Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Horm Behav ; 161: 105501, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38368844

RESUMEN

Long-term use of anabolic androgenic steroids (AAS) in supratherapeutic doses is associated with severe adverse effects, including physical, mental, and behavioral alterations. When used for recreational purposes several AAS are often combined, and in scientific studies of the physiological impact of AAS either a single compound or a cocktail of several steroids is often used. Because of this, steroid-specific effects have been difficult to define and are not fully elucidated. The present study used male Wistar rats to evaluate potential somatic and behavioral effects of three different AAS; the decanoate esters of nandrolone, testosterone, and trenbolone. The rats were exposed to 15 mg/kg of nandrolone decanoate, testosterone decanoate, or trenbolone decanoate every third day for 24 days. Body weight gain and organ weights (thymus, liver, kidney, testis, and heart) were measured together with the corticosterone plasma levels. Behavioral effects were studied in the novel object recognition-test (NOR-test) and the multivariate concentric square field-test (MCSF-test). The results conclude that nandrolone decanoate, but neither testosterone decanoate nor trenbolone decanoate, caused impaired recognition memory in the NOR-test, indicating an altered cognitive function. The behavioral profile and stress hormone level of the rats were not affected by the AAS treatments. Furthermore, the study revealed diverse AAS-induced somatic effects i.e., reduced body weight development and changes in organ weights. Of the three AAS included in the study, nandrolone decanoate was identified to cause the most prominent impact on the male rat, as it affected body weight development, the weights of multiple organs, and caused an impaired memory function.


Asunto(s)
Anabolizantes , Trastornos de la Memoria , Nandrolona , Ratas Wistar , Testosterona , Animales , Masculino , Testosterona/sangre , Testosterona/análogos & derivados , Ratas , Nandrolona/análogos & derivados , Nandrolona/farmacología , Anabolizantes/efectos adversos , Anabolizantes/farmacología , Trastornos de la Memoria/inducido químicamente , Tamaño de los Órganos/efectos de los fármacos , Acetato de Trembolona/farmacología , Nandrolona Decanoato/farmacología , Peso Corporal/efectos de los fármacos , Corticosterona/sangre , Reconocimiento en Psicología/efectos de los fármacos
2.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38473764

RESUMEN

Inhibition of insulin-regulated aminopeptidase (IRAP) has been shown to improve cognitive functions in several animal models. Recently, we performed a screening campaign of approximately 10,000 compounds, identifying novel small-molecule-based compounds acting as inhibitors of the enzymatic activity of IRAP. Here we report on the chemical synthesis, structure-activity relationships (SAR) and initial characterization of physicochemical properties of a series of 48 imidazo [1,5-α]pyridine-based inhibitors, including delineation of their mode of action as non-competitive inhibitors with a small L-leucine-based IRAP substrate. The best compound displays an IC50 value of 1.0 µM. We elucidate the importance of two chiral sites in these molecules and find they have little impact on the compound's metabolic stability or physicochemical properties. The carbonyl group of a central urea moiety was initially believed to mimic substrate binding to a catalytically important Zn2+ ion in the active site, although the plausibility of this binding hypothesis is challenged by observation of excellent selectivity versus the closely related aminopeptidase N (APN). Taken together with the non-competitive inhibition pattern, we also consider an alternative model of allosteric binding.


Asunto(s)
Aminopeptidasas , Insulina , Animales , Insulina Regular Humana , Antígenos CD13 , Leucil Aminopeptidasa , Piridinas
3.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612894

RESUMEN

With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.


Asunto(s)
Aminopeptidasas , Insulina , Ensayos Analíticos de Alto Rendimiento , Insulina Regular Humana , Colorantes , Ácidos Hidroxámicos , Zinc
4.
J Org Chem ; 88(18): 12978-12985, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37639573

RESUMEN

A palladium(0)-catalyzed aminocarbonylation reaction employing molybdenum hexacarbonyl as a carbon monoxide precursor for the production of N-capped amino acids using aryl and heteroaryl bromides and triflates is reported. The carbon monoxide is formed ex situ through the use of a two-chamber system, where carbon monoxide generated in one chamber is free to diffuse over and be consumed in the other palladium-catalyzed reaction chamber. Using this method, two series of aryl bromides and aryl triflates were utilized to synthesize 21 N-capped amino acids in isolated yields between 40 and 91%.

5.
Curr Issues Mol Biol ; 44(10): 5000-5012, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36286055

RESUMEN

Angiotensin IV (Ang IV), a metabolite of Angiotensin II, is a bioactive hexapeptide that inhibits the insulin-regulated aminopeptidase (IRAP). This transmembrane zinc metallopeptidase with many biological functions has in recent years emerged as a new pharmacological target. IRAP is expressed in a variety of tissues and can be found in high density in the hippocampus and neocortex, brain regions associated with cognition. Ang IV is known to improve memory tasks in experimental animals. One of the most potent IRAP inhibitors known today is the macrocyclic compound HA08 that is significantly more stable than the endogenous Ang IV. HA08 combines structural elements from Ang IV and the physiological substrates oxytocin and vasopressin, and binds to the catalytic site of IRAP. In the present study we evaluate whether HA08 can restore cell viability in rat primary cells submitted to hydrogen peroxide damage. After damaging the cells with hydrogen peroxide and subsequently treating them with HA08, the conceivable restoring effects of the IRAP inhibitor were assessed. The cellular viability was determined by measuring mitochondrial activity and lactate dehydrogenase (LDH) release. The mitochondrial activity was significantly higher in primary hippocampal cells, whereas the amount of LDH was unaffected. We conclude that the cell viability can be restored in this cell type by blocking IRAP with the potent macrocyclic inhibitor HA08, although the mechanism by which HA08 exerts its effects remains unclear.

6.
Bioorg Med Chem ; 65: 116790, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35550979

RESUMEN

The syntheses and the AT1R and AT2R binding data of a series of new small molecule ligands are reported. These ligands comprise a phenylthiazole scaffold rather than the biphenyl or phenylthiophene scaffolds found in essentially all of the previously described ligands originating from the nonselective AT1R/AT2R ligand L-162,313 and the AT2R selective agonist C21, the latter now in Phase II/III clinical trials. A phenylthiazole rather than the phenylthiophene scaffold that is present in the AT2R selective agonist C21 and in the AT2R selective antagonist C38 had a deleterious effect on the affinity to AT2R. Nevertheless, a significant improvement could be accomplished by introduction of a small bulky alkyl group in the 2-position of the imidazole ring attached through a methylene group bridge to the phenylthiazole scaffold. Hence, a combination of a 2-tert-butyl or a 2-isopropyl group and a butoxycarbonyl furnished potent AT2R selective ligands. Furthermore, a high affinity ligand derived from L-162,313 and exhibiting a > 35 fold selectivity for AT1R was identified (10). The ligand 21 with the 2-tert-butyl group and âˆ¼ 35 fold selectivity for AT2R, demonstrated high stability in human, rat and mouse liver microsomes and a very attractive profile with regard to the inhibition of common drug-metabolizing CYP enzymes. Thus, very low levels of inhibition of CYP 3A (5%), 2D6 (12%), 2C8 (26%), 2C9 (23%) and 2B6 (24%) were observed with the 2-tert-butyl derivative comprising the methoxycarbonyl sulfonamide function, levels that are significantly lower than those obtained with C21 under the same experimental conditions.


Asunto(s)
Receptor de Angiotensina Tipo 2 , Receptores de Angiotensina , Angiotensina II/química , Angiotensina II/farmacología , Animales , Humanos , Imidazoles , Ligandos , Ratones , Ratas , Receptor de Angiotensina Tipo 2/agonistas , Sulfonamidas , Tiofenos
7.
Bioorg Med Chem ; 66: 116804, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35576659

RESUMEN

Ligands comprising a benzimidazole rather than the imidazole ring that is common in AT2R ligands e.g. in the AT2R agonist C21, can provide both high affinity and receptor selectivity. In particular, compounds encompassing benzimidazoles, substituted in the 2-position with small bulky groups such as an isopropyl (Ki = 4.0 nM) or a tert-butyl (Ki = 5.3 nM) or alternatively a thiazole heterocycle (Ki = 5.1 nM) demonstrate high affinity and AT2R selectivity. An n-butyl chain, as found in the AT1R selective sartans, makes the ligand less receptor selective. The isobutyl group on the biaryl scaffold present in most AT2R selective ligands reported so far was originally derived from the nonselective potent AT1R/AT2R ligand L-162,313. Notably, in all ligands discussed herein, the isobutyl group was substituted by an n-propyl group and ligands with high affinity to AT2R were provided and in addition the majority of them demonstrate a favorable AT2R/AT1R selectivity. The introduction of fluoro atoms in various positions had no pronounced effect on the affinity data. Ligands with a thiazole or a tert-butyl group attached to the 2-position and with a terminal trifluoromethyl butoxycarbonyl sidechain exhibited a similar stability as C21 in human liver microsomes, while other ligands examined were less stable in the microsome assay.


Asunto(s)
Bencimidazoles , Receptor de Angiotensina Tipo 2 , Bencimidazoles/farmacología , Humanos , Imidazoles , Ligandos , Receptor de Angiotensina Tipo 2/agonistas , Sulfonamidas , Tiazoles , Tiofenos
8.
Bioorg Med Chem ; 29: 115859, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309749

RESUMEN

A series of meta-substituted acetophenone derivatives, encompassing N-(alkyloxycarbonyl)thiophene sulfonamide fragments have been synthesized. Several selective AT2 receptor ligands were identified, among those a tert-butylimidazole derivative (20) with a Ki of 9.3 nM, that demonstrates a high stability in human liver microsomes (t½ = 62 min) and in human hepatocytes (t½ = 194 min). This methyloxycarbonylthiophene sulfonamide is a 20-fold more potent binder to the AT2 receptor and is considerably more stable in human liver microsomes, than a previously reported and broadly studied structurally related AT2R prototype antagonist 3 (C38). Ligand 20 acts as an AT2R agonist and caused an AT2R mediated concentration-dependent vasorelaxation of pre-contracted mouse aorta. Furthermore, in contrast to imidazole derivative C38, the tert-butylimidazole derivative 20 is a poor inhibitor of CYP3A4, CYP2D6 and CYP2C9. It is demonstrated herein that smaller alkyloxycarbonyl groups make the ligands in this series of AT2R selective compounds less prone to degradation and that a high AT2 receptor affinity can be retained after truncation of the alkyloxycarbonyl group. Binding modes of the most potent AT2R ligands were explored by docking calculations combined with molecular dynamics simulations.


Asunto(s)
Receptor de Angiotensina Tipo 2/agonistas , Médula Espinal/efectos de los fármacos , Sulfonamidas/farmacología , Tiofenos/farmacología , Vasodilatación/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hepatocitos/química , Hepatocitos/metabolismo , Ligandos , Masculino , Ratones , Ratones Endogámicos , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Estructura Molecular , Médula Espinal/patología , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Tiofenos/síntesis química , Tiofenos/química
9.
J Org Chem ; 85(12): 7648-7657, 2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32083867

RESUMEN

The palladium(0)-catalyzed intramolecular annulation of 12 1,3-disubstituted cyclopentenes, derived from (+)-vince lactam, resulted in 5-exo cyclizations which furnished a series of 2,5-dimethyl-1-((3R,4'S)-2H-spiro[benzofuran-3,1'-cyclopentan]-2'-en-4'-yl)-1H-pyrroles in excellent diastereoselectivities and useful isolated yields. The double bond migration process that followed the arylpalladium insertion was controlled by a fine-tuning of the reaction system, which provided regioselectivities of up to 98:2. The selective Mizoroki-Heck reaction was used as the key transformation for preparing two new spirocyclic monoprotected amino acids as single stereoisomers.

10.
Int J Cancer ; 145(12): 3347-3358, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31077356

RESUMEN

Gastrin-releasing peptide receptors (GRPRs) are overexpressed in prostate cancer and are suitable for targeted radionuclide therapy (TRT). We optimized the bombesin-derived GRPR-antagonist PEG2 -RM26 for labeling with 177 Lu and further determined the effect of treatment with 177 Lu-labeled peptide alone or in combination with the anti-HER2 antibody trastuzumab in a murine model. The PEG2 -RM26 analog was coupled to NOTA, NODAGA, DOTA and DOTAGA chelators. The peptide-chelator conjugates were labeled with 177 Lu and characterized in vitro and in vivo. A preclinical therapeutic study was performed in PC-3 xenografted mice. Mice were treated with intravenous injections (6 cycles) of (A) PBS, (B) DOTAGA-PEG2 -RM26, (C) 177 Lu-DOTAGA-PEG2 -RM26, (D) trastuzumab or (E) 177 Lu-DOTAGA-PEG2 -RM26 in combination with trastuzumab. 177 Lu-DOTAGA-PEG2 -RM26 demonstrated quantitative labeling yield at high molar activity (450 GBq/µmol), high in vivo stability (5 min pi >98% of radioligand remained when coinjected with phosphoramidon), high affinity to GRPR (KD = 0.4 ± 0.2 nM), and favorable biodistribution (1 hr pi tumor uptake was higher than in healthy tissues, including the kidneys). Therapy with 177 Lu-DOTAGA-PEG2 -RM26 induced a significant inhibition of tumor growth. The median survival for control groups was significantly shorter than for treated groups (Group C 66 days, Group E 74 days). Trastuzumab together with radionuclide therapy significantly improved survival. No treatment-related toxicity was observed. In conclusion, based on in vitro and in vivo characterization of the four 177 Lu-labeled PEG2 -RM26 analogs, we concluded that 177 Lu-DOTAGA-PEG2 -RM26 was the most promising analog for TRT. Radiotherapy using 177 Lu-DOTAGA-PEG2 -RM26 effectively inhibited tumor growth in vivo in a murine prostate cancer model. Anti-HER2 therapy additionally improved survival.


Asunto(s)
Antineoplásicos/farmacología , Lutecio/química , Polietilenglicoles/química , Neoplasias de la Próstata/tratamiento farmacológico , Radioisótopos/química , Receptores de Bombesina/antagonistas & inhibidores , Trastuzumab/farmacología , Animales , Antineoplásicos/química , Línea Celular Tumoral , Terapia Combinada/métodos , Xenoinjertos/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Células PC-3 , Próstata/efectos de los fármacos , Distribución Tisular/fisiología , Proteína Tumoral Controlada Traslacionalmente 1
11.
Bioorg Med Chem Lett ; 28(3): 519-522, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29279275

RESUMEN

A series of AT2R ligands have been synthesized applying a quick, simple, and safe transesterification-type reaction whereby the sulfonyl carbamate alkyl tail of the selective AT2R antagonist C38 was varied. Furthermore, a limited number of compounds where acyl sulfonamides and sulfonyl ureas served as carboxylic acid bioisosteres were synthesized and evaluated. By reducing the size of the alkyl chain of the sulfonyl carbamates, ligands 7a and 7b were identified with significantly improved in vitro metabolic stability in both human and mouse liver microsomes as compared to C38 while retaining the AT2R binding affinity and AT2R/AT1R selectivity. Eight of the compounds synthesized exhibit an improved stability in human microsomes as compared to C38.


Asunto(s)
Ésteres/farmacología , Microsomas Hepáticos/química , Receptor de Angiotensina Tipo 2/metabolismo , Sulfonamidas/farmacología , Urea/farmacología , Relación Dosis-Respuesta a Droga , Ésteres/síntesis química , Ésteres/química , Humanos , Ligandos , Microsomas Hepáticos/metabolismo , Estructura Molecular , Relación Estructura-Actividad , Sulfonamidas/síntesis química , Sulfonamidas/química , Urea/análogos & derivados , Urea/química
12.
J Org Chem ; 82(23): 12520-12529, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29027801

RESUMEN

A convenient synthetic strategy toward N-acylguanidines via a sequential one-pot multicomponent carbonylation/amination reaction has been developed. The compounds were readily obtained via an N-cyanobenzamide intermediate formed from the Pd(0)-catalyzed carbonylative coupling of cyanamide and aryl iodides or bromides. Subsequent amination with a large variety of amines provided the final N-acylguanidines, with the overall formation of one C-C and two C-N bonds, in moderate to excellent yields. The substrate scope was found to be wide and the methodology was used to produce over 50 compounds, including 29 novel molecules. Furthermore, three separate nitrogen-containing heterocycles were prepared from the N-acylguanidines synthesized using the developed multicomponent, carbonylative method.

13.
Bioorg Med Chem ; 25(19): 5095-5106, 2017 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-28185725

RESUMEN

Herein, new ligands for the vesicular acetylcholine transporter (VAChT), based on a benzovesamicol scaffold, are presented. VAChT is acknowledged as a marker for cholinergic neurons and a positron emission tomography tracer for VAChT could serve as a tool for quantitative analysis of cholinergic neuronal density. With an easily accessible triflate precursor, aminocarbonylations were utilized to evaluate the chemical space around the C5 position on the tetrahydronaphthol ring. Synthesized ligands were evaluated for their affinity and selectivity for VAChT. Small, preferably aromatic, N-substituents proved to be more potent than larger substituents. Of the fifteen compounds synthesized, benzyl derivatives (±)-7i and (±)-7l had the highest affinities for VAChT. Compound (±)-7i was chosen to investigate the importance of stereochemistry for binding to VAChT and selectivity toward the σ1 and σ2 receptors. Enantiomeric resolution gave (+)-7i and (-)-7i, and the eutomer showed seven times better affinity. Although racemate (±)-7i was initially promising, the affinity of (-)-7i for VAChT was not better than 56.7nM which precludes further preclinical evaluation. However, the nanomolar binding together with the ready synthesis of [11C]-(±)-7i shows that (-)-7i can serve as a scaffold for future optimizations to provide improved 11C-labelled VAChT PET tracers.


Asunto(s)
Amidas/química , Radioisótopos de Carbono/química , Piperidinas/química , Tomografía de Emisión de Positrones/métodos , Proteínas de Transporte Vesicular de Acetilcolina/análisis , Amidas/síntesis química , Animales , Humanos , Ligandos , Células PC12 , Piperidinas/síntesis química , Ratas
14.
Molecules ; 22(10)2017 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-28994734

RESUMEN

Positron emission tomography is an imaging technique with applications in clinical settings as well as in basic research for the study of biological processes. A PET tracer, a biologically active molecule where a positron-emitting radioisotope such as carbon-11 has been incorporated, is used for the studies. Development of robust methods for incorporation of the radioisotope is therefore of the utmost importance. The urea functional group is present in many biologically active compounds and is thus an attractive target for incorporation of carbon-11 in the form of [11C]carbon monoxide. Starting with amines and [11C]carbon monoxide, both symmetrical and unsymmetrical 11C-labelled ureas were synthesised via a palladium(II)-mediated oxidative carbonylation and obtained in decay-corrected radiochemical yields up to 65%. The added advantage of using [11C]carbon monoxide was shown by the molar activity obtained for an inhibitor of soluble epoxide hydrolase (247 GBq/µmol-319 GBq/µmol). DFT calculations were found to support a reaction mechanism proceeding through an 11C-labelled isocyanate intermediate.


Asunto(s)
Paladio/química , Radiofármacos/síntesis química , Urea/análogos & derivados , Urea/síntesis química , Monóxido de Carbono/química , Radioisótopos de Carbono , Catálisis , Epóxido Hidrolasas/antagonistas & inhibidores , Epóxido Hidrolasas/química , Marcaje Isotópico , Modelos Moleculares , Estructura Molecular , Oxidación-Reducción , Tomografía de Emisión de Positrones
15.
Mol Pharmacol ; 89(4): 413-24, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26769413

RESUMEN

Angiotensin IV (Ang IV) and related peptide analogs, as well as nonpeptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocyclic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N terminus of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09, and of Ang IV in either the extended or γ-turn conformation at the C terminus to human IRAP were predicted by docking and molecular dynamics simulations. The binding free energies calculated with the linear interaction energy method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.


Asunto(s)
Cistinil Aminopeptidasa/antagonistas & inhibidores , Cistinil Aminopeptidasa/metabolismo , Espinas Dendríticas/metabolismo , Disulfuros/metabolismo , Compuestos Macrocíclicos/metabolismo , Animales , Células Cultivadas , Cristalografía , Cistinil Aminopeptidasa/análisis , Espinas Dendríticas/química , Disulfuros/farmacología , Inhibidores Enzimáticos/metabolismo , Inhibidores Enzimáticos/farmacología , Femenino , Células HEK293 , Humanos , Compuestos Macrocíclicos/farmacología , Embarazo , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley
16.
Chemistry ; 21(49): 17601-4, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26492852

RESUMEN

Herein, we present a new rapid, efficient, and low-cost radiosynthetic protocol for the conversion of (11) CO2 to (11) CO and its subsequent application in Pd-mediated reactions of importance for PET applications. This room-temperature methodology, using readily available chemical reagents, is carried out in simple glass vials, thus eliminating the need for expensive and specialized high-temperature equipment to access (11) CO. With this fast and near-quantitative conversion of (11) CO2 into (11) CO, aryl and heteroaryl iodides were easily converted into a broad selection of biologically active amides in radiochemical yields ranging from 29-84 %.

17.
J Org Chem ; 80(3): 1464-71, 2015 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-25575042

RESUMEN

A palladium-catalyzed CO gas-free carbonylative Sonogashira/cyclization sequence for the preparation of functionalized 4-quinolones from 2-iodoanilines and alkynes via two different protocols is described. The first method (A) yields the cyclized products after only 20 min of microwave (MW) heating at 120 °C. The second method (B) is a gas-free one-pot two-step sequence which runs at room temperature, allowing the use of sensitive substituents (e.g., nitro and bromide groups). For both protocols, molybdenum hexacarbonyl was used as a solid source of CO.


Asunto(s)
4-Quinolonas/síntesis química , Molibdeno/química , Nitrocompuestos/química , 4-Quinolonas/química , Alquinos/química , Ciclización , Indoles/química , Microondas , Estructura Molecular , Paladio/química , Temperatura
18.
Bioorg Med Chem Lett ; 25(15): 3017-23, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26037319

RESUMEN

High-throughput screening was used to find selective inhibitors of human 15-lipoxygenase-1 (15-LOX-1). One hit, a 1-benzoyl substituted pyrazole-3-carboxanilide (1a), was used as a starting point in a program to develop potent and selective 15-LOX-1 inhibitors.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Pirazoles/química , Pirazoles/farmacología , Amidas/química , Amidas/farmacología , Humanos
19.
Bioorg Med Chem Lett ; 25(15): 3024-9, 2015 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-26037322

RESUMEN

Investigation of 1N-substituted pyrazole-3-carboxanilides as 15-lipoxygenase-1 (15-LOX-1) inhibitors demonstrated that the 1N-substituent was not essential for activity or selectivity. Additional halogen substituents on the pyrazole ring, however, increased activity. Further development led to triazole-4-carboxanilides and 2-(3-pyrazolyl) benzoxazoles, which are potent and selective 15-LOX-1 inhibitors.


Asunto(s)
Araquidonato 15-Lipooxigenasa/metabolismo , Inhibidores de la Lipooxigenasa/química , Inhibidores de la Lipooxigenasa/farmacología , Pirazoles/química , Pirazoles/farmacología , Triazoles/química , Triazoles/farmacología , Benzoxazoles/química , Benzoxazoles/farmacología , Humanos , Relación Estructura-Actividad
20.
J Chem Inf Model ; 55(9): 1984-93, 2015 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-26252078

RESUMEN

Transition state and high energy intermediate mimetics have the potential to be very potent enzyme inhibitors. In this study, a model of peptide hydrolysis in the active site of insulin-regulated aminopeptidase (IRAP) was developed using density functional theory calculations and the cluster approach. The 3D structure models of the reaction coordinates were used for virtual screening to obtain new chemical starting points for IRAP inhibitors. This mechanism-based virtual screening process managed to identify several known peptidase inhibitors from a library of over 5 million compounds, and biological testing identified one compound not previously reported as an IRAP inhibitor. This novel methodology for virtual screening is a promising approach to identify new inhibitors mimicking key transition states or intermediates of an enzymatic reaction.


Asunto(s)
Cistinil Aminopeptidasa/antagonistas & inhibidores , Inhibidores Enzimáticos/química , Teoría Cuántica , Termodinámica , Animales , Sitios de Unión , Células CHO , Cricetulus , Cistinil Aminopeptidasa/química , Evaluación Preclínica de Medicamentos , Modelos Moleculares , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA