Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(5): 1111-1122.e10, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29606355

RESUMEN

The development of interventions to prevent congenital Zika syndrome (CZS) has been limited by the lack of an established nonhuman primate model. Here we show that infection of female rhesus monkeys early in pregnancy with Zika virus (ZIKV) recapitulates many features of CZS in humans. We infected 9 pregnant monkeys with ZIKV, 6 early in pregnancy (weeks 6-7 of gestation) and 3 later in pregnancy (weeks 12-14 of gestation), and compared findings with uninfected controls. 100% (6 of 6) of monkeys infected early in pregnancy exhibited prolonged maternal viremia and fetal neuropathology, including fetal loss, smaller brain size, and histopathologic brain lesions, including microcalcifications, hemorrhage, necrosis, vasculitis, gliosis, and apoptosis of neuroprogenitor cells. High-resolution MRI demonstrated concordant lesions indicative of deep gray matter injury. We also observed spinal, ocular, and neuromuscular pathology. Our data show that vascular compromise and neuroprogenitor cell dysfunction are hallmarks of CZS pathogenesis, suggesting novel strategies to prevent and to treat this disease.


Asunto(s)
Feto/virología , Neuronas/patología , Infección por el Virus Zika/patología , Virus Zika/patogenicidad , Animales , Animales Recién Nacidos , Apoptosis , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Calcinosis/patología , Calcinosis/veterinaria , Femenino , Edad Gestacional , Macaca mulatta , Imagen por Resonancia Magnética , Necrosis , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Células-Madre Neurales/virología , Neuronas/virología , Embarazo , Índice de Severidad de la Enfermedad , Vasculitis/patología , Vasculitis/veterinaria , Infección por el Virus Zika/veterinaria , Infección por el Virus Zika/virología
2.
Cell ; 169(4): 610-620.e14, 2017 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-28457610

RESUMEN

Zika virus (ZIKV) is associated with severe neuropathology in neonates as well as Guillain-Barré syndrome and other neurologic disorders in adults. Prolonged viral shedding has been reported in semen, suggesting the presence of anatomic viral reservoirs. Here we show that ZIKV can persist in cerebrospinal fluid (CSF) and lymph nodes (LN) of infected rhesus monkeys for weeks after virus has been cleared from peripheral blood, urine, and mucosal secretions. ZIKV-specific neutralizing antibodies correlated with rapid clearance of virus in peripheral blood but remained undetectable in CSF for the duration of the study. Viral persistence in both CSF and LN correlated with upregulation of mechanistic target of rapamycin (mTOR), proinflammatory, and anti-apoptotic signaling pathways, as well as downregulation of extracellular matrix signaling pathways. These data raise the possibility that persistent or occult neurologic and lymphoid disease may occur following clearance of peripheral virus in ZIKV-infected individuals.


Asunto(s)
Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología , Animales , Líquido Cefalorraquídeo/virología , Inflamación/inmunología , Tracto Gastrointestinal Inferior/virología , Ganglios Linfáticos/virología , Macaca mulatta , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
3.
PLoS Pathog ; 17(6): e1009673, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34170962

RESUMEN

Pre-existing immunity to flaviviruses can influence the outcome of subsequent flavivirus infections. Therefore, it is critical to determine whether baseline DENV immunity may influence subsequent ZIKV infection and the protective efficacy of ZIKV vaccines. In this study, we investigated the impact of pre-existing DENV immunity induced by vaccination on ZIKV infection and the protective efficacy of an inactivated ZIKV vaccine. Rhesus macaques and mice inoculated with a live attenuated DENV vaccine developed neutralizing antibodies (NAbs) to multiple DENV serotypes but no cross-reactive NAbs responses to ZIKV. Animals with baseline DENV NAbs did not exhibit enhanced ZIKV infection and showed no overall reduction in ZIKV vaccine protection. Moreover, passive transfer of purified DENV-specific IgG from convalescent human donors did not augment ZIKV infection in STAT2 -/- and BALB/c mice. In summary, these results suggest that baseline DENV immunity induced by vaccination does not significantly enhance ZIKV infection or impair the protective efficacy of candidate ZIKV vaccines in these models. These data can help inform immunization strategies in regions of the world with multiple circulating pathogenic flaviviruses.


Asunto(s)
Anticuerpos Antivirales/inmunología , Vacunas contra el Dengue/inmunología , Infección por el Virus Zika/prevención & control , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Reacciones Cruzadas/inmunología , Humanos , Macaca mulatta , Ratones , Vacunas Virales/inmunología
4.
PLoS Pathog ; 16(12): e1009096, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315936

RESUMEN

Bacille Calmette-Guerin (BCG), an attenuated whole cell vaccine based on Mycobacterium bovis, is the only licensed vaccine against Mycobacterium tuberculosis (Mtb), but its efficacy is suboptimal and it fails to protect against pulmonary tuberculosis. We previously reported that Mtb lacking the virulence genes lprG and rv1410c (ΔLprG) was highly attenuated in immune deficient mice. In this study, we show that attenuated ΔLprG Mtb protects C57BL/6J, Balb/cJ, and C3HeB/FeJ mice against Mtb challenge and is as attenuated as BCG in SCID mice. In C3HeB/FeJ mice, ΔLprG vaccination resulted in innate peripheral cytokine production and induced high polyclonal PPD-specific cytokine-secreting CD4+ T lymphocytes in peripheral blood. The ΔLprG vaccine afforded protective efficacy in the lungs of C3H/FeJ mice following both H37Rv and Erdman aerosolized Mtb challenges. Vaccine efficacy correlated with antigen-specific PD-1-negative CD4+ T lymphocytes as well as with serum IL-17 levels after vaccination. We hypothesize that induction of Th17 cells in lung is critical for vaccine protection, and we show a serum cytokine biomarker for IL-17 shortly after vaccination may predict protective efficacy.


Asunto(s)
Vacunas contra la Tuberculosis/genética , Vacunas contra la Tuberculosis/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Factores de Virulencia/genética , Animales , Genes Bacterianos/genética , Interleucina-17/inmunología , Ratones , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/inmunología , Células Th17/inmunología , Tuberculosis Pulmonar/inmunología , Tuberculosis Pulmonar/prevención & control
5.
Nature ; 536(7617): 474-8, 2016 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-27355570

RESUMEN

Zika virus (ZIKV) is a flavivirus that is responsible for the current epidemic in Brazil and the Americas. ZIKV has been causally associated with fetal microcephaly, intrauterine growth restriction, and other birth defects in both humans and mice. The rapid development of a safe and effective ZIKV vaccine is a global health priority, but very little is currently known about ZIKV immunology and mechanisms of immune protection. Here we show that a single immunization with a plasmid DNA vaccine or a purified inactivated virus vaccine provides complete protection in susceptible mice against challenge with a strain of ZIKV involved in the outbreak in northeast Brazil. This ZIKV strain has recently been shown to cross the placenta and to induce fetal microcephaly and other congenital malformations in mice. We produced DNA vaccines expressing ZIKV pre-membrane and envelope (prM-Env), as well as a series of deletion mutants. The prM-Env DNA vaccine, but not the deletion mutants, afforded complete protection against ZIKV, as measured by absence of detectable viraemia following challenge, and protective efficacy correlated with Env-specific antibody titers. Adoptive transfer of purified IgG from vaccinated mice conferred passive protection, and depletion of CD4 and CD8 T lymphocytes in vaccinated mice did not abrogate this protection. These data demonstrate that protection against ZIKV challenge can be achieved by single-shot subunit and inactivated virus vaccines in mice and that Env-specific antibody titers represent key immunologic correlates of protection. Our findings suggest that the development of a ZIKV vaccine for humans is likely to be achievable.


Asunto(s)
Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Infección por el Virus Zika/virología , Virus Zika/inmunología , Traslado Adoptivo , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Especificidad de Anticuerpos , Brasil , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Femenino , Eliminación de Gen , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina G/aislamiento & purificación , Ratones , Microcefalia/complicaciones , Microcefalia/virología , Vacunas de ADN/química , Vacunas de ADN/genética , Vacunas de ADN/inmunología , Vacunas de Productos Inactivados/química , Vacunas de Productos Inactivados/genética , Vacunas de Productos Inactivados/inmunología , Vacunas de Subunidad/química , Vacunas de Subunidad/genética , Vacunas de Subunidad/inmunología , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/inmunología , Vacunas Virales/química , Vacunas Virales/genética , Virus Zika/química , Virus Zika/genética , Infección por el Virus Zika/complicaciones , Infección por el Virus Zika/inmunología
6.
Ann Intern Med ; 174(5): 585-594, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33587687

RESUMEN

BACKGROUND: Zika virus (ZIKV) may cause severe congenital disease after maternal-fetal transmission. No vaccine is currently available. OBJECTIVE: To assess the safety and immunogenicity of Ad26.ZIKV.001, a prophylactic ZIKV vaccine candidate. DESIGN: Phase 1 randomized, double-blind, placebo-controlled clinical study. (ClinicalTrials.gov: NCT03356561). SETTING: United States. PARTICIPANTS: 100 healthy adult volunteers. INTERVENTION: Ad26.ZIKV.001, an adenovirus serotype 26 vector encoding ZIKV M-Env, administered in 1- or 2-dose regimens of 5 × 1010 or 1 × 1011 viral particles (vp), or placebo. MEASUREMENTS: Local and systemic adverse events; neutralization titers by microneutralization assay (MN50) and T-cell responses by interferon-γ enzyme-linked immunospot and intracellular cytokine staining; and protectivity of vaccine-induced antibodies in a subset of participants through transfer in an exploratory mouse ZIKV challenge model. RESULTS: All regimens were well tolerated, with no safety concerns identified. In both 2-dose regimens, ZIKV neutralizing titers peaked 14 days after the second vaccination, with geometric mean MN50 titers (GMTs) of 1065.6 (95% CI, 494.9 to 2294.5) for 5 × 1010 vp and 956.6 (595.8 to 1535.8) for 1 × 1011 vp. Titers persisted for at least 1 year at a GMT of 68.7 (CI, 26.4-178.9) for 5 × 1010 vp and 87.0 (CI, 29.3 to 258.6) for 1 × 1011 vp. A 1-dose regimen of 1 × 1011 vp Ad26.ZIKV.001 induced seroconversion in all participants 56 days after the first vaccination (GMT, 103.4 [CI, 52.7 to 202.9]), with titers persisting for at least 1 year (GMT, 90.2 [CI, 38.4 to 212.2]). Env-specific cellular responses were induced. Protection against ZIKV challenge was observed after antibody transfer from participants into mice, and MN50 titers correlated with protection in this model. LIMITATION: The study was conducted in a nonendemic area, so it did not assess safety and immunogenicity in a flavivirus-exposed population. CONCLUSION: The safety and immunogenicity profile makes Ad26.ZIKV.001 a promising candidate for further development if the need reemerges. PRIMARY FUNDING SOURCE: Janssen Vaccines and Infectious Diseases.


Asunto(s)
Vacunas Virales/inmunología , Infección por el Virus Zika/prevención & control , Adenoviridae/inmunología , Adulto , Animales , Método Doble Ciego , Femenino , Humanos , Masculino , Ratones , Estados Unidos , Virus Zika/inmunología , Infección por el Virus Zika/inmunología
7.
PLoS Pathog ; 15(12): e1008180, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31841560

RESUMEN

Adenoviral vectors have shown significant promise as vaccine delivery vectors due to their ability to elicit both innate and adaptive immune responses. α-defensins are effector molecules of the innate immune response and have been shown to modulate natural infection with adenoviruses, but the majority of α-defensin-adenovirus interactions studied to date have only been analyzed in vitro. In this study, we evaluated the role of α-defensin 5 (HD5) in modulating adenovirus vaccine immunogenicity using various serotype adenovirus vectors in mice. We screened a panel of human adenoviruses including Ad5 (species C), Ad26 (species D), Ad35 (species B), Ad48 (species D) and a chimeric Ad5HVR48 for HD5 sensitivity. HD5 inhibited transgene expression from Ad5 and Ad35 but augmented transgene expression from Ad26, Ad48, and Ad5HVR48. HD5 similarly suppressed antigen-specific IgG and CD8+ T cell responses elicited by Ad5 vectors in mice, but augmented IgG and CD8+ T cell responses and innate cytokine responses elicited by Ad26 vectors in mice. Moreover, HD5 suppressed the protective efficacy of Ad5 vectors but enhanced the protective efficacy of Ad26 vectors expressing SIINFEKL against a surrogate Listeria-OVA challenge in mice. These data demonstrate that HD5 differentially modulates adenovirus vaccine delivery vectors in a species-specific manner in vivo.


Asunto(s)
Adenoviridae/inmunología , Regulación Viral de la Expresión Génica/fisiología , alfa-Defensinas , Células A549 , Adenoviridae/genética , Animales , Vectores Genéticos , Humanos , Ratones
8.
J Immunol ; 201(9): 2744-2752, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30249811

RESUMEN

The combined inhibition of histone deacetylases (HDAC) and the proteins of the bromodomain and extraterminal (BET) family have recently shown therapeutic efficacy against melanoma, pancreatic ductal adenocarcinoma, testicular, and lymphoma cancers in murine studies. However, in such studies, the role of the immune system in therapeutically controlling these cancers has not been explored. We sought to investigate the effect of the HDAC inhibitor romidepsin (RMD) and the BET inhibitor IBET151, both singly and in combination, on vaccine-elicited immune responses. C57BL/6 mice were immunized with differing vaccine systems (adenoviral, protein) in prime-boost regimens under treatment with RMD, IBET151, or RMD+IBET151. The combined administration of RMD+IBET151 during vaccination resulted in a significant increase in the frequency and number of Ag-specific CD8+ T cells. RMD+IBET151 treatment significantly increased the frequency of vaccine-elicited IFN-γ+ splenic CD8+ T cells and conferred superior therapeutic and prophylactic protection against B16-OVA melanoma. RNA sequencing analyses revealed strong transcriptional similarity between RMD+IBET151 and untreated Ag-specific CD8+ T cells except in apoptosis and IL-6 signaling-related genes that were differentially expressed. Serum IL-6 was significantly increased in vivo following RMD+IBET151 treatment, with recombinant IL-6 administration replicating the effect of RMD+IBET151 treatment on vaccine-elicited CD8+ T cell responses. IL-6 sufficiency for protection was not assessed. Combined HDAC and BET inhibition resulted in greater vaccine-elicited CD8+ T cell responses and enhanced therapeutic and prophylactic protection against B16-OVA melanoma. Increased IL-6 production and the differential expression of pro- and anti-apoptotic genes following RMD+IBET151 treatment are likely contributors to the enhanced cancer vaccine responses.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Depsipéptidos/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/farmacología , Inmunogenicidad Vacunal/inmunología , Melanoma Experimental/inmunología , Animales , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Femenino , Inhibidores de Histona Desacetilasas/farmacología , Interleucina-6/inmunología , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/antagonistas & inhibidores , Receptores de Superficie Celular/antagonistas & inhibidores
9.
Lancet ; 391(10120): 563-571, 2018 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-29217375

RESUMEN

BACKGROUND: A safe, effective, and rapidly scalable vaccine against Zika virus infection is needed. We developed a purified formalin-inactivated Zika virus vaccine (ZPIV) candidate that showed protection in mice and non-human primates against viraemia after Zika virus challenge. Here we present the preliminary results in human beings. METHODS: We did three phase 1, placebo-controlled, double-blind trials of ZPIV with aluminium hydroxide adjuvant. In all three studies, healthy adults were randomly assigned by a computer-generated list to receive 5 µg ZPIV or saline placebo, in a ratio of 4:1 at Walter Reed Army Institute of Research, Silver Spring, MD, USA, or of 5:1 at Saint Louis University, Saint Louis, MO, USA, and Beth Israel Deaconess Medical Center, Boston, MA, USA. Vaccinations were given intramuscularly on days 1 and 29. The primary objective was safety and immunogenicity of the ZPIV candidate. We recorded adverse events and Zika virus envelope microneutralisation titres up to day 57. These trials are registered at ClinicalTrials.gov, numbers NCT02963909, NCT02952833, and NCT02937233. FINDINGS: We enrolled 68 participants between Nov 7, 2016, and Jan 25, 2017. One was excluded and 67 participants received two injections of Zika vaccine (n=55) or placebo (n=12). The vaccine caused only mild to moderate adverse events. The most frequent local effects were pain (n=40 [60%]) or tenderness (n=32 [47%]) at the injection site, and the most frequent systemic reactogenic events were fatigue (29 [43%]), headache (26 [39%]), and malaise (15 [22%]). By day 57, 52 (92%) of vaccine recipients had seroconverted (microneutralisation titre ≥1:10), with peak geometric mean titres seen at day 43 and exceeding protective thresholds seen in animal studies. INTERPRETATION: The ZPIV candidate was well tolerated and elicited robust neutralising antibody titres in healthy adults. FUNDING: Departments of the Army and Defense and National Institute of Allergy and Infectious Diseases.


Asunto(s)
Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Antivirales/biosíntesis , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Virus Zika/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Método Doble Ciego , Humanos
10.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29563285

RESUMEN

Adenovirus (Ad) vectors are being investigated as vaccine candidates, but baseline antivector immunity exists in human populations to both human Ad (HuAd) and chimpanzee Ad (ChAd) vectors. In this study, we investigated the immunogenicity and cross-reactivity of a panel of recently described rhesus adenoviral (RhAd) vectors. RhAd vectors elicited T cells with low exhaustion markers and robust anamnestic potential. Moreover, RhAd vector immunogenicity was unaffected by high levels of preexisting anti-HuAd immunity. Both HuAd/RhAd and RhAd/RhAd prime-boost vaccine regimens were highly immunogenic, despite a degree of cross-reactive neutralizing antibodies (NAbs) between phylogenetically related RhAd vectors. We observed extensive vector-specific cross-reactive CD4 T cell responses and more limited CD8 T cell responses between RhAd and HuAd vectors, but the impact of vector-specific cellular responses was far less than that of vector-specific NAbs. These data suggest the potential utility of RhAd vectors and define novel heterologous prime-boost strategies for vaccine development.IMPORTANCE To date, most adenoviral vectors developed for vaccination have been HuAds from species B, C, D, and E, and human populations display moderate to high levels of preexisting immunity. There is a clinical need for new adenoviral vectors that are not hindered by preexisting immunity. Moreover, the development of RhAd vector vaccines expands our ability to vaccinate against multiple pathogens in a population that may have received other HuAd or ChAd vectors. We evaluated the immunogenicity and cross-reactivity of RhAd vectors, which belong to the poorly described adenovirus species G. These vectors induced robust cellular and humoral immune responses and were not hampered by preexisting anti-HuAd vector immunity. Such properties make RhAd vectors attractive as potential vaccine vectors.


Asunto(s)
Adenovirus Humanos/inmunología , Adenovirus de los Simios/inmunología , Anticuerpos Antivirales/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Reacciones Cruzadas/inmunología , Traslado Adoptivo , Animales , Anticuerpos Neutralizantes/inmunología , Femenino , Productos del Gen gag/inmunología , Inmunogenicidad Vacunal/inmunología , Ratones , Ratones Endogámicos C57BL , Vacunas Virales/inmunología
11.
J Virol ; 92(11)2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29514912

RESUMEN

Natural killer (NK) cells respond rapidly as a first line of defense against infectious pathogens. In addition, NK cells may provide a "rheostat" function and have been shown to reduce the magnitude of antigen-specific T cell responses following infection to avoid immunopathology. However, it remains unknown whether NK cells similarly modulate vaccine-elicited T cell responses following virus challenge. We used the lymphocytic choriomeningitis virus (LCMV) clone 13 infection model to address whether NK cells regulate T cell responses in adenovirus vector-vaccinated mice following challenge. As expected, NK cell depletion in unvaccinated mice resulted in increased virus-specific CD4+ and CD8+ T cell responses and immunopathology following LCMV challenge. In contrast, NK cell depletion had minimal to no impact on antigen-specific T cell responses in mice that were vaccinated with an adenovirus serotype 5 (Ad5)-GP vector prior to LCMV challenge. Moreover, NK cell depletion in vaccinated mice prior to challenge did not result in immunopathology and did not compromise protective efficacy. These data suggest that adenovirus vaccine-elicited T cells may be less sensitive to NK cell rheostat regulation than T cells primed by LCMV infection.IMPORTANCE Recent data have shown that NK cell depletion leads to enhanced virus-elicited T cell responses that can result in severe immunopathology following LCMV infection in mice. In this study, we observed that NK cells exerted minimal to no impact on vaccine-elicited T cells following LCMV challenge, suggesting that adenovirus vaccine-elicited T cells may be less subject to NK cell regulation. These data contribute to our understanding of NK cell regulatory functions and T cell-based vaccines.


Asunto(s)
Adenovirus Humanos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Células Asesinas Naturales/inmunología , Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/inmunología , Vacunas Virales/inmunología , Adenovirus Humanos/genética , Animales , Femenino , Depleción Linfocítica , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/genética , Ratones , Ratones Endogámicos C57BL , Vacunación
12.
J Virol ; 92(7)2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29321310

RESUMEN

Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies. However, administration of purified bNAbs poses challenges in resource-poor settings, where the HIV-1 disease burden is greatest. In vivo vector-based production of bNAbs represents an alternative strategy. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121 in wild-type and immunocompromised C57BL/6 mice as well as in HIV-1-infected bone marrow-liver-thymus (BLT) humanized mice. Ad5.PGT121 and AAV1.PGT121 produced functional antibody in vivo Ad5.PGT121 produced PGT121 rapidly within 6 h, whereas AAV1.PGT121 produced detectable PGT121 in serum by 72 h. Serum PGT121 levels were rapidly reduced by the generation of anti-PGT121 antibodies in immunocompetent mice but were durably maintained in immunocompromised mice. In HIV-1-infected BLT humanized mice, Ad5.PGT121 resulted in a greater reduction of viral loads than did AAV1.PGT121. Ad5.PGT121 also led to more-sustained virologic control than purified PGT121 IgG. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice. Further evaluation of vector delivery of HIV-1 bNAbs is warranted, although approaches to prevent the generation of antiantibody responses may also be required.IMPORTANCE Broadly neutralizing antibodies (bNAbs) are being explored for HIV-1 prevention and cure strategies, but delivery of purified antibodies may prove challenging. We investigated adenovirus serotype 5 (Ad5) and adeno-associated virus serotype 1 (AAV1) vectors to deliver the HIV-1-specific bNAb PGT121. Ad5.PGT121 afforded more rapid, robust, and durable antiviral efficacy than AAV1.PGT121 and purified PGT121 IgG in HIV-1-infected humanized mice.


Asunto(s)
Adenoviridae , Terapia Genética/métodos , Vectores Genéticos , Infecciones por VIH , VIH-1 , Transducción Genética/métodos , Animales , Femenino , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Infecciones por VIH/patología , Infecciones por VIH/terapia , VIH-1/genética , VIH-1/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados
13.
J Virol ; 92(6)2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29298888

RESUMEN

Human and chimpanzee adenovirus vectors are being developed to circumvent preexisting antibodies against common adenovirus vectors such as Ad5. However, baseline immunity to these vectors still exists in human populations. Traditional cloning of new adenovirus vaccine vectors is a long and cumbersome process that takes 2 months or more and that requires rare unique restriction enzyme sites. Here we describe a novel, restriction enzyme-independent method for rapid cloning of new adenovirus vaccine vectors that reduces the total cloning procedure to 1 week. We developed 14 novel adenovirus vectors from rhesus monkeys that can be grown to high titers and that are immunogenic in mice. All vectors grouped with the unusual adenovirus species G and show extremely low seroprevalence in humans. Rapid cloning of novel adenovirus vectors is a promising approach for the development of new vector platforms. Rhesus adenovirus vectors may prove useful for clinical development.IMPORTANCE To overcome baseline immunity to human and chimpanzee adenovirus vectors, we developed 14 novel adenovirus vectors from rhesus monkeys. These vectors are immunogenic in mice and show extremely low seroprevalence in humans. Rhesus adenovirus vectors may prove useful for clinical development.


Asunto(s)
Adenoviridae , Vacunas contra el Adenovirus , Clonación Molecular , Vectores Genéticos , Inmunogenicidad Vacunal/genética , Células A549 , Adenoviridae/genética , Adenoviridae/inmunología , Vacunas contra el Adenovirus/genética , Vacunas contra el Adenovirus/inmunología , Animales , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Humanos , Macaca mulatta , Ratones
14.
J Immunol ; 197(5): 1809-22, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27448585

RESUMEN

CD4(+) T cell help is critical for optimal CD8(+) T cell memory differentiation and maintenance in many experimental systems. In addition, many reports have identified reduced primary CD8(+) T cell responses in the absence of CD4(+) T cell help, which often coincides with reduced Ag or pathogen clearance. In this study, we demonstrate that absence of CD4(+) T cells at the time of adenovirus vector immunization of mice led to immediate impairments in early CD8(+) T cell functionality and differentiation. Unhelped CD8(+) T cells exhibited a reduced effector phenotype, decreased ex vivo cytotoxicity, and decreased capacity to produce cytokines. This dysfunctional state was imprinted within 3 d of immunization. Unhelped CD8(+) T cells expressed elevated levels of inhibitory receptors and exhibited transcriptomic exhaustion and anergy profiles by gene set enrichment analysis. Dysfunctional, impaired effector differentiation also occurred following immunization of CD4(+) T cell-deficient mice with a poxvirus vector. This study demonstrates that following priming with viral vectors, CD4(+) T cell help is required to promote both the expansion and acquisition of effector functions by CD8(+) T cells, which is accomplished by preventing immediate dysfunction.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas/inmunología , Adenoviridae/genética , Animales , Linfocitos T CD8-positivos/fisiología , Citocinas/inmunología , Citotoxicidad Inmunológica , Femenino , Regulación de la Expresión Génica , Vectores Genéticos , Inmunización , Memoria Inmunológica , Activación de Linfocitos , Ratones , Ratones Endogámicos C57BL
15.
J Virol ; 90(9): 4278-4288, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26865713

RESUMEN

UNLABELLED: We have recently demonstrated that CD4(+)T cell help is required at the time of adenovirus (Ad) vector immunization for the development of functional CD8(+)T cell responses, but the temporal requirement for CD4(+)T cell help for the induction of antibody responses remains unclear. Here we demonstrate that induction of antibody responses in C57BL/6 mice can occur at a time displaced from the time of Ad vector immunization by depletion of CD4(+)T cells. Transient depletion of CD4(+)T cells at the time of immunization delays the development of antigen-specific antibody responses but does not permanently impair their development or induce tolerance against the transgene. Upon CD4(+)T cell recovery, transgene-specific serum IgG antibody titers develop and reach a concentration equivalent to that in undepleted control animals. These delayed antibody responses exhibit no functional defects with regard to isotype, functional avidity, expansion after boosting immunization, or the capacity to neutralize a simian immunodeficiency virus (SIV) Env-expressing pseudovirus. The development of this delayed transgene-specific antibody response is temporally linked to the expansion of de novo antigen-specific CD4(+)T cell responses, which develop after transient depletion of CD4(+)T cells. These data demonstrate that functional vaccine-elicited antibody responses can be induced even if CD4(+)T cell help is provided at a time markedly separated from the time of vaccination. IMPORTANCE: CD4(+)T cells have a critical role in providing positive help signals to B cells, which promote robust antibody responses. The paradigm is that helper signals must be provided immediately upon antigen exposure, and their absence results in tolerance against the antigen. Here we demonstrate that, in contrast to the current model that the absence of CD4(+)T cell help at priming results in long-term antibody nonresponsiveness, antibody responses can be induced by adenovirus vector immunization or alum-adjuvanted protein immunization even if CD4(+)T cell help is not provided until >1 month after immunization. These data demonstrate that the time when CD4(+)T cell help signals must be provided is more dynamic and flexible than previously appreciated. These data suggest that augmentation of CD4(+)T cell helper function even after the time of vaccination can enhance vaccine-elicited antibody responses and thereby potentially enhance the immunogenicity of vaccines in immunocompromised individuals.


Asunto(s)
Anticuerpos/inmunología , Formación de Anticuerpos/inmunología , Linfocitos T CD4-Positivos/inmunología , Depleción Linfocítica , Vacunas/inmunología , Adenoviridae/genética , Adenoviridae/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Linfocitos B/inmunología , Linfocitos B/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Modelos Animales de Enfermedad , Epítopos de Linfocito T/inmunología , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Centro Germinal/inmunología , Inmunización , Depleción Linfocítica/métodos , Ratones , Ratones Noqueados , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología
16.
J Immunol ; 192(11): 5214-25, 2014 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-24778441

RESUMEN

Despite the widespread use of replication-incompetent recombinant adenovirus (Ad) vectors as candidate vaccine platforms, the mechanism by which these vectors elicit CD8(+) T cell responses remains poorly understood. Our data demonstrate that induction and maintenance of CD8(+) T cell responses by Ad vector immunization is longitudinally dependent on CD4(+) T cell help for a prolonged period. Depletion of CD4(+) T cells in wild type mice within the first 8 d following Ad immunization resulted in dramatically reduced induction of Ag-specific CD8(+) T cells, decreased T-bet and eomesodermin expression, impaired KLRG1(+) effector differentiation, and atypical expression of the memory markers CD127, CD27, and CD62L. Moreover, these CD8(+) T cells failed to protect against a lethal recombinant Listeria monocytogenes challenge. Depletion of CD4(+) T cells between weeks 1 and 4 following immunization resulted in increased contraction of memory CD8(+) T cells. These data demonstrate a prolonged temporal requirement for CD4(+) T cell help for vaccine-elicited CD8(+) T cell responses in mice. These findings have important implications in the design of vaccines aimed at eliciting CD8(+) T cell responses and may provide insight into the impaired immunogenicity of vaccines in the context of AIDS and other CD4(+) T cell immune deficiencies.


Asunto(s)
Adenoviridae , Vacunas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Vectores Genéticos/farmacología , Listeria monocytogenes/inmunología , Listeriosis/prevención & control , Animales , Antígenos CD/genética , Antígenos CD/inmunología , Vacunas Bacterianas/genética , Vacunas Bacterianas/farmacología , Linfocitos T CD4-Positivos/patología , Linfocitos T CD8-positivos/patología , Vectores Genéticos/genética , Vectores Genéticos/inmunología , Listeriosis/genética , Listeriosis/inmunología , Listeriosis/patología , Ratones , Ratones Noqueados
17.
Eur J Immunol ; 44(3): 794-806, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24271843

RESUMEN

Leptin is an adipose-secreted hormone that plays an important role in both metabolism and immunity. Leptin has been shown to induce Th1-cell polarization and inhibit Th2-cell responses. Additionally, leptin induces Th17-cell responses, inhibits regulatory T (Treg) cells and modulates autoimmune diseases. Here, we investigated whether leptin mediates its activity on T cells by influencing dendritic cells (DCs) to promote Th17 and Treg-cell immune responses in mice. We observed that leptin deficiency (i) reduced the expression of DC maturation markers, (ii) decreased DC production of IL-12, TNF-α, and IL-6, (iii) increased DC production of TGF-ß, and (iv) limited the capacity of DCs to induce syngeneic CD4(+) T-cell proliferation. As a consequence of this unique phenotype, DCs generated under leptin-free conditions induced Treg or TH 17 cells more efficiently than DCs generated in the presence of leptin. These data indicate important roles for leptin in DC homeostasis and the initiation and maintenance of inflammatory and regulatory immune responses by DCs.


Asunto(s)
Diferenciación Celular/genética , Células Dendríticas/citología , Células Dendríticas/metabolismo , Leptina/deficiencia , Linfocitos T Reguladores/metabolismo , Células Th17/metabolismo , Animales , Células Dendríticas/inmunología , Inmunofenotipificación , Leptina/genética , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Masculino , Ratones , Ratones Noqueados , Fenotipo , Linfocitos T Reguladores/citología , Linfocitos T Reguladores/inmunología , Células Th17/citología , Células Th17/inmunología
18.
Sci Transl Med ; 15(683): eade6023, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-36791210

RESUMEN

The emergence of the SARS-CoV-2 Omicron sublineages resulted in increased transmission rates and reduced protection from vaccines. To counteract these effects, multiple booster strategies were used in different countries, although data comparing their efficiency in improving protective immunity remain sparse, especially among vulnerable populations, including older adults. The inactivated CoronaVac vaccine was among the most widely distributed vaccine worldwide and was essential in the early control of SARS-CoV-2-related hospitalizations and deaths. However, it is not well understood whether homologous versus heterologous booster doses in those fully vaccinated with CoronaVac induce distinct humoral responses or whether these responses vary across age groups. We analyzed plasma antibody responses from CoronaVac-vaccinated younger or older individuals who received a homologous CoronaVac or heterologous BNT162b2 or ChAdOx1 booster vaccine. All three evaluated boosters resulted in increased virus-specific IgG titers 28 days after the booster dose. However, we found that both IgG titers against SARS-CoV-2 Spike or RBD and neutralization titers against Omicron sublineages were substantially reduced in participants who received homologous CoronaVac compared with the heterologous BNT162b2 or ChAdOx1 booster. This effect was specifically prominent in recipients >50 years of age. In this group, the CoronaVac booster induced low virus-specific IgG titers and failed to elevate neutralization titers against any Omicron sublineage. Our results point to the notable inefficiency of CoronaVac immunization and boosting in mounting protective antiviral humoral immunity, particularly among older adults, during the Omicron wave. These observations also point to benefits of heterologous regimens in high-risk populations fully vaccinated with CoronaVac.


Asunto(s)
Formación de Anticuerpos , COVID-19 , Humanos , Anciano , Vacuna BNT162 , SARS-CoV-2 , Inmunoglobulina G , Anticuerpos Antivirales
19.
Cell Rep ; 42(8): 112942, 2023 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-37561630

RESUMEN

Zika virus (ZIKV) is an emerging pathogen that causes devastating congenital defects. The overlapping epidemiology and immunologic cross-reactivity between ZIKV and dengue virus (DENV) pose complex challenges to vaccine design, given the potential for antibody-dependent enhancement of disease. Therefore, classification of ZIKV-specific antibody targets is of notable value. From a ZIKV-infected rhesus macaque, we identify ZIKV-reactive B cells and isolate potent neutralizing monoclonal antibodies (mAbs) with no cross-reactivity to DENV. We group these mAbs into four distinct antigenic groups targeting ZIKV-specific cross-protomer epitopes on the envelope glycoprotein. Co-crystal structures of representative mAbs in complex with ZIKV envelope glycoprotein reveal envelope-dimer epitope and unique dimer-dimer epitope targeting. All four specificities are serologically identified in convalescent humans following ZIKV infection, and representative mAbs from all four groups protect against ZIKV replication in mice. These results provide key insights into ZIKV-specific antigenicity and have implications for ZIKV vaccine, diagnostic, and therapeutic development.


Asunto(s)
Virus del Dengue , Dengue , Vacunas Virales , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Ratones , Anticuerpos Neutralizantes , Epítopos , Macaca mulatta , Anticuerpos Antivirales , Anticuerpos Monoclonales , Vacunas Virales/uso terapéutico , Proteínas del Envoltorio Viral/química
20.
Vaccines (Basel) ; 8(2)2020 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-32560145

RESUMEN

The flavivirus envelope protein domain III (EDIII) was an effective immunogen against dengue virus (DENV) and other related flaviviruses. Whether this can be applied to the Zika virus (ZIKV) vaccinology remains an open question. Here, we tested the efficacy of ZIKV-EDIII against ZIKV infection, using several vaccine platforms that present the antigen in various ways. We provide data demonstrating that mice vaccinated with a ZIKV-EDIII as DNA or protein-based vaccines failed to raise fully neutralizing antibodies and did not control viremia, following a ZIKV challenge, despite eliciting robust antibody responses. Furthermore, we showed that ZIKV-EDIII encoded in replication-deficient Chimpanzee adenovirus (ChAdOx1-EDIII) elicited anti-ZIKV envelope antibodies in vaccinated mice but also provided limited protection against ZIKV in two physiologically different mouse challenge models. Taken together, our data indicate that contrary to what was shown for other flaviviruses like the dengue virus, which has close similarities with ZIKV-EDIII, this antigen might not be a suitable vaccine candidate for the correct induction of protective immune responses against ZIKV.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA