Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nucleic Acids Res ; 52(D1): D938-D949, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38000386

RESUMEN

Bridging the gap between genetic variations, environmental determinants, and phenotypic outcomes is critical for supporting clinical diagnosis and understanding mechanisms of diseases. It requires integrating open data at a global scale. The Monarch Initiative advances these goals by developing open ontologies, semantic data models, and knowledge graphs for translational research. The Monarch App is an integrated platform combining data about genes, phenotypes, and diseases across species. Monarch's APIs enable access to carefully curated datasets and advanced analysis tools that support the understanding and diagnosis of disease for diverse applications such as variant prioritization, deep phenotyping, and patient profile-matching. We have migrated our system into a scalable, cloud-based infrastructure; simplified Monarch's data ingestion and knowledge graph integration systems; enhanced data mapping and integration standards; and developed a new user interface with novel search and graph navigation features. Furthermore, we advanced Monarch's analytic tools by developing a customized plugin for OpenAI's ChatGPT to increase the reliability of its responses about phenotypic data, allowing us to interrogate the knowledge in the Monarch graph using state-of-the-art Large Language Models. The resources of the Monarch Initiative can be found at monarchinitiative.org and its corresponding code repository at github.com/monarch-initiative/monarch-app.


Asunto(s)
Bases de Datos Factuales , Enfermedad , Genes , Fenotipo , Humanos , Internet , Bases de Datos Factuales/normas , Programas Informáticos , Genes/genética , Enfermedad/genética
2.
J Biomed Inform ; 139: 104295, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36716983

RESUMEN

Healthcare datasets obtained from Electronic Health Records have proven to be extremely useful for assessing associations between patients' predictors and outcomes of interest. However, these datasets often suffer from missing values in a high proportion of cases, whose removal may introduce severe bias. Several multiple imputation algorithms have been proposed to attempt to recover the missing information under an assumed missingness mechanism. Each algorithm presents strengths and weaknesses, and there is currently no consensus on which multiple imputation algorithm works best in a given scenario. Furthermore, the selection of each algorithm's parameters and data-related modeling choices are also both crucial and challenging. In this paper we propose a novel framework to numerically evaluate strategies for handling missing data in the context of statistical analysis, with a particular focus on multiple imputation techniques. We demonstrate the feasibility of our approach on a large cohort of type-2 diabetes patients provided by the National COVID Cohort Collaborative (N3C) Enclave, where we explored the influence of various patient characteristics on outcomes related to COVID-19. Our analysis included classic multiple imputation techniques as well as simple complete-case Inverse Probability Weighted models. Extensive experiments show that our approach can effectively highlight the most promising and performant missing-data handling strategy for our case study. Moreover, our methodology allowed a better understanding of the behavior of the different models and of how it changed as we modified their parameters. Our method is general and can be applied to different research fields and on datasets containing heterogeneous types.


Asunto(s)
COVID-19 , Humanos , Algoritmos , Proyectos de Investigación , Sesgo , Probabilidad
3.
J Pediatr ; 244: 64-71.e2, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35032555

RESUMEN

OBJECTIVE: To assess the effects of Bifidobacteriumlongum subsp. infantis EVC001 (Binfantis EVC001) administration on the incidence of necrotizing enterocolitis (NEC) in preterm infants in a single level IV neonatal intensive care unit (NICU). STUDY DESIGN: Nonconcurrent retrospective analysis of 2 cohorts of very low birth weight (VLBW) infants not exposed and exposed to Binfantis EVC001 probiotic at Oregon Health & Science University from 2014 to 2020. Outcomes included NEC incidence and NEC-associated mortality, including subgroup analysis of extremely low birth weight (ELBW) infants. Log-binomial regression models were used to compare the incidence and risk of NEC-associated outcomes between the unexposed and exposed cohorts. RESULTS: The cumulative incidence of NEC diagnoses decreased from 11.0% (n = 301) in the no EVC001 (unexposed) cohort to 2.7% (n = 182) in the EVC001 (exposed) cohort (P < .01). The EVC001 cohort had a 73% risk reduction of NEC compared with the no EVC001 cohort (adjusted risk ratio, 0.27; 95% CI, 0.094-0.614; P < .01) resulting in an adjusted number needed to treat of 13 (95% CI, 10.0-23.5) for Binfantis EVC001. NEC-associated mortality decreased from 2.7% in the no EVC001 cohort to 0% in the EVC001 cohort (P = .03). There were similar reductions in NEC incidence and risk for ELBW infants (19.2% vs 5.3% [P < .01]; adjusted risk ratio, 0.28; 95% CI, 0.085-0.698 [P = .02]) and mortality (5.6% vs 0%; P < .05) in the 2 cohorts. CONCLUSIONS: In this observational study of 483 VLBW infants, Binfantis EVC001 administration was associated with significant reductions in the risk of NEC and NEC-related mortality. Binfantis EVC001 supplementation may be considered safe and effective for reducing morbidity and mortality in the NICU.


Asunto(s)
Enterocolitis Necrotizante , Enfermedades del Recién Nacido , Peso al Nacer , Enterocolitis Necrotizante/epidemiología , Enterocolitis Necrotizante/etiología , Enterocolitis Necrotizante/prevención & control , Humanos , Incidencia , Lactante , Recien Nacido con Peso al Nacer Extremadamente Bajo , Recién Nacido , Recien Nacido Prematuro , Recién Nacido de muy Bajo Peso , Estudios Retrospectivos
4.
Nucleic Acids Res ; 45(D1): D712-D722, 2017 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-27899636

RESUMEN

The correlation of phenotypic outcomes with genetic variation and environmental factors is a core pursuit in biology and biomedicine. Numerous challenges impede our progress: patient phenotypes may not match known diseases, candidate variants may be in genes that have not been characterized, model organisms may not recapitulate human or veterinary diseases, filling evolutionary gaps is difficult, and many resources must be queried to find potentially significant genotype-phenotype associations. Non-human organisms have proven instrumental in revealing biological mechanisms. Advanced informatics tools can identify phenotypically relevant disease models in research and diagnostic contexts. Large-scale integration of model organism and clinical research data can provide a breadth of knowledge not available from individual sources and can provide contextualization of data back to these sources. The Monarch Initiative (monarchinitiative.org) is a collaborative, open science effort that aims to semantically integrate genotype-phenotype data from many species and sources in order to support precision medicine, disease modeling, and mechanistic exploration. Our integrated knowledge graph, analytic tools, and web services enable diverse users to explore relationships between phenotypes and genotypes across species.


Asunto(s)
Bases de Datos Genéticas , Estudios de Asociación Genética/métodos , Genotipo , Fenotipo , Animales , Evolución Biológica , Biología Computacional/métodos , Curaduría de Datos , Humanos , Motor de Búsqueda , Programas Informáticos , Especificidad de la Especie , Interfaz Usuario-Computador , Navegador Web
5.
Proc Natl Acad Sci U S A ; 109(8): 2790-5, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-21808024

RESUMEN

High expression of the oncoprotein Myc has been linked to poor outcome in human tumors. Although MYC gene amplification and translocations have been observed, this can explain Myc overexpression in only a subset of human tumors. Myc expression is in part controlled by its protein stability, which can be regulated by phosphorylation at threonine 58 (T58) and serine 62 (S62). We now report that Myc protein stability is increased in a number of breast cancer cell lines and this correlates with increased phosphorylation at S62 and decreased phosphorylation at T58. Moreover, we find this same shift in phosphorylation in primary breast cancers. The signaling cascade that controls phosphorylation at T58 and S62 is coordinated by the scaffold protein Axin1. We therefore examined Axin1 in breast cancer and report decreased AXIN1 expression and a shift in the ratio of expression of two naturally occurring AXIN1 splice variants. We demonstrate that this contributes to increased Myc protein stability, altered phosphorylation at S62 and T58, and increased oncogenic activity of Myc in breast cancer. Thus, our results reveal an important mode of Myc activation in human breast cancer and a mechanism contributing to Myc deregulation involving unique insight into inactivation of the Axin1 tumor suppressor in breast cancer.


Asunto(s)
Proteína Axina/metabolismo , Neoplasias de la Mama/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Empalme Alternativo/genética , Animales , Proteína Axina/genética , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones , Fosforilación , Fosfoserina/metabolismo , Estabilidad Proteica
6.
Transl Psychiatry ; 14(1): 246, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851761

RESUMEN

Acute COVID-19 infection can be followed by diverse clinical manifestations referred to as Post Acute Sequelae of SARS-CoV2 Infection (PASC). Studies have shown an increased risk of being diagnosed with new-onset psychiatric disease following a diagnosis of acute COVID-19. However, it was unclear whether non-psychiatric PASC-associated manifestations (PASC-AMs) are associated with an increased risk of new-onset psychiatric disease following COVID-19. A retrospective electronic health record (EHR) cohort study of 2,391,006 individuals with acute COVID-19 was performed to evaluate whether non-psychiatric PASC-AMs are associated with new-onset psychiatric disease. Data were obtained from the National COVID Cohort Collaborative (N3C), which has EHR data from 76 clinical organizations. EHR codes were mapped to 151 non-psychiatric PASC-AMs recorded 28-120 days following SARS-CoV-2 diagnosis and before diagnosis of new-onset psychiatric disease. Association of newly diagnosed psychiatric disease with age, sex, race, pre-existing comorbidities, and PASC-AMs in seven categories was assessed by logistic regression. There were significant associations between a diagnosis of any psychiatric disease and five categories of PASC-AMs with odds ratios highest for neurological, cardiovascular, and constitutional PASC-AMs with odds ratios of 1.31, 1.29, and 1.23 respectively. Secondary analysis revealed that the proportions of 50 individual clinical features significantly differed between patients diagnosed with different psychiatric diseases. Our study provides evidence for association between non-psychiatric PASC-AMs and the incidence of newly diagnosed psychiatric disease. Significant associations were found for features related to multiple organ systems. This information could prove useful in understanding risk stratification for new-onset psychiatric disease following COVID-19. Prospective studies are needed to corroborate these findings.


Asunto(s)
COVID-19 , Trastornos Mentales , SARS-CoV-2 , Humanos , COVID-19/psicología , COVID-19/complicaciones , COVID-19/epidemiología , Masculino , Femenino , Trastornos Mentales/epidemiología , Persona de Mediana Edad , Adulto , Estudios Retrospectivos , Anciano , Fenotipo , Síndrome Post Agudo de COVID-19 , Comorbilidad , Registros Electrónicos de Salud , Adulto Joven , Factores de Riesgo , Adolescente
7.
EBioMedicine ; 96: 104777, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37672869

RESUMEN

BACKGROUND: The cause and symptoms of long COVID are poorly understood. It is challenging to predict whether a given COVID-19 patient will develop long COVID in the future. METHODS: We used electronic health record (EHR) data from the National COVID Cohort Collaborative to predict the incidence of long COVID. We trained two machine learning (ML) models - logistic regression (LR) and random forest (RF). Features used to train predictors included symptoms and drugs ordered during acute infection, measures of COVID-19 treatment, pre-COVID comorbidities, and demographic information. We assigned the 'long COVID' label to patients diagnosed with the U09.9 ICD10-CM code. The cohorts included patients with (a) EHRs reported from data partners using U09.9 ICD10-CM code and (b) at least one EHR in each feature category. We analysed three cohorts: all patients (n = 2,190,579; diagnosed with long COVID = 17,036), inpatients (149,319; 3,295), and outpatients (2,041,260; 13,741). FINDINGS: LR and RF models yielded median AUROC of 0.76 and 0.75, respectively. Ablation study revealed that drugs had the highest influence on the prediction task. The SHAP method identified age, gender, cough, fatigue, albuterol, obesity, diabetes, and chronic lung disease as explanatory features. Models trained on data from one N3C partner and tested on data from the other partners had average AUROC of 0.75. INTERPRETATION: ML-based classification using EHR information from the acute infection period is effective in predicting long COVID. SHAP methods identified important features for prediction. Cross-site analysis demonstrated the generalizability of the proposed methodology. FUNDING: NCATS U24 TR002306, NCATS UL1 TR003015, Axle Informatics Subcontract: NCATS-P00438-B, NIH/NIDDK/OD, PSR2015-1720GVALE_01, G43C22001320007, and Director, Office of Science, Office of Basic Energy Sciences of the U.S. Department of Energy Contract No. DE-AC02-05CH11231.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Tratamiento Farmacológico de COVID-19 , Aprendizaje Automático , Obesidad
8.
medRxiv ; 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36656776

RESUMEN

Although the COVID-19 pandemic has persisted for over 2 years, reinfections with SARS-CoV-2 are not well understood. We use the electronic health record (EHR)-based study cohort from the National COVID Cohort Collaborative (N3C) as part of the NIH Researching COVID to Enhance Recovery (RECOVER) Initiative to characterize reinfection, understand development of Long COVID after reinfection, and compare severity of reinfection with initial infection. We validate previous findings of reinfection incidence (5.9%), the occurrence of most reinfections during the Omicron epoch, and evidence of multiple reinfections. We present novel findings that Long COVID diagnoses occur closer to the index date for infection or reinfection in the Omicron BA epoch. We report lower albumin levels leading up to reinfection and a statistically significant association of severity between first infection and reinfection (chi-squared value: 9446.2, p-value: 0) with a medium effect size (Cramer's V: 0.18, DoF = 4).

9.
EBioMedicine ; 87: 104413, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36563487

RESUMEN

BACKGROUND: Stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, long COVID is incompletely understood and characterised by a wide range of manifestations that are difficult to analyse computationally. Additionally, the generalisability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. METHODS: We present a method for computationally modelling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning. FINDINGS: We found six clusters of PASC patients, each with distinct profiles of phenotypic abnormalities, including clusters with distinct pulmonary, neuropsychiatric, and cardiovascular abnormalities, and a cluster associated with broad, severe manifestations and increased mortality. There was significant association of cluster membership with a range of pre-existing conditions and measures of severity during acute COVID-19. We assigned new patients from other healthcare centres to clusters by maximum semantic similarity to the original patients, and showed that the clusters were generalisable across different hospital systems. The increased mortality rate originally identified in one cluster was consistently observed in patients assigned to that cluster in other hospital systems. INTERPRETATION: Semantic phenotypic clustering provides a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC. FUNDING: NIH (TR002306/OT2HL161847-01/OD011883/HG010860), U.S.D.O.E. (DE-AC02-05CH11231), Donald A. Roux Family Fund at Jackson Laboratory, Marsico Family at CU Anschutz.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Progresión de la Enfermedad , SARS-CoV-2
10.
Diabetes Res Clin Pract ; 194: 110157, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36400170

RESUMEN

AIMS: Studies suggest that metformin is associated with reduced COVID-19 severity in individuals with diabetes compared to other antihyperglycemics. We assessed if metformin is associated with reduced incidence of severe COVID-19 for patients with prediabetes or polycystic ovary syndrome (PCOS), common diseases that increase the risk of severe COVID-19. METHODS: This observational, retrospective study utilized EHR data from 52 hospitals for COVID-19 patients with PCOS or prediabetes treated with metformin or levothyroxine/ondansetron (controls). After balancing via inverse probability score weighting, associations with COVID-19 severity were assessed by logistic regression. RESULTS: In the prediabetes cohort, when compared to levothyroxine, metformin was associated with a significantly lower incidence of COVID-19 with "mild-ED" or worse (OR [95% CI]: 0.636, [0.455-0.888]) and "moderate" or worse severity (0.493 [0.339-0.718]). Compared to ondansetron, metformin was associated with lower incidence of "mild-ED" or worse severity (0.039 [0.026-0.057]), "moderate" or worse (0.045 [0.03-0.069]), "severe" or worse (0.183 [0.077-0.431]), and "mortality/hospice" (0.223 [0.071-0.694]). For PCOS, metformin showed no significant differences in severity compared to levothyroxine, but was associated with a significantly lower incidence of "mild-ED" or worse (0.101 [0.061-0.166]), and "moderate" or worse (0.094 [0.049-0.18]) COVID-19 outcome compared to ondansetron. CONCLUSIONS: Metformin use is associated with less severe COVID-19 in patients with prediabetes or PCOS.


Asunto(s)
COVID-19 , Metformina , Síndrome del Ovario Poliquístico , Estado Prediabético , Femenino , Humanos , Metformina/uso terapéutico , Estudios Retrospectivos , COVID-19/epidemiología , COVID-19/complicaciones , Estado Prediabético/tratamiento farmacológico , Estado Prediabético/epidemiología , Estado Prediabético/complicaciones , Síndrome del Ovario Poliquístico/complicaciones , Hipoglucemiantes/uso terapéutico , Tiroxina
11.
medRxiv ; 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36093353

RESUMEN

Background: With the continuing COVID-19 pandemic, identifying medications that improve COVID-19 outcomes is crucial. Studies suggest that use of metformin, an oral antihyperglycemic, is associated with reduced COVID-19 severity in individuals with diabetes compared to other antihyperglycemic medications. Some patients without diabetes, including those with polycystic ovary syndrome (PCOS) and prediabetes, are prescribed metformin for off-label use, which provides an opportunity to further investigate the effect of metformin on COVID-19. Participants: In this observational, retrospective analysis, we leveraged the harmonized electronic health record data from 53 hospitals to construct cohorts of COVID-19 positive, metformin users without diabetes and propensity-weighted control users of levothyroxine (a medication for hypothyroidism that is not known to affect COVID-19 outcome) who had either PCOS (n = 282) or prediabetes (n = 3136). The primary outcome of interest was COVID-19 severity, which was classified as: mild, mild ED (emergency department), moderate, severe, or mortality/hospice. Results: In the prediabetes cohort, metformin use was associated with a lower rate of COVID-19 with severity of mild ED or worse (OR: 0.630, 95% CI 0.450 - 0.882, p < 0.05) and a lower rate of COVID-19 with severity of moderate or worse (OR: 0.490, 95% CI 0.336 - 0.715, p < 0.001). In patients with PCOS, we found no significant association between metformin use and COVID-19 severity, although the number of patients was relatively small. Conclusions: Metformin was associated with less severe COVID-19 in patients with prediabetes, as seen in previous studies of patients with diabetes. This is an important finding, since prediabetes affects between 19 and 38% of the US population, and COVID-19 is an ongoing public health emergency. Further observational and prospective studies will clarify the relationship between metformin and COVID-19 severity in patients with prediabetes, and whether metformin usage may reduce COVID-19 severity.

12.
medRxiv ; 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36380762

RESUMEN

Acute COVID-19 infection can be followed by diverse clinical manifestations referred to as Post Acute Sequelae of SARS-CoV2 Infection (PASC). Studies have shown an increased risk of being diagnosed with new-onset psychiatric disease following a diagnosis of acute COVID-19. However, it was unclear whether non-psychiatric PASC-associated manifestations (PASC-AMs) are associated with an increased risk of new-onset psychiatric disease following COVID-19. A retrospective EHR cohort study of 1,603,767 individuals with acute COVID-19 was performed to evaluate whether non-psychiatric PASC-AMs are associated with new-onset psychiatric disease. Data were obtained from the National COVID Cohort Collaborative (N3C), which has EHR data from 65 clinical organizations. EHR codes were mapped to 151 non-psychiatric PASC-AMs recorded 28-120 days following SARS-CoV-2 diagnosis and before diagnosis of new-onset psychiatric disease. Association of newly diagnosed psychiatric disease with age, sex, race, pre-existing comorbidities, and PASC-AMs in seven categories was assessed by logistic regression. There was a significant association between six categories and newly diagnosed anxiety, mood, and psychotic disorders, with odds ratios highest for cardiovascular (1.35, 1.27-1.42) PASC-AMs. Secondary analysis revealed that the proportions of 95 individual clinical features significantly differed between patients diagnosed with different psychiatric disorders. Our study provides evidence for association between non-psychiatric PASC-AMs and the incidence of newly diagnosed psychiatric disease. Significant associations were found for features related to multiple organ systems. This information could prove useful in understanding risk stratification for new-onset psychiatric disease following COVID-19. Prospective studies are needed to corroborate these findings. Funding: NCATS U24 TR002306.

13.
medRxiv ; 2022 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-35665012

RESUMEN

Accurate stratification of patients with post-acute sequelae of SARS-CoV-2 infection (PASC, or long COVID) would allow precision clinical management strategies. However, the natural history of long COVID is incompletely understood and characterized by an extremely wide range of manifestations that are difficult to analyze computationally. In addition, the generalizability of machine learning classification of COVID-19 clinical outcomes has rarely been tested. We present a method for computationally modeling PASC phenotype data based on electronic healthcare records (EHRs) and for assessing pairwise phenotypic similarity between patients using semantic similarity. Our approach defines a nonlinear similarity function that maps from a feature space of phenotypic abnormalities to a matrix of pairwise patient similarity that can be clustered using unsupervised machine learning procedures. Using k-means clustering of this similarity matrix, we found six distinct clusters of PASC patients, each with distinct profiles of phenotypic abnormalities. There was a significant association of cluster membership with a range of pre-existing conditions and with measures of severity during acute COVID-19. Two of the clusters were associated with severe manifestations and displayed increased mortality. We assigned new patients from other healthcare centers to one of the six clusters on the basis of maximum semantic similarity to the original patients. We show that the identified clusters were generalizable across different hospital systems and that the increased mortality rate was consistently observed in two of the clusters. Semantic phenotypic clustering can provide a foundation for assigning patients to stratified subgroups for natural history or therapy studies on PASC.

14.
medRxiv ; 2021 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-34909790

RESUMEN

Background: COVID-19 has been shown to increase the risk of adverse mental health consequences. A recent electronic health record (EHR)-based observational study showed an almost two-fold increased risk of new-onset mental illness in the first 90 days following a diagnosis of acute COVID-19. Methods: We used the National COVID Cohort Collaborative, a harmonized EHR repository with 2,965,506 COVID-19 positive patients, and compared cohorts of COVID-19 patients with comparable controls. Patients were propensity score-matched to control for confounding factors. We estimated the hazard ratio (COVID-19:control) for new-onset of mental illness for the first year following diagnosis. We additionally estimated the change in risk for new-onset mental illness between the periods of 21-120 and 121-365 days following infection. Findings: We find a significant increase in incidence of new-onset mental disorders in the period of 21-120 days following COVID-19 (3.8%, 3.6-4.0) compared to patients with respiratory tract infections (3%, 2.8-3.2). We further show that the risk for new-onset mental illness decreases over the first year following COVID-19 diagnosis compared to other respiratory tract infections and demonstrate a reduced (non-significant) hazard ratio over the period of 121-365 days following diagnosis. Similar findings are seen for new-onset anxiety disorders but not for mood disorders. Interpretation: Patients who have recovered from COVID-19 are at an increased risk for developing new-onset mental illness, especially anxiety disorders. This risk is most prominent in the first 120 days following infection. Funding: National Center for Advancing Translational Sciences (NCATS).

15.
Orphanet J Rare Dis ; 16(1): 429, 2021 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-34674728

RESUMEN

BACKGROUND: Rare diseases (RD) are a diverse collection of more than 7-10,000 different disorders, most of which affect a small number of people per disease. Because of their rarity and fragmentation of patients across thousands of different disorders, the medical needs of RD patients are not well recognized or quantified in healthcare systems (HCS). METHODOLOGY: We performed a pilot IDeaS study, where we attempted to quantify the number of RD patients and the direct medical costs of 14 representative RD within 4 different HCS databases and performed a preliminary analysis of the diagnostic journey for selected RD patients. RESULTS: The overall findings were notable for: (1) RD patients are difficult to quantify in HCS using ICD coding search criteria, which likely results in under-counting and under-estimation of their true impact to HCS; (2) per patient direct medical costs of RD are high, estimated to be around three-fivefold higher than age-matched controls; and (3) preliminary evidence shows that diagnostic journeys are likely prolonged in many patients, and may result in progressive, irreversible, and costly complications of their disease CONCLUSIONS: The results of this small pilot suggest that RD have high medical burdens to patients and HCS, and collectively represent a major impact to the public health. Machine-learning strategies applied to HCS databases and medical records using sentinel disease and patient characteristics may hold promise for faster and more accurate diagnosis for many RD patients and should be explored to help address the high unmet medical needs of RD patients.


Asunto(s)
Aprendizaje Automático , Enfermedades Raras , Costos y Análisis de Costo , Atención a la Salud , Humanos , Proyectos Piloto
17.
Genetics ; 203(4): 1491-5, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27516611

RESUMEN

The principles of genetics apply across the entire tree of life. At the cellular level we share biological mechanisms with species from which we diverged millions, even billions of years ago. We can exploit this common ancestry to learn about health and disease, by analyzing DNA and protein sequences, but also through the observable outcomes of genetic differences, i.e. phenotypes. To solve challenging disease problems we need to unify the heterogeneous data that relates genomics to disease traits. Without a big-picture view of phenotypic data, many questions in genetics are difficult or impossible to answer. The Monarch Initiative (https://monarchinitiative.org) provides tools for genotype-phenotype analysis, genomic diagnostics, and precision medicine across broad areas of disease.


Asunto(s)
Biología Computacional , Estudios de Asociación Genética , Genómica , Medicina de Precisión , Bases de Datos Genéticas , Humanos , Análisis de Secuencia de ADN , Análisis de Secuencia de Proteína
18.
Stem Cell Res Ther ; 6: 192, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26438432

RESUMEN

Regenerative medicine studies using autologous bone marrow mononuclear cells (BM-MNCs) have shown improved clinical outcomes that correlate to in vitro BM-MNC invasive capacity. The current Boyden-chamber assay for testing invasive capacity is labor-intensive, provides only a single time point, and takes 36 hours to collect data and results, which is not practical from a clinical cell delivery perspective. To develop a rapid, sensitive and reproducible invasion assay, we employed Electric Cell-substrate Impedance Sensing (ECIS) technology. Chemokine-directed BM-MNC cell invasion across a Matrigel-coated Transwell filter was measurable within minutes using the ECIS system we developed. This ECIS-Transwell chamber system provides a rapid and sensitive test of stem and progenitor cell invasive capacity for evaluation of stem cell functionality to provide timely clinical data for selection of patients likely to realize clinical benefit in regenerative medicine treatments. This device could also supply robust unambiguous, reproducible and cost effective data as a potency assay for cell product release and regulatory strategies.


Asunto(s)
Leucocitos Mononucleares/fisiología , Células Madre/fisiología , Animales , Movimiento Celular , Impedancia Eléctrica , Humanos , Células Jurkat , Masculino , Porcinos , Porcinos Enanos
19.
Cancer Res ; 71(3): 925-36, 2011 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-21266350

RESUMEN

Expression of the c-Myc oncoprotein is affected by conserved threonine 58 (T58) and serine 62 (S62) phosphorylation sites that help to regulate c-Myc protein stability, and altered ratios of T58 and S62 phosphorylation have been observed in human cancer. Here, we report the development of 3 unique c-myc knock-in mice that conditionally express either c-Myc(WT) or the c-Myc(T58A) or c-Myc(S62A) phosphorylation mutant from the constitutively active ROSA26 locus in response to Cre recombinase to study the role of these phosphorylation sites in vivo. Using a mammary-specific Cre model, we found that expression of c-Myc(WT) resulted in increased mammary gland density, but normal morphology and no tumors at the level expressed from the ROSA promoter. In contrast, c-Myc(T58A) expression yielded enhanced mammary gland density, hyperplastic foci, cellular dysplasia, and mammary carcinoma, associated with increased genomic instability and suppressed apoptosis relative to c-Myc(WT). Alternatively, c-Myc(S62A) expression reduced mammary gland density relative to control glands, and this was associated with increased genomic instability and normal apoptotic function. Our results indicate that specific activities of c-Myc are differentially affected by T58 and S62 phosphorylation. This model provides a robust platform to interrogate the role that these phosphorylation sites play in c-Myc function during development and tumorigenesis.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Glándulas Mamarias Animales/metabolismo , Neoplasias Mamarias Experimentales/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Centrosoma/metabolismo , Centrosoma/patología , Inestabilidad Cromosómica , Glándulas Mamarias Animales/patología , Neoplasias Mamarias Experimentales/genética , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA