Atlantic salmon embryos exposed either from fertilization or from eyed stage. The dilbit contained the highest concentrations of low molecular weight (LMW) compounds (including BTEX and C6-C10), while the conventional oil contained the highest concentrations of PAHs. The Clearwater dilbit caused a higher percentage of mortality and malformations than the conventional oil at similar WAF concentrations. In addition, the embryos exposed from fertilization suffered a higher mortality rate, more developmental delays, and malformations than embryos exposed from the eyed stage, suggesting that early development is the most sensitive developmental stage to oil exposure. Gene expression and enzymatic activity of the detoxification phase I and II enzymes (CYP1A and GST) were measured. Data showed increases in both cyp1a expression and GST activity with increasing WAF concentrations, while gst expression was not affected by the exposures. Also, gene expression of proteins involved in the biotransformation of vitamin A and DNA damage repair were modified by the oil exposures. Overall, this study indicates that Atlantic salmon is mostly affected by oil exposure at the beginning of its development, during which embryos accumulate deformities that may impact their survival at later life stages.


Asunto(s)
Petróleo , Salmo salar , Contaminantes Químicos del Agua , Animales , Canadá , Ecosistema , Hidrocarburos/toxicidad , Agua , Aceites , Contaminantes Químicos del Agua/toxicidad , Petróleo/toxicidad
3.
Development ; 146(8)2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30936180

RESUMEN

Exposure to environmental stressors, such as high temperature (HT), during early development of fish induces sex reversal of genotypic females. Nevertheless, the involvement of the brain in this process is not well clarified. In the present work, we investigated the mRNA levels of corticotropin-releasing hormone b (crhb) and its receptors (crhr1 and crhr2), and found that they were upregulated at HT during the crucial period of gonadal sex determination in medaka. In order to clarify their roles in sex reversal, biallelic mutants for crhr1 and crhr2 were produced by CRISPR/Cas9 technology. Remarkably, biallelic mutants of both loci (crhr1 and crhr2) did not undergo female-to-male sex reversal upon exposure to HT. Inhibition of this process in double corticotropin-releasing hormone receptor mutants could be successfully rescued through the administration of the downstream effector of the hypothalamic-pituitary-interrenal axis, cortisol. Taken together, these results reveal for the first time that the CNS acts as a transducer of masculinization induced by thermal stress.


Asunto(s)
Sistema Nervioso Central/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Trastornos Testiculares del Desarrollo Sexual 46, XX/metabolismo , Animales , Hormona Liberadora de Corticotropina/genética , Femenino , Genotipo , Hidrocortisona/metabolismo , Masculino , Mutación/genética , Oryzias , ARN Mensajero/genética , ARN Mensajero/metabolismo
4.
Environ Res ; 203: 111906, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34418447

RESUMEN

Thyroid hormones (THs) are important regulators of growth, development, and homeostasis of all vertebrates. There are many environmental contaminants that are known to disrupt TH action, yet their mechanisms are only partially understood. While the effects of Endocrine Disrupting Chemicals (EDCs) are mostly studied as "hormone system silos", the present critical review highlights the complexity of EDCs interfering with TH function through their interactions with other hormonal axes involved in reproduction, stress, and energy metabolism. The impact of EDCs on components that are shared between hormone signaling pathways or intersect between pathways can thus extend beyond the molecular ramifications to cellular, physiological, behavioral, and whole-body consequences for exposed organisms. The comparatively more extensive studies conducted in mammalian models provides encouraging support for expanded investigation and highlight the paucity of data generated in other non-mammalian vertebrate classes. As greater genomics-based resources become available across vertebrate classes, better identification and delineation of EDC effects, modes of action, and identification of effective biomarkers suitable for HPT disruption is possible. EDC-derived effects are likely to cascade into a plurality of physiological effects far more complex than the few variables tested within any research studies. The field should move towards understanding a system of hormonal systems' interactions rather than maintaining hormone system silos.


Asunto(s)
Disruptores Endocrinos , Animales , Disruptores Endocrinos/toxicidad , Sistema Endocrino , Humanos , Reproducción , Glándula Tiroides , Hormonas Tiroideas
5.
Environ Res ; 205: 112483, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-34863984

RESUMEN

Endocrine disrupting chemicals (EDCs) are found in every environmental medium and are chemically diverse. Their presence in water resources can negatively impact the health of both human and wildlife. Currently, there are no mandatory screening mandates or regulations for EDC levels in complex water samples globally. Bioassays, which allow quantifying in vivo or in vitro biological effects of chemicals are used commonly to assess acute toxicity in water. The existing OECD framework to identify single-compound EDCs offers a set of bioassays that are validated for the Estrogen-, Androgen-, and Thyroid hormones, and for Steroidogenesis pathways (EATS). In this review, we discussed bioassays that could be potentially used to screen EDCs in water resources, including in vivo and in vitro bioassays using invertebrates, fish, amphibians, and/or mammalians species. Strengths and weaknesses of samples preparation for complex water samples are discussed. We also review how to calculate the Effect-Based Trigger values, which could serve as thresholds to determine if a given water sample poses a risk based on existing quality standards. This work aims to assist governments and regulatory agencies in developing a testing strategy towards regulation of EDCs in water resources worldwide. The main recommendations include 1) opting for internationally validated cell reporter in vitro bioassays to reduce animal use & cost; 2) testing for cell viability (a critical parameter) when using in vitro bioassays; and 3) evaluating the recovery of the water sample preparation method selected. This review also highlights future research avenues for the EDC screening revolution (e.g., 3D tissue culture, transgenic animals, OMICs, and Adverse Outcome Pathways (AOPs)).


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Animales , Bioensayo , Disruptores Endocrinos/toxicidad , Estrógenos , Mamíferos , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad , Recursos Hídricos
6.
Environ Res ; 207: 112196, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-34634314

RESUMEN

In the recent years, endocrine disrupting compounds (EDCs) has received increasing attention due to their significant toxic effects on human beings and wildlife by affecting their endocrine systems. As an important group of emerging pollutant, EDCs have been detected in various aquatic environments, including surface waters, groundwater, wastewater, runoff, and landfill leachates. Their removal from water resources has also been an emerging concern considering growing population as well as reducing access to fresh water resources. EDC removal from wastewaters is highly dependent on physicochemical properties of the given EDCs present in each wastewater types as well as various aquatic environments. Due to chemical, physical and physicochemical diversities in these parameters, variety of technologies consisting of physical, biological, electrochemical, and chemical processes have been developed for their removal. This review highlights that the effectiveness of EDC removal is highly dependent of selecting the appropriate technology; which decision is made upon a full wastewater chemical characterization. This review aims to provide a comprehensive perspective about all the current technologies used for EDCs removal from various aquatic matrices along with rising challenges such as the antimicrobial resistance gene transfer during EDC treatment.


Asunto(s)
Disruptores Endocrinos , Contaminantes Químicos del Agua , Disruptores Endocrinos/análisis , Humanos , Tecnología , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
7.
Environ Sci Technol ; 55(18): 12504-12516, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34460233

RESUMEN

It is generally believed that Bacillus thuringiensis var. israelensis (Bti) biopesticides are harmless to non-target organisms; however, new research shows controversial results. We exposed acutely and chronicallyLithobates sylvaticusandAnaxyrus americanus tadpoles until metamorphic climax to VectoBac 200G (granules) and VectoBac 1200L (aqueous suspension) at 300-20,000 ITU/L covering field-relevant concentrations and higher. The data show that the exposure parameters tested did not affect significantly the survival, total length, total weight, hepatosomatic index, gonadosomatic index, the expression of genes of interest (i.e., related to xenobiotic exposure, oxidative stress, and metamorphosis), and the intestine tissue layer detachment ofL. sylvaticusandA. americanus in a concentration-response pattern. In contrast, VectoBac 200G significantly increased the median time to metamorphosis ofL. sylvaticus tadpoles by up to 3.5 days and decreased the median by up to 1 day inA. americanus. VectoBac 1200L significantly increased the median time to metamorphosis ofL. sylvaticusandA. americanustadpoles by up to 4.5 days. Also, the exposure to VectoBac 200G and 1200L altered the intestine bacterial community composition inA. americanus at application rates recommended by the manufacturer, which led to an increase in the relative abundance of Verrucomicrobia, Firmicutes, Bacteroidetes, and Actinobacteria. Changes in the intestine microbiota might impact the fitness of individuals, including the susceptibility to parasitic infections. Our results indicate that the effect of Bti commercial products is limited; however, we recommend that Bti-spraying activities in amphibian-rich ecosystems should be kept minimal until there is more conclusive research to assess if the changes in the time to metamorphosis and microbiota can lead to negative outcomes in amphibian populations and, eventually, the functioning of ecosystems.


Asunto(s)
Bacillus thuringiensis , Microbioma Gastrointestinal , Animales , Agentes de Control Biológico , Ecosistema , Humanos , Larva , Control Biológico de Vectores
8.
Arch Environ Contam Toxicol ; 80(4): 745-759, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33856560

RESUMEN

Gestagens are active ingredients in human and veterinary drugs with progestogenic activity. Two gestagens-progesterone (P4), and the synthetic P4 analogue, melengestrol acetate (MGA)-are approved for use in beef cattle agriculture in North America. Both P4 and MGA have been measured in surface water receiving runoff from animal agricultural operations. This project aimed to assess the morphometric and molecular consequences of chronic exposures to P4, MGA, and their mixture during Western clawed frog metamorphosis. Chronic exposure (from embryo to metamorphosis) to MGA (1.7 µg/L) or P4 + MGA (0.22 µg/L P4 + 1.5 µg/L MGA) caused a considerable dysregulation of metamorphic timing, as evidenced by an inhibition of growth, narrower head, and lack of forelimb emergence in all animals. Molecular analysis revealed that chronic exposure to the mixture induced an additive upregulation of neurosteroid-related (GABAA receptor subunit α6 (gabra6) and steroid 5-alpha reductase 1 (srd5α1) gene expression in brain tissue. Chronic P4 exposure (0.26 µg/L P4) induced a significant upregulation of the expression hypothalamic-pituitary-gonadal (HPG)-related genes (ipgr, erα) in the gonadal mesonephros complex (GMC). Our data suggest that exposure to P4, MGA, and their mixture induces multiple endocrine responses and adverse effects in larval Western clawed frogs. This study helps to better our understanding of the consequences of chronic gestagen exposure and suggests that the implications and risk of high gestagen use in beef cattle feeding operations may extend to the aquatic environment.


Asunto(s)
Acetato de Melengestrol , Progestinas , Animales , Bovinos , Expresión Génica , América del Norte , Progesterona
9.
Arch Environ Contam Toxicol ; 80(4): 789-800, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33876257

RESUMEN

Insecticides are important in agriculture, to reduce human disease, and to decrease the nuisance of biting insects. Despite this, many have the potential for environmental impacts and toxicity in nontarget organisms. We reviewed data on the effects of insecticides based on toxins from Bacillus thuringiensis var. israelensis (Bti) and Bacillus thuringiensis var. kurstaki (Btk) on amphibians. The few peer-reviewed publications that are available for Bti provide variable conclusions, ranging from few observable effects to evidence of acute toxicity at high concentrations. We briefly highlight the current controversies and identify key areas for future investigation.


Asunto(s)
Bacillus thuringiensis , Anfibios , Animales , Agentes de Control Biológico/toxicidad , Humanos , Larva , Serogrupo
10.
Gen Comp Endocrinol ; 290: 113400, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31981690

RESUMEN

In 1974, a lack of 5α-dihydrotestosterone (5α-DHT), the most potent androgen across species except for fish, was shown to be the origin of a type of pseudohermaphrodism in which boys have female-like external genitalia. This human intersex condition is linked to a mutation in the steroid-5α-reductase type 2 (SRD5α2) gene, which usually produces an important enzyme capable of reducing the Δ4-ene of steroid C-19 and C-21 into a 5α-stereoisomer. Seeing the potential of SRD5α2 as a target for androgen synthesis, pharmaceutical companies developed 5α-reductase inhibitors (5ARIs), such as finasteride (FIN) and dutasteride (DUT) to target SRD5α2 in benign prostatic hyperplasia and androgenic alopecia. In addition to human treatment, the development of 5ARIs also enabled further research of SRD5α functions. Therefore, this review details the morphological, physiological, and molecular effects of the lack of SRD5α activity induced by both SRD5α mutations and inhibitor exposures across species. More specifically, data highlights 1) the role of 5α-DHT in the development of male secondary sexual organs in vertebrates and sex determination in non-mammalian vertebrates, 2) the role of SRD5α1 in the synthesis of the neurosteroid allopregnanolone (ALLO) and 5α-androstane-3α,17ß-diol (3α-diol), which are involved in anxiety and sexual behavior, respectively, and 3) the role of SRD5α3 in N-glycosylation. This review also features the lesser known functions of SRD5αs in steroid degradation in the uterus during pregnancy and glucocorticoid clearance in the liver. Additionally, the review describes the regulation of SRD5αs by the receptors of androgens, progesterone, estrogen, and thyroid hormones, as well as their differential DNA methylation. Factors known to be involved in their differential methylation are age, inflammation, and mental stimulation. Overall, this review helps shed light on the various essential functions of SRD5αs across species.


Asunto(s)
3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa/deficiencia , Vertebrados/genética , Animales , Femenino , Masculino
11.
Gen Comp Endocrinol ; 299: 113605, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32866474

RESUMEN

The understanding of the molecular and endocrine mechanisms behind environmentally-induced sex reversal in fish is of great importance in the context of predicting the potential effects of climate change, especially increasing temperature. Here, we demonstrate the global effects of high temperature on genome-wide transcription in medaka (Oryzias latipes) during early development. Interestingly, data analysis did not show sexual dimorphic changes, demonstrating that thermal stress is not dependent on genotypic sex. Additionally, our results revealed significant changes in several pathways under high temperature, such as stress response from brain, steroid biosynthesis, epigenetic mechanisms, and thyroid hormone biosynthesis, among others. These microarray data raised the question of what the exact molecular and hormonal mechanisms of action are for female-to-male sex reversal under high temperatures in fish. Complementary gene expression analysis revealed that androgen-related genes increase in females (XX) experiencing high water temperature. To test the involvement of androgens in thermal-induced sex reversal, an androgen antagonist was used to treat XX medaka under a high-temperature setup. Data clearly demonstrated failure of female-to-male sex reversal when androgen action is inhibited, corroborating the importance of androgens in environmentally-induced sex reversal.


Asunto(s)
Andrógenos/farmacología , Respuesta al Choque Térmico , Calor , Oryzias/fisiología , Caracteres Sexuales , Procesos de Determinación del Sexo , Diferenciación Sexual/efectos de los fármacos , Animales , Femenino , Genoma , Masculino , Diferenciación Sexual/genética
12.
Arch Environ Contam Toxicol ; 79(3): 283-297, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33063196

RESUMEN

Silver nanoparticles (AgNP) are widely used as antibacterial agents in both commercial products and for industrial applications. As such, AgNP has a high potential for release into freshwater environments. As part of a whole-lake ecosystem experiment to examine the impacts of AgNP exposure at low µg/L concentrations over multiple years, we evaluated biological responses in Yellow Perch (Perca flavescens) before, during, and after AgNP additions to a freshwater lake. Yellow Perch were monitored for responses to in situ AgNP additions at the cellular (suite of biomarkers), individual (growth, prey consumption, and metabolism), and population (abundance and gross prey consumption) scales. At the cellular level, several biomarkers of oxidative stress in liver tissues revealed down-regulation, including decreased mRNA levels of catalase and glutathione peroxidase in Yellow Perch collected during AgNP exposure, and elevated ratios of reduced to oxidized glutathione. At the individual level, Yellow Perch bioenergetic models revealed that prey consumption and total metabolism significantly declined during AgNP additions and remained depressed one year after AgNP addition. At the population level, Yellow Perch densities and gross prey consumption declined after AgNP was added to the lake. Together, these results reveal a holistic assessment of the negative impacts of chronic exposure to environmentally relevant AgNP concentrations (i.e., µg/L) on Yellow Perch at cellular, individual, and population levels.


Asunto(s)
Lagos/química , Nanopartículas del Metal/toxicidad , Percas/metabolismo , Plata/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Catalasa/metabolismo , Ecosistema , Metabolismo Energético/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Modelos Teóricos , Estrés Oxidativo/efectos de los fármacos , Percas/crecimiento & desarrollo
13.
Bull Environ Contam Toxicol ; 105(6): 813-818, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33211131

RESUMEN

Substituted phenylamine antioxidants (SPAs) are used in Canadian industrial processes. SPAs, specifically N-phenyl-1-naphthylamine (PNA), have received very little attention despite their current use in Canada and their expected aquatic and environmental releases. There is a research gap regarding the effects of PNA in wildlife; therefore, Chelydra serpentina (common snapping turtle) was studied due to its importance as an environmental indicator species. A chronic experiment was performed using PNA spiked food (0 to 3446 ng/g) to determine its toxicity to juvenile C. serpentina. A significant increase in cyp1a mRNA level was observed in the liver of turtles exposed to 3446 ng/g PNA, suggesting that phase I detoxification is activated in the exposed animals. Additionally, a significant decrease in cyp2b transcript level was observed at the two lowest PNA doses, likely indicating another metabolic alteration for PNA. This study helped determine the molecular effects associated with a PNA exposure in reptiles.


Asunto(s)
1-Naftilamina/análogos & derivados , Tortugas/metabolismo , 1-Naftilamina/metabolismo , Animales , Animales Salvajes , Canadá , Hígado , Reptiles
14.
Bull Environ Contam Toxicol ; 105(5): 699-704, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33006036

RESUMEN

Transportation of crude oil across North America's boreal ecozone creates the potential for spills in freshwater where less is known about the sensitivity of resident fish than for marine systems. The sensitivity of wild fathead minnows (FHM) to residual concentrations (ppb range) of the water accommodated fraction (WAF) of diluted bitumen (dilbit) was assessed by exposing them for 21 days followed by a 14 days depuration. Target concentrations were well below detection limits for GC-MS, but were estimated by dilution factor (1:100,000 and 1:1,000,000 WAF:water) to contain less than 0.0003 µg/L of polycyclic aromatic compounds. Confinement and handling stress caused by transfer of wild fish into tanks much smaller than their natural range resulted in mortality and lower body condition among all groups, but interactive effects of oil exposures still resulted in females with smaller cortical alveolar oocytes, and males with larger testicular lobe lumen sizes. Additional studies examining the compounded effects of stress and environmentally relevant oil exposures in wild fishes are needed.


Asunto(s)
Cyprinidae/crecimiento & desarrollo , Exposición a Riesgos Ambientales/análisis , Hidrocarburos/análisis , Contaminación por Petróleo/análisis , Petróleo/análisis , Contaminantes Químicos del Agua/análisis , Animales , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Agua Dulce/química , Hidrocarburos/toxicidad , Masculino , América del Norte , Óvulo/efectos de los fármacos , Óvulo/patología , Petróleo/toxicidad , Contaminación por Petróleo/efectos adversos , Testículo/efectos de los fármacos , Testículo/patología , Contaminantes Químicos del Agua/toxicidad
15.
Biomarkers ; 24(2): 166-179, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30280938

RESUMEN

CONTEXT: Due to the wide use of improvised explosive devices during modern warfare, primary blast-derived mild traumatic brain injury (mTBI) has become a major medical condition in the military. With minimal visually identifiable symptoms, an effective molecular biomarker system is desirable. OBJECTIVE: We assessed the potential of mammalian hair follicle miRNAs as an mTBI biomarker. MATERIALS AND METHODS: Due to their well-established roles in mTBI molecular pathology, the expression level of miR-183, miR-26a, miR-181c, miR-29a, miR-34a and miR-27b was determined using qRT-PCR in whisker hair follicles from rats subject to head-only exposure to a single-pulse shock wave. Based on established transcriptomics profiles, sub-network enrichment analysis (SNEA) was also conducted. RESULTS: The results revealed that molecular networks involving miR-183, miR-26a and miR-181c were enriched in multiple treatments, whereas sub-networks of miR-29a, miR-34a and miR-27b were unique to individual exposure groups. DISCUSSION: Our study showed that all six miRNAs were reflective of the mTBI signature involved in cellular responses. Noteworthy was that the decrease in the transcript levels of miR-181c was correlated with shockwave exposure severity. CONCLUSION: This study demonstrates for the first time that mammalian hair follicles are capable of housing miRNA biomarkers for TBI.


Asunto(s)
Biomarcadores/metabolismo , Traumatismos por Explosión/genética , Conmoción Encefálica/genética , Folículo Piloso/metabolismo , MicroARNs/genética , Animales , Traumatismos por Explosión/patología , Conmoción Encefálica/patología , Modelos Animales de Enfermedad , Humanos , MicroARNs/metabolismo , Ratas
16.
Gen Comp Endocrinol ; 265: 4-14, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29778442

RESUMEN

Environmental gestagens are an emerging class of contaminants that have been recently measured in surface water and can interfere with reproduction in aquatic vertebrates. Gestagens include endogenous progestogens, such as progesterone (P4), which bind P4-receptors and have critically important roles in vertebrate physiology and reproduction. Gestagens also include synthetic progestins, which are components of human and veterinary drugs, such as melengestrol acetate (MGA). Endogenous progestogens are essential in the regulation of reproduction in mammalian species, but the role of P4 in amphibian larval development remains unclear. This project aims to understand the roles and the regulatory mechanisms of P4 in amphibians and to assess the consequences of exposures to environmental gestagens on the P4-receptor signaling pathways in frogs. Here, we established the developmental profiles of the P4 receptors: the intracellular progesterone receptor (ipgr), the membrane progesterone receptor ß (mpgrß), and the progesterone receptor membrane component 1 (pgrmc1) in Western clawed frog (Silurana tropicalis) embryos using real-time qPCR. P4-receptor mRNAs were detected throughout embryogenesis. Transcripts for ipgr and pgrmc1 were detected in embryos at Nieuwkoop and Faber (NF) stage 2 and 7, indicative of maternal transfer of mRNA. We also assessed the effects of P4 and MGA exposure in embryonic and early larval development. Endocrine responses were evaluated through transcript analysis of a suite of gene targets of interest, including: ipgr, mpgrß, pgrmc1, androgen receptor (ar), estrogen receptor α (erα), follicle stimulating hormone ß (fshß), prolactin (prl), and the steroid 5-alpha reductase family (srd5α1, 2, and 3). Acute exposure (NF 12-46) to P4 caused a 2- to 5-fold change increase of ipgr, mpgrß, pgrmc1, and ar mRNA levels at the environmentally relevant concentration of 195 ng/L P4. Acute exposure to MGA induced a 56% decrease of srd5α3 at 1140 ng/L MGA. We conclude that environmental exposure to P4 induced multiple endocrine-related transcript responses in amphibians; however, the differential responses of MGA suggest that the effects of MGA are not mediated through the classical P4 signaling pathway in S. tropicalis.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Progestinas/farmacología , Receptores de Progesterona/genética , Xenopus/embriología , Xenopus/genética , Animales , Femenino , Perfilación de la Expresión Génica , Acetato de Melengestrol/farmacología , Progestinas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Progesterona/metabolismo , Reproducción/efectos de los fármacos , Reproducción/genética , Transducción de Señal/efectos de los fármacos , Agua , Xenopus/metabolismo
17.
Gen Comp Endocrinol ; 259: 34-44, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29107601

RESUMEN

Thyroid hormones (THs) and androgens have been shown to be extensively involved in sexual development; however, relatively little is known with regard to TH-related and androgenic actions in sex determination. We first established expression profiles of three sex-determining genes (sf1, dax-1, and sox9) during the embryonic development of Western clawed frogs (Silurana tropicalis). Transcripts of sf1 and sox9 were detected in embryos before the period in which embryonic transcription commences indicating maternal transfer, whereas dax-1 transcripts were not detected until later in development. To examine whether TH status affects sex-determining gene expression in embryonic S. tropicalis, embryos were exposed to co-treatments of iopanoic acid (IOP), thyroxine (T4), or triiodothyronine (T3) for 96 h. Expression profiles of TH receptors and deiodinases reflect inhibition of peripheral deiodinase activity by IOP and recovery by T3. Relevantly, elevated TH levels significantly increased the expression of sf1 and dax-1 in embryonic S. tropicalis. Further supporting TH-mediated regulation, examination of the presence and frequency of transcription factor binding sites in the putative promoter regions of sex-determining genes in S. tropicalis and rodent and fish models using in silico analysis also identified TH motifs in the putative promoter regions of sf1 and dax-1. Together these findings advocate that TH actions as early as the period of embryogenesis may affect gonadal fate in frogs. Mechanisms of TH and androgenic crosstalk in relation to the regulation of steroid-related gene expression were also investigated.


Asunto(s)
Andrógenos/metabolismo , Proteínas de Unión al ADN/genética , Regulación del Desarrollo de la Expresión Génica , Hormonas Tiroideas/metabolismo , Factores de Transcripción/genética , Proteínas de Xenopus/genética , Xenopus/embriología , Xenopus/genética , Animales , Proteínas de Unión al ADN/metabolismo , Femenino , Expresión Génica/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Yoduro Peroxidasa/metabolismo , Masculino , Ratones , Regiones Promotoras Genéticas/genética , Procesos de Determinación del Sexo/genética , Factores de Transcripción/metabolismo , Triyodotironina/metabolismo , Proteínas de Xenopus/metabolismo
18.
Brain Inj ; 32(1): 123-134, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29157017

RESUMEN

OBJECTIVE: Primary blast-induced mild traumatic brain injury (mTBI) is an injury experienced during modern warfare due to exposure to the pressure waves produced by the detonation of explosives. With virtually no apparent physical damage or symptoms presented, there is a need for more objective and accessible mTBI biomarkers posing minimal invasiveness risk. METHODS: We measured the transcriptomic sensitivity of the hair follicles in relation to the severity of primary blast-derived TBI. An Advanced Blast Simulator system was used to expose male rats to single pulse shock waves (intensities ranging from 15 to 30 psi) in a head-only fashion. Gene differential expression (DE) and gene set (GS) analyses were conducted in the rat whisker hair follicles and the whole blood samples. RESULTS: While shared cellular function, themes were found across the exposure groups, some gene sets under such themes were unique to the exposure conditions. Intensity-specific pathway enrichment patterns within shared GS themes were also identified. Furthermore, while exhibited shared pathways, the blood transcriptome showed substantially fewer enriched gene sets compared with the hair follicles across all exposure conditions. CONCLUSIONS: Accordingly, we demonstrate the potential of mammalian hair follicles serving as an additional source for biomarker discovery and for diagnosing mTBI with high accessibility.


Asunto(s)
Traumatismos por Explosión/genética , Conmoción Encefálica/genética , Folículo Piloso/metabolismo , Transcriptoma , Animales , Biomarcadores/metabolismo , Traumatismos por Explosión/metabolismo , Conmoción Encefálica/metabolismo , Modelos Animales de Enfermedad , Explosiones , Ondas de Choque de Alta Energía , Masculino , Ratas
19.
Bull Environ Contam Toxicol ; 100(1): 8-13, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29243210

RESUMEN

Canada has experienced a significant increase in the transport of diluted bitumen (dilbit), a predominant oil sands product that combines bitumen with diluents derived from oil-gas condensates and other proprietary compounds. The proportion of diluent and the chemical composition of dilbit vary to meet seasonal transport requirements. While the toxic effects of a variety of crude and refined oils are well-studied, the toxicity of dilbit to aquatic species is less well known. This focused review summarizes dilbit production, chemistry, and the few data on toxicity to aquatic species. These data suggest that un-weathered dilbit would cause effects on fish equivalent to those of conventional oils, but its toxicity may be lower, depending on interactions among test conditions, the behavior of dilbit added to water and the species tested.


Asunto(s)
Hidrocarburos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Canadá , Embrión no Mamífero , Hidrocarburos/análisis , Yacimiento de Petróleo y Gas , Petróleo/análisis , Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua/análisis , Tiempo (Meteorología)
20.
Environ Sci Technol ; 50(6): 3265-74, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26894911

RESUMEN

In vitro screening tools and 'omics methods are increasingly being incorporated into toxicity studies to determine mechanistic effects of chemicals and mixtures. To date, the majority of these studies have been conducted with well-characterized laboratory animal models. In the present study, well-established methods developed for chicken embryonic hepatocyte (CEH) studies were extended to a wild avian species, the double-crested cormorant (DCCO; Phalacrocorax auritus), in order to compare the effects of several environmental contaminants on cytotoxicity, ethoxyresorufin O-deethylase (EROD) activity, and mRNA expression. Five organic flame retardants and one plasticizer decreased cormorant hepatocyte viability in a similar manner to that observed in previous studies with CEH. EROD activity was induced in a concentration-dependent manner following exposure to two dioxin-like chemicals and the calculated EC50 values were concordant with domestic avian species from similar species sensitivity categories. Transcriptomic effects were determined using a novel DCCO PCR array, which was designed, constructed and validated in our laboratory based on a commercially available chicken PCR array. The DCCO array has 27 target genes covering a wide range of toxicity pathways. Gene profiles were variable among the 10 chemicals screened; however, good directional concordance was observed with regard to results previously obtained in CEH. Overall, the application of well-established methods (i.e., CEH and chicken PCR array) to the double-crested cormorant demonstrated the portability of the techniques to an indicator species of ecological relevance.


Asunto(s)
Citocromo P-450 CYP1A1/metabolismo , Ecotoxicología/métodos , Retardadores de Llama/toxicidad , Hepatocitos/efectos de los fármacos , Reacción en Cadena de la Polimerasa/métodos , Animales , Aves , Pollos/genética , Dioxinas/toxicidad , Femenino , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA