Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Phys Chem A ; 127(26): 5523-5533, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37352367

RESUMEN

The generation of radioactive waste has a prominent negative impact on the use of nuclear energy due to potential health concerns and cost of waste storage. This potential impact continues to rise as the quantity of waste increases due to the increasing growth in energy demand. One of the leading contributions to the radioactivity of this waste is due to the presence of actinides. The removal of these actinides by ligand-based solvent extraction methodologies provides an invaluable process necessary for the promotion of nuclear energy. By evaluating different ligands that are currently applied for actinide solvent extractions, more effective ligands could be proposed and synthesized for the successful separation of actinides from nuclear waste. Here, density functional theory (DFT) calculations for a variety of ligands and actinides are reported to explain the extraction process. Different solvation and ligation effects were evaluated for the computation of stability constants. The ratio of water and nitrate ligands in the coordination environment of actinides (Ac(III), Th(IV), Am(III), and Cm(III)) was first examined. Results from this step provided reliable initial conditions for the extraction of these actinides in both the aqueous (343HOPO) and the organic phase (BTBP). We also report a DFT benchmarking study as well as a modified BTBP ligand performance evaluation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA