Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Odontology ; 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38393515

RESUMEN

The purpose of this clinical trail was to assess the clinical behavior of posterior composite restorations supported by a substantial foundation of flowable short fiber-reinforced composite SFRC (everX Flow, GC, Japan) used without proximal surface coverage with particulate filler resin composite (PFC). Seventy patients (20 males, 50 females; mean age: 30 ± 10 years) were randomly enrolled in this trial. Patients received direct restorations of either SFRC covered only on the occlusal surface (1-2 mm) by conventional PFC composite (G-ænial Posterior, GC), or plain conventional PFC composite without fiber-reinforcement, in Class II cavities in premolar and molar vital teeth. One operator made all restorations using one-step, self-etch bonding agent (G-ænial Bond, GC) according to manufacturers' recommendations. Two blinded trained operators evaluated the restorations at baseline, at 6, 12 and 18 months using modified USPHS criteria. Results indicated that, in both groups and at different follow-up intervals, according to evaluated criteria, restorations were rated mostly with best score (Alpha) (p > 0.05). For the marginal integrity after 6 months, a single case in the intervention [increased to 3 (8.8%) after 18 months] and 3 (9.7%) cases of the control group [increased to 4 (12.9%) after 18 months] had Bravo score but with no significant difference (p > 0.05). For color match measured after 6 and 18 months, three (8.8%) cases had Bravo score in the intervention group. The use of flowable SFRC composite without any PFC surface coverage proximally in Class II restorations demonstrated satisfactory clinical outcome throughout the 18-month follow-up.

2.
Int J Prosthodont ; 0(0): 1-19, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38477845

RESUMEN

PURPOSE: The aim of this study was to evaluate the influence of restoration bonding and type of preparation on load bearing capacity of a tooth restored with indirect glass ceramic or hybrid ceramic occlusal veneer restoration. MATERIALS AND METHODS: Occlusal surfaces of extracted human molar teeth were prepared for indirect occlusal veneers with or without circumferential chamfer. The occlusal veneers were milled either from CAD/CAM hybrid ceramic (HC) Cerasmart (GC), or lithium-disilicate glass ceramic (LDGC) IPS e.max CAD (Ivoclar Vivadent) blocks. Finalized veneers were bonded to teeth following manufacturers' instructions or according to the technique for the intended deteriorated bonding using n-hexane wax solution preconditioning on restorations (n=8/group). The ultimate fracture load was recorded, and fracture types were analyzed and classified visually. Statistical analysis was performed using one-way ANOVA. RESULTS: The highest fracture load was recorded in teeth with bonded LDGC veneer (p≤0.0007). The bonded HC veneers had only marginally higher fracture load compared to non-bonded veneers. In all groups with deteriorated bonding, veneers loosened without tooth fracture whereas in the bonded veneer groups tooth fractures were observed, especially in teeth restored with LDGC material. CONCLUSIONS: Bonded LDGC occlusal veneers have high load bearing capacity which exceeds the fracture resistance of tooth structure. Circumferential chamfer preparation for an occlusal veneer has no influence on fracture load of a restored tooth.

3.
Dent Mater J ; 43(4): 582-590, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38960667

RESUMEN

The purpose of this study was to evaluate the effect of the atmospheric pressure plasma treatment as a surface treatment method on the contact angle and shear bond strength (SBS) of zirconia ceramics and the failure mode between the self-adhesive resin luting agent and zirconia. The zirconia specimens were divided into eight groups based on the surface treatment method: alumina blasting, air plasma, argon plasma (AP), Katana cleaner, ozonated water, ozonated water+AP, Katana cleaner+AP, and tap water+AP. The contact angles, SBS, and fracture modes were tested. AP treatment significantly reduced the contact angle (p<0.0001). The combination of AP and other cleaning methods showed a higher bond strength and more mixed fractures. Our findings indicate that using atmospheric pressure plasma with argon gas, combined with other cleaning methods, results in a stronger bond than when using alumina blasting alone.


Asunto(s)
Argón , Recubrimiento Dental Adhesivo , Ensayo de Materiales , Gases em Plasma , Cementos de Resina , Resistencia al Corte , Propiedades de Superficie , Circonio , Circonio/química , Gases em Plasma/química , Recubrimiento Dental Adhesivo/métodos , Cementos de Resina/química , Argón/química , Análisis del Estrés Dental , Óxido de Aluminio/química
4.
Dent Mater J ; 43(2): 164-171, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38296512

RESUMEN

This study investigated the effects of low-temperature degradation (LTD) on the L*, a*, and b* values of highly translucent zirconia crowns. Four types of zirconia disks with different yttria contents (IPS e.max ZirCAD LT, IPS e.max ZirCAD MT, IPS e.max ZirCAD MT Multi, IPS e.max ZirCAD Prime, Ivoclar) and two shades (A2 and BL) were used. A crown was manufactured using four types of zirconia and LTD treated. Color measurements were performed, and the color difference (ΔE00) before and after LTD was calculated. The microstructure was determined through X-ray fluorescence and X-ray diffractometry. Highly translucent zirconia crowns showed greater changes in the a* and b* values than in the L* value after LTD, regardless of the shade. The Multi2 crowns exhibited a discernible color change due to the LTD treatment. The X-ray fluorescence results did not reveal any apparent change in the microstructure between sintering programs for all zirconia specimens.


Asunto(s)
Coronas , Itrio , Circonio , Temperatura , Circonio/química , Ensayo de Materiales , Cerámica/química , Color , Propiedades de Superficie
5.
Dent Mater J ; 43(2): 155-163, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38296513

RESUMEN

The aim of this study was to compare two testing methodologies employed for assessing the polymerization shrinkage stress of dental resin composites. Ten commercial resin composites were investigated (EverX Posterior & Flow; G-ænial Anterior, Posterior, A'CHORD & Universal Injectable; Filtek One Bulk Fill & Universal Restorative; SDR flow+ and Aura Bulk Fill). Photoelastic and contraction forces measurement methods were performed. The slope of the linear trendline and C-factor of specimens were calculated. The shrinkage stress values (range between: 6.4-13.4 MPa) obtained by the photoelastic method were higher for all resin composites than the values obtained by contraction forces measurements (range between 1.2-4.8 MPa). However, there was a strong linear correlation between these methods (r=0.8). The use of both investigated methods revealed important information about the shrinkage behavior of the restorative resin composites.


Asunto(s)
Resinas Compuestas , Materiales Dentales , Polimerizacion , Análisis del Estrés Dental , Ensayo de Materiales
6.
J Clin Exp Dent ; 16(3): e333-e342, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38600927

RESUMEN

Background: Dual-cure resin-based luting materials are increasingly favored in clinical applications due to their capacity to establish a strong bond with natural tooth structure and restorations. This study aimed to examine certain physical and handling characteristics of newly developed experimental dual-cure luting resins reinforced with short fibers (SFRCs) and compare them with commercially available dual-cure luting resins. Material and Methods: Seven dual-cure luting materials were tested (Relyx Ultimate, Duo-Link, eCEMENT, Variolink Esthetic, G-CEM LinkForce, experimental SFRC1, experimental SFRC2). Fourier transform infrared spectroscopy (FTIR) was utilized to determine the degree of monomer conversion (DC%) in the self and light-curing protocol. A rotating disk rheometer measured viscosity at room temperature (22°C) and simulated mouth temperature (35°C). Fracture toughness, flexural strength, and flexural modulus were evaluated using a 3-point bending test. Each luting resin was subjected to the examination of its surface microstructure using scanning electron microscopy (SEM). Analysis of variance (ANOVA) at a significance level of (p = 0.05) was conducted to analyze data. Results: It was revealed that DC% of the tested dual-cure resins was significantly (p< 0.05) affected by the curing mode, the dual-cure SFRC2 having the highest and Relyx having the lowest DC (64%, and 41% respectively). The viscosity of all tested materials decreased with increasing temperature. SFRC2 demonstrated the highest fracture toughness (2.3 MPa m1/2), while Relyx Ultimate, Duo-Link, and eCEMENT exhibited the lowest values (≈ 1 MPa m1/2)(p< 0.05). Both SFRCs and G-CEM link-force exhibited the highest flexural strength values, and SFRCs resulted in the highest flexural modulus values (p<0.05). Conclusions: The experimental fiber-reinforced dual-cure luting resins exhibited superior DC%, fracture toughness, and flexural properties, yet, SFRC2 showed the highest viscosity at elevated temperature. These results highlight the capability of short fiber reinforcement to enhance the mechanical properties of dual-cured resin-based luting materials without compromising handling characteristics. Key words:Dual-cure luting resin; short fibers; degree of conversion; viscosity; fracture toughness; flexural properties.

7.
J Mech Behav Biomed Mater ; 152: 106450, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38325167

RESUMEN

The aim of this study was to evaluate a novel approach for measuring the polymerization shrinkage of dental resin composites - measurement of sample depth variation. This new method was compared with two testing methodologies used for assessing the polymerization shrinkage (buoyancy and strain gauge methods). Eleven commercial resin composites were investigated (EverX Posterior; EverX Flow Bulk & Dentin; G-aenial Anterior, Posterior, A'chord & Universal Injectable; Filtek One Bulk Fill & Universal Restorative; SDR + Flow and Aura Bulk Fill). In addition, filler content (wt. %), flexural modulus, and the degree of conversion were evaluated. Shrinkage values, obtained by the buoyancy method, are greater than shrinkage evaluated by the strain gauge. There are significant differences in polymerization shrinkage among the tested resin composite materials. There is a strong correlation between the newly proposed method of shrinkage measurement and the buoyancy method (r2 = 0.8; p < 0.01). There is no correlation between volumetric shrinkage measurement (depth changes and buoyancy method) and linear strain measurement. Volumetric filler amount correlates with shrinkage values evaluated by all three methods. The degree of conversion for the tested resin composites ranges from 36 % to 52 %. There are some differences (around 10 %) between the filler content (wt. %) measured by the ashing-in-air method and the data given by the manufacturers. The highest flexural modulus is 14.8 GPa and the lowest 6.6 GPa. New formulations may introduce unknown relationships between the fundamental properties of dental resin composites.


Asunto(s)
Gastrópodos , Animales , Polimerizacion
8.
Polymers (Basel) ; 16(12)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38932063

RESUMEN

This study aimed to evaluate the flexural strength (FS), surface wear, and optical properties of 3D-printed dental resins subjected to different post-printing conditions. A total of 240 specimens (2 × 2 × 25 mm³) were 3D-printed using resin materials for permanent (VaresoSmile Crown Plus) VSC and temporary (VaresoSmile Temp) VST restorations. Specimens underwent five post-printing conditions: no post-printing cure; post-cured in a Form Cure curing unit; Visio Beta Vacuum; Ivoclar Targis; or heat-cured (150 °C) for 30 min. Each group of specimens (n = 24) was tested either directly after post-curing, after 24 h of dry storage, or following hydrothermal accelerated aging in boiling water for 16 h. The three-point bending test was used to evaluate the FS. The two-body wear test was performed on 50 disc-shaped specimens (n = 5/group). Surface gloss and translucency were measured for permanent VSC specimens (n = 5/group). SEM/EDS and statistical analyses were performed. The Form Cure device yielded the highest FS and lowest wear depth (p < 0.05). Hydrothermal aging significantly reduced FS. There were no statistical differences in FS and wear values between materials subjected to same post-printing conditions. VSC groups exhibited similar optical properties across different post-printing treatments. Post-printing treatment conditions had a significant impact on the FS and wear of the 3D-printed resin, while optical properties remained unaffected.

9.
Biomater Investig Dent ; 11: 40591, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873366

RESUMEN

Objectives: The aim of this article was to compare the colour stability of short fibre-reinforced computer-assisted design/computer-assisted manufacturing (CAD/CAM) composite (SFRC CAD) to commercially available CAD/CAM materials following prolonged immersion in a variety of beverages. Furthermore, the influence of the polishing technique was evaluated. Materials and methods: A total of 120 rectangular specimens (10 mm length × 14 mm width × 2 mm thickness) were prepared from SFRC CAD, IPS e-max, Cerasmart 270, Celtra Duo, Enamic, and Brilliant Crios. The specimens underwent polishing through either a laboratory polishing machine equipped with 4000-grit silicon carbide paper or chairside polishing using Sof-Lex spiral. Twenty specimens of each tested CAD/CAM material were randomly divided into four groups (n = 5) based on the staining solution used in order to evaluate the colour stability of the materials. Group 1: distilled water, Group 2: coffee, Group 3: red wine, Group 4: coke. Using a spectrophotometer, the colour changes (∆E) of all CAD/CAM materials were assessed at baseline, and after 1 and 12 weeks of staining. Three-way analysis of variance was used to analyse the data (α = 0.05). Results: The staining solution and material type showed a significant influence on the CAD/CAM specimens' colour stability (p < 0.05), while polishing method had no significant influence (p > 0.05). The average ∆E values for specimens submerged in wine were considerably higher (p < 0.05) than those for the other solutions. SFRC CAD, Cerasmart 270, and Enamic displayed the highest ∆E values in wine (p < 0.05). Conclusions: The colour stability of tested SFRC CAD was comparable to other composite-based CAD/CAM materials, while IPS e.max exhibited the highest level of colour stability.

10.
Polymers (Basel) ; 16(5)2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38475291

RESUMEN

The aim of this study was to compare the mechanical properties and ion release from a commercially available resin-modified glass ionomer cement to a formulation reinforced by the addition of short glass fibres at various percentages. Methods: Three experimental groups were prepared by adding a mass ratio of 10%, 15% and 20% of short glass fibres to the powder portion of the cement from a capsule (GC Fuji II LC), while the control group contained no fibres. Microhardness (n = 12), fracture toughness, and flexural, compressive and diametral tensile strength (n = 8) were evaluated. To study ion release, readings were obtained utilising fluoro-selective and calcium-selective electrodes after 24 h, 7 days and 30 days (n = 12). The spatial distribution of fibres within the material was evaluated through scanning electron microscopy. The data were analysed using one-way ANOVA with a Bonferroni adjustment. Results: The findings suggest that elevating fibre weight ratios to 20 wt% results in improved mechanical properties (p < 0.05) in microhardness, flexural strength, diametral tensile strength and fracture toughness. In terms of ion release, a statistically significant difference (p < 0.001) was observed between the groups at the conclusion of 24 h and 7 days, when the fluoride release was much higher in the control group. However, after 30 days, no significant distinction among the groups was identified (p > 0.05). Regarding calcium release, no statistically significant differences were observed among the groups at any of the evaluated time points (p > 0.05). SEM showed the fibres were homogeneously incorporated into the cement in all experimental groups. Conclusions: Resin-modified glass ionomer enhanced with short glass fibres at a weight loading of 20% showcased the most favourable mechanical properties while concurrently maintaining the ability to release fluoride and calcium after a 30-day period.

11.
J Prosthodont Res ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38281759

RESUMEN

PURPOSE: To investigate the effects of the number of ethylene oxide units in bis-EMA on the physical properties of additively manufactured occlusal splints. METHODS: Seven experimental materials containing bis-EMAs with three and 10 ethylene oxide units (BE3 and BE10, respectively) were prepared at different BE10 content rates (BE10-0%, -20%, -30%, -40%, -50%, -60%, and -80%). Half the specimens of each material were aged in boiling water. Flexural strength (FS), flexural modulus (FM), fracture toughness (FT), microwear depth (MD), degree of conversion (DC), water sorption (WSP), water solubility (WSL), color difference between non-aged and aged series (ΔE), and translucency (TP) were evaluated. All the evaluated properties other than FS and MD were analyzed by 1-way ANOVA and Tukey's post hoc analysis, while FS and MD were analyzed by Kruskal-Wallis's test and Bonferroni correction (α=0.05). RESULTS: BE10-80% revealed the lowest FS (P < 0.01 for BE10-0%, -20%, and -30%) and FM (P < 0.01, for all), while revealing the highest DC, WSP, WSL (P < 0.01 for all) and TP (P < 0.01 for all other than BE10-60%). BE10-50% showed the highest FT (P < 0.01 for all). BE10-50%, -60%, and -80% revealed significantly lower ΔE than others (P < 0.01) and lower MD than BE10-0% (P < 0.05). Regardless of the BE10 content, FS, FM, and FT decreased with aging. CONCLUSIONS: The number of ethylene oxide units affects the physical properties of additively manufactured occlusal splints. The higher number of ethylene oxide units in bis-EMA enhanced the microwear resistance, DC, WSP, WSL, color stability, and translucency, whereas it deteriorated the FS and FM.

12.
J Prosthodont Res ; 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38296526

RESUMEN

PURPOSE: To evaluate the effect of chemical, mechanical, and combination surface treatments on the shear bond strength (SBS) of autopolymerizing repair resins to conventional heat-cured, computer aided design (CAD)-computer aided manufacturing (CAM) milled, and three-dimensionally (3D) printed denture base materials. METHODS: Specimens were fabricated and divided according to the surface treatment as follows: no surface treatment (control group), monomer treatment (monomer group), resin remover treatment (resin remover group), roughening with 180 FEPA grit abrasive paper followed by monomer treatment (180-grit plus monomer group), and air particle abrasion (air abrasion group). Autopolymerizing resin cylinders were attached before accelerated aging of the specimens in water at 100 °C for 16 h. The SBS was tested using a universal testing machine. Surface roughness was evaluated using a 3D optical profilometer. Scanning electron microscopy (SEM) and stereomicroscopy were used for surface analysis. Data was collected and analyzed using analysis of variance (ANOVA) and Kruskall-Wallis tests (α = 0.05). RESULTS: The denture base material and surface treatment significantly affected the SBS. The milled Temp Basic Tissue demonstrated the highest SBS values across all surface treatments, whereas the two 3D-printed denture base materials exhibited the lowest SBS values. CONCLUSIONS: The bond strength of CAD-CAM-milled denture base resins to autopolymerizing repair resins is comparable to that of heat-cured resins. Surface roughening using air particle abrasion or 180-grit carbide paper can enhance the bond strength of the autopolymerizing repair resin to 3D-printed denture base materials.

13.
Polymers (Basel) ; 16(5)2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38475274

RESUMEN

In recent years, composite resin materials have been the most frequently used materials for direct restorations of posterior teeth. These materials have some clinically relevant limitations due to their lack of fracture toughness, especially when used in larger cavities with high volume factors or when utilized as direct or indirect overlays or crown restorations. Recently, short-fiber-reinforced composite materials have been used in bi-structure restorations as a dentine substituting material due to their superior mechanical properties; however, there is no scientific consensus as to whether they can be used as full restorations. The aim of our review was to examine the available literature and gather scientific evidence on this matter. Two independent authors performed a thorough literature search using PubMed and ScienceDirect up until December 2023. This study followed the PRISMA guidelines, and the risk of bias was assessed using the QUIN tool. The authors selected in vitro studies that used short-fiber-reinforced composite materials as complete restorations, with a conventional composite material as a comparison group. Out of 2079 potentially relevant articles, 16 met our inclusion criteria. All of the included studies reported that the usage of short-fiber-reinforced composites improved the restoration's load-bearing capacity. Fifteen of the included publications examined the fracture pattern, and thirteen of them reported a more favorable fracture outcome for the short-fiber-reinforced group. Only one article reported a more favorable fracture pattern for the control group; however, the difference between groups was not significant. Within the limitations of this review, the evidence suggests that short-fiber-reinforced composites can be used effectively as complete restorations to reinforce structurally compromised teeth.

14.
Eur J Dent ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38744336

RESUMEN

OBJECTIVES: The aim of the study was to evaluate the mechanical properties and impact absorption capacity of prototype materials comprising ethylene vinyl acetate (EVA) of different hardness reinforced using different amounts of glass fibers (GFs), considering a buffer space. MATERIALS AND METHODS: Six prototype materials were made by adding E-GFs (5 and 10 wt%) to EVA with vinyl acetate (VA) contents of 9.4 wt% ("hard" or HA) and 27.5 wt% ("soft" or SO). Durometer hardness and tensile strength tests were performed to evaluate the mechanical properties of the materials. Moreover, an impact test was conducted using a customized pendulum impact tester to assess the impact absorption capacity (with or without a buffer space) of the specimens. RESULTS: The mechanical properties of the prototypes, namely, durometer hardness, Young's modulus, and tensile strength, were significantly higher in the HA group than in the SO group, regardless of the presence or added amount of GFs. The addition of GFs, particularly in a large amount (10 wt%), significantly increased these values. In terms of the impact absorption capacity, the original hardness of the EVA material, that is, its VA content, had a more substantial effect than the presence or absence of GFs and the added amount of GFs. Interestingly, the HA specimens with the buffer space exhibited significantly higher impact absorption capacities than the SO specimens. Meanwhile, the SO specimens without the buffer space exhibited significantly higher impact absorption capacities than the HA specimens. Moreover, regardless of the sample material and impact distance, the buffer space significantly improved impact absorption. In particular, with the buffer space, the impact absorption capacity increased with the added amount of GFs. CONCLUSION: The basic mechanical properties, including durometer hardness, Young's modulus, and tensile strength, of the EVA prototype were significantly increased by reducing the amount of VA regardless of the presence or added amount of GFs. Adding GFs, particularly in large amounts, significantly increased the values of aforementioned mechanical properties. Impact absorption was significantly affected by the hardness of the original EVA material and enhanced by the addition of the buffer space. The HA specimen had a high shock absorption capacity with the buffer space, and the SO specimen had a high shock absorption capacity without the buffer space. With the buffer space, impact absorption improved with the amount of added GFs.

15.
Braz. oral res. (Online) ; 34: e035, 2020. tab, graf
Artículo en Inglés | LILACS, BBO - odontología (Brasil) | ID: biblio-1100934

RESUMEN

Abstract Although fiber-reinforced composites are commonly used in dental practice, whether fiber-reinforced crowns and fixed partial dentures can be used as definitive prostheses remains to be determined. This study used scanning electron microscopy to evaluate the load-bearing capacity of non-reinforced and fiber-reinforced composite (FRC) molar crowns prepared by computer-aided design/computer-aided manufacturing (CAD/CAM). The crowns were fabricated from three empirical FRC blocks, one empirical composite block, and one commercial ceramic block. The FRC resin was prepared by mixing BaO silicate particles, E-glass fiber, and dimethacrylate resin. Specimens were divided into five groups (n = 10), differing in the amounts of filler, resin, and fiber. Crowns were statically loaded until fracture. One-way analysis of variance and Tukey's post hoc multiple comparison tests were used for statistical analyses. The groups showed significant differences in load-bearing capacity; empirical bidirectional FRC resin blocks had the highest capacity, while commercial ceramic blocks had the lowest capacity. Molar crowns formed from FRC resin blocks had higher load-bearing capacity compared to non-reinforced composite resin and ceramic blocks. These results show that fiber reinforcement increased the load-bearing capacity of molar crowns.


Asunto(s)
Humanos , Soporte de Peso , Diseño Asistido por Computadora , Resinas Compuestas/química , Coronas , Valores de Referencia , Propiedades de Superficie , Ensayo de Materiales , Microscopía Electrónica de Rastreo , Cerámica/química , Reproducibilidad de los Resultados , Diseño de Prótesis Dental , Estudio de Evaluación , Diente Molar
16.
Braz. oral res. (Online) ; 29(1): 1-6, 2015. tab, ilus
Artículo en Inglés | LILACS | ID: lil-777206

RESUMEN

The purpose of this in vitro study was to evaluate the effect of various chelating solutions on the radicular push-out bond strength of calcium silicate-based and resin-based root canal sealers. Root canals of freshly-extracted single-rooted teeth (n = 80) were instrumented by using rotary instruments. The specimens were randomly divided into 4 groups according to the chelating solutions being tested: (1) 17% ethylenediaminetetraacetic acid (EDTA); (2) 9% etidronic acid; (3) 1% peracetic acid (PAA); and (4) distilled water (control). In each group, the roots were further assigned into 2 subgroups according to the sealer used: (1) an epoxy resin-based sealer (AH Plus) and (2) a calcium silicate-based sealer (iRoot SP). Four 1 mm-thick sections were obtained from the coronal aspect of each root (n = 40 slices/group). Push-out bond strength test was performed at a crosshead speed of 1 mm/min., and the bond strength data were analyzed statistically with two-way analysis of variance (ANOVA) with Bonferroni’s post hoc test (p < 0.05). Failure modes were assessed quantitatively under a stereomicroscope. Irrespective of the irrigation regimens, iRoot SP exhibited significantly higher push-out bond strength values than AH Plus (p < 0.05). For both the sealers, the use of chelating solutions increased the bond strength, but to levels that were not significantly greater than their respective controls (p > 0.05). iRoot SP showed higher resistance to dislocation than AH Plus. Final irrigation with 17% EDTA, 9% Etidronic acid, and 1% PAA did not improve the bond strength of AH Plus and iRoot SP to radicular dentin.


Asunto(s)
Humanos , Quelantes/química , Recubrimiento Dental Adhesivo/métodos , Cavidad Pulpar/efectos de los fármacos , Dentina/efectos de los fármacos , Materiales de Obturación del Conducto Radicular/química , Irrigantes del Conducto Radicular/química , Análisis de Varianza , Fracaso de la Restauración Dental , Ácido Edético/química , Ácido Etidrónico/química , Ensayo de Materiales , Ácido Peracético/química , Distribución Aleatoria , Reproducibilidad de los Resultados , Propiedades de Superficie/efectos de los fármacos , Factores de Tiempo
17.
Med. oral patol. oral cir. bucal (Internet) ; 16(1): e119-e123, ene. 2011. tab, ilus
Artículo en Inglés | IBECS (España) | ID: ibc-95853

RESUMEN

Objective: The objective of this study was to simulate the micropush-out bond strength test from a biomechanical point of view. For this purpose, stress analysis using finite element (FE) method was performed.Study design: Three different occlusal cavity shapes were simulated in disc specimens (model A: 1.5 mm cervical,2 mm occlusal diameter; model B: 1.5 mm cervical, 1.75 mm occlusal diameter; model C: 1.5 mm cervical, 1.5mm occlusal diameter). Quarter sizes of 3D FE specimen models of 4.0×4.0×1.25 mm3 were constructed. In order to avoid quantitative differences in the stress value in the models, models were derived from a single mappingmesh pattern that generated 47.182 elements and 66.853 nodes. The materials that were used were resin composite(Filtek Z250, 3M ESPE), bonding agent (Adper Scotchbond Multi-Purpose, 3M ESPE) and dentin as an isotropicmaterial. Loading conditions consisted of subjecting a press of 4 MPa to the top of the resin composite discs. The postprocessing files allowed the calculation of the maximum principal stress, minimum principal stress and displacement within the disc specimens and stresses at the bonding layer. FE model construction and analysis were performed on PC workstation (Precision Work Station 670, Dell Inc.) using FE analysis program (ANSYS 10 Sp,ANSYS Inc.).Results: Compressive stress concentrations were observed equally in the bottom interface edge of dentin. Tensilestresses were observed on the top area of dentin and at the half of lower side of composite under the loading pointin all of the FE models.Conclusions: The FE model revealed differences in displacement and stress between different cavity shaped discspecimens. As the slope of the cavity was increased, the maximum displacement, compressive and tensile stresses also increased (AU)


Asunto(s)
Fenómenos Biomecánicos , Recubrimiento Dental Adhesivo , Análisis del Estrés Dental
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA