Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Genomics ; 17(1): 92, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803336

RESUMEN

BACKGROUND: Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS), but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identifying genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs. METHODS: We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA methylation for 86 NDBS samples from the California Biobank Program: (1) 45 DS-CHD (27 female, 18 male) and (2) 41 DS non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions (DMRs) in DS-CHD versus DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age of blood collection, and cell-type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS versus typical development (TD) WGBS NDBS samples. RESULTS: We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attributable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 58, 341, and 3938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than background regions were differentially methylated in DS versus TD samples. CONCLUSIONS: A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particularly CHDs.


Asunto(s)
Síndrome de Down , Cardiopatías Congénitas , Humanos , Masculino , Recién Nacido , Femenino , Síndrome de Down/genética , Epigenómica , Metilación de ADN/genética , Epigénesis Genética , Cardiopatías Congénitas/genética , Islas de CpG/genética , Cromatina
2.
Hum Mol Genet ; 29(21): 3465-3476, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33001180

RESUMEN

Neonatal dried blood spots (NDBS) are a widely banked sample source that enables retrospective investigation into early life molecular events. Here, we performed low-pass whole genome bisulfite sequencing (WGBS) of 86 NDBS DNA to examine early life Down syndrome (DS) DNA methylation profiles. DS represents an example of genetics shaping epigenetics, as multiple array-based studies have demonstrated that trisomy 21 is characterized by genome-wide alterations to DNA methylation. By assaying over 24 million CpG sites, thousands of genome-wide significant (q < 0.05) differentially methylated regions (DMRs) that distinguished DS from typical development and idiopathic developmental delay were identified. Machine learning feature selection refined these DMRs to 22 loci. The DS DMRs mapped to genes involved in neurodevelopment, metabolism, and transcriptional regulation. Based on comparisons with previous DS methylation studies and reference epigenomes, the hypermethylated DS DMRs were significantly (q < 0.05) enriched across tissues while the hypomethylated DS DMRs were significantly (q < 0.05) enriched for blood-specific chromatin states. A ~28 kb block of hypermethylation was observed on chromosome 21 in the RUNX1 locus, which encodes a hematopoietic transcription factor whose binding motif was the most significantly enriched (q < 0.05) overall and specifically within the hypomethylated DMRs. Finally, we also identified DMRs that distinguished DS NDBS based on the presence or absence of congenital heart disease (CHD). Together, these results not only demonstrate the utility of low-pass WGBS on NDBS samples for epigenome-wide association studies, but also provide new insights into the early life mechanisms of epigenomic dysregulation resulting from trisomy 21.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Metilación de ADN , Síndrome de Down/diagnóstico , Pruebas con Sangre Seca/métodos , Epigénesis Genética , Genoma Humano , Sulfitos/química , Biomarcadores/sangre , Estudios de Casos y Controles , Islas de CpG , Síndrome de Down/genética , Femenino , Estudios de Seguimiento , Regulación de la Expresión Génica , Humanos , Recién Nacido , Masculino , Pronóstico , Estudios Retrospectivos , Secuenciación Completa del Genoma
3.
Hum Mol Genet ; 28(22): 3842-3852, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31625566

RESUMEN

Ubiquitin E3 ligase 3A (UBE3A) encodes an E3 ubiquitin ligase whose loss from the maternal allele causes the neurodevelopmental disorder Angelman syndrome (AS). Previous studies of UBE3A function have not examined full Ube3a deletion in mouse, the complexity of imprinted gene networks in brain nor the molecular basis of systems-level cognitive dysfunctions in AS. We therefore utilized a systems biology approach to elucidate how UBE3A loss impacts the early postnatal brain in a novel CRISPR/Cas9-engineered rat Angelman model of a complete Ube3a deletion. Strand-specific transcriptome analysis of offspring from maternally or paternally inherited Ube3a deletions revealed the expected parental expression patterns of Ube3a sense and antisense transcripts by postnatal day 2 (P2) in hypothalamus and day 9 (P9) in cortex, compared to wild-type littermates. The dependency of genome-wide effects on parent-of-origin, Ube3a genotype and time (P2 and P9) was investigated through transcriptome (RNA sequencing of cortex and hypothalamus) and methylome (whole-genome bisulfite sequencing of hypothalamus). Weighted gene co-expression and co-methylation network analyses identified co-regulated networks in maternally inherited Ube3a deletion offspring enriched in postnatal developmental processes including Wnt signaling, synaptic regulation, neuronal and glial functions, epigenetic regulation, ubiquitin, circadian entrainment and splicing. Furthermore, we showed that loss of the paternal Ube3a antisense transcript resulted in both unique and overlapping dysregulated gene pathways with maternal loss, predominantly at the level of differential methylation. Together, these results provide a holistic examination of the molecular impacts of UBE3A loss in brain, supporting the existence of interactive epigenetic networks between maternal and paternal transcripts at the Ube3a locus.


Asunto(s)
Impresión Genómica , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animales , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Epigénesis Genética , Femenino , Expresión Génica , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes/genética , Hipotálamo/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Sinapsis/genética , Sinapsis/metabolismo , Biología de Sistemas , Transcriptoma , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt
4.
Dev Neurosci ; 36(1): 29-43, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24481079

RESUMEN

Fetal alcohol spectrum disorder (FASD) is an umbrella term that refers to a wide range of behavioral and cognitive deficits resulting from prenatal alcohol exposure. It involves changes in brain gene expression that underlie lifelong FASD symptoms. How these changes are achieved from immediate to long-term effects, and how they are maintained, is unknown. We have used the C57BL/6J mouse to assess the dynamics of genomic alterations following binge alcohol exposure. Ethanol-exposed fetal (short-term effect) and adult (long-term effect) brains were assessed for gene expression and microRNA (miRNA) changes using Affymetrix mouse arrays. We identified 48 and 68 differentially expressed genes in short- and long-term groups, respectively. No gene was common between the 2 groups. Short-term (immediate) genes were involved in cellular compromise and apoptosis, which represent ethanol's toxic effects. Long-term genes were involved in various cellular functions, including epigenetics. Using quantitative RT-PCR, we confirmed the downregulation of long-term genes: Camk1g, Ccdc6, Egr3, Hspa5, and Xbp1. miRNA arrays identified 20 differentially expressed miRNAs, one of which (miR-302c) was confirmed. miR-302c was involved in an inverse relationship with Ccdc6. A network-based model involving altered genes illustrates the importance of cellular redox, stress and inflammation in FASD. Our results also support a critical role of apoptosis in FASD, and the potential involvement of miRNAs in the adaptation of gene expression following prenatal ethanol exposure. The ultimate molecular footprint involves inflammatory disease, neurological disease and skeletal and muscular disorders as major alterations in FASD. At the cellular level, these processes represent abnormalities in redox, stress and inflammation, with potential underpinnings to anxiety.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Encéfalo/efectos de los fármacos , Etanol/administración & dosificación , Trastornos del Espectro Alcohólico Fetal/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Adaptación Fisiológica/fisiología , Animales , Apoptosis/efectos de los fármacos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Femenino , Expresión Génica/efectos de los fármacos , Ratones , Embarazo , Segundo Trimestre del Embarazo
5.
Dev Neurosci ; 36(6): 499-519, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25278313

RESUMEN

The developing brain is remarkably sensitive to alcohol exposure, resulting in the wide range of cognitive and neurobehavioral characteristics categorized under the term fetal alcohol spectrum disorders (FASD). The brain is particularly susceptible to alcohol during synaptogenesis, a process that occurs heavily during the third trimester and is characterized by the establishment and pruning of neural circuitry; however, the molecular response of the brain to ethanol during synaptogenesis has not been documented. To model a binge-like exposure during the third-trimester neurodevelopmental equivalent, neonate mice were given a high (5 g/kg over 2 h) dose of ethanol at postnatal day 7. Acute transcript changes within the brain were assessed using expression arrays and analyzed for associations with gene ontology functional categories, canonical pathways, and gene network interactions. The short-term effect of ethanol was characterized by an acute stress response and a downregulation of energetically costly cellular processes. Further, alterations to a number of genes with roles in synaptic transmission and hormonal signaling, particularly those associated with the neuroendocrine development and function, were evident. Ethanol exposure during synaptogenesis was also associated with altered histone deacetylase and microRNA transcript levels, suggesting that abnormal epigenetic patterning may maintain some of the persistent molecular consequences of developmental ethanol exposure. The results shed insight into the sensitivity of the brain to ethanol during the third-trimester equivalent and outline how ethanol-induced alterations to genes associated with neural connectivity may contribute to FASD phenotypes.


Asunto(s)
Encéfalo/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Etanol/efectos adversos , Trastornos del Espectro Alcohólico Fetal/metabolismo , Expresión Génica/efectos de los fármacos , Transducción de Señal/genética , Estrés Fisiológico , Transmisión Sináptica/genética , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Etanol/administración & dosificación , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Am J Med Genet B Neuropsychiatr Genet ; 162B(2): 96-121, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23341144

RESUMEN

The XXth World Congress of Psychiatric Genetics (WCPG), sponsored by The International Society of Psychiatric Genetics (ISPG) took place in Hamburg, Germany on October 14-18, 2012. Approximately 600 participants gathered to discuss the latest findings in this rapidly advancing field. The following report was written by student travel awardees. Each was assigned sessions as rapporteurs. This manuscript represents topics covered in most, but not all, oral presentations during the conference, and some of the major notable new findings reported at this 2012 WCPG.


Asunto(s)
Trastornos Mentales/genética , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Descubrimiento de Drogas , Endofenotipos , Epigénesis Genética , Pruebas Genéticas , Variación Genética , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Alemania , Humanos , Patrón de Herencia/genética , Imagen por Resonancia Magnética , Ratones , Análisis de Secuencia de ADN
7.
Nat Commun ; 14(1): 366, 2023 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-36690629

RESUMEN

Sensory neurons of the dorsal root ganglion (DRG) are critical for maintaining tissue homeostasis by sensing and initiating responses to stimuli. While most preclinical studies of DRGs are conducted in rodents, much less is known about the mechanisms of sensory perception in primates. We generated a transcriptome atlas of mouse, guinea pig, cynomolgus monkey, and human DRGs by implementing a common laboratory workflow and multiple data-integration approaches to generate high-resolution cross-species mappings of sensory neuron subtypes. Using our atlas, we identified conserved core modules highlighting subtype-specific biological processes related to inflammatory response. We also identified divergent expression of key genes involved in DRG function, suggesting species-specific adaptations specifically in nociceptors that likely point to divergent function of nociceptors. Among these, we validated that TAFA4, a member of the druggable genome, was expressed in distinct populations of DRG neurons across species, highlighting species-specific programs that are critical for therapeutic development.


Asunto(s)
Ganglios Espinales , Transcriptoma , Ratones , Humanos , Animales , Cobayas , Ganglios Espinales/metabolismo , Macaca fascicularis , Nociceptores/metabolismo , Células Receptoras Sensoriales/metabolismo , Sensación , Citocinas/metabolismo
8.
medRxiv ; 2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37205408

RESUMEN

Background: Congenital heart defects (CHDs) affect approximately half of individuals with Down syndrome (DS) but the molecular reasons for incomplete penetrance are unknown. Previous studies have largely focused on identifying genetic risk factors associated with CHDs in individuals with DS, but comprehensive studies of the contribution of epigenetic marks are lacking. We aimed to identify and characterize DNA methylation differences from newborn dried blood spots (NDBS) of DS individuals with major CHDs compared to DS individuals without CHDs. Methods: We used the Illumina EPIC array and whole-genome bisulfite sequencing (WGBS) to quantitate DNA methylation for 86 NDBS samples from the California Biobank Program: 1) 45 DS-CHD (27 female, 18 male) and 2) 41 DS non-CHD (27 female, 14 male). We analyzed global CpG methylation and identified differentially methylated regions (DMRs) in DS-CHD vs DS non-CHD comparisons (both sex-combined and sex-stratified) corrected for sex, age of blood collection, and cell type proportions. CHD DMRs were analyzed for enrichment in CpG and genic contexts, chromatin states, and histone modifications by genomic coordinates and for gene ontology enrichment by gene mapping. DMRs were also tested in a replication dataset and compared to methylation levels in DS vs typical development (TD) WGBS NDBS samples. Results: We found global CpG hypomethylation in DS-CHD males compared to DS non-CHD males, which was attributable to elevated levels of nucleated red blood cells and not seen in females. At a regional level, we identified 58, 341, and 3,938 CHD-associated DMRs in the Sex Combined, Females Only, and Males Only groups, respectively, and used machine learning algorithms to select 19 Males Only loci that could distinguish CHD from non-CHD. DMRs in all comparisons were enriched for gene exons, CpG islands, and bivalent chromatin and mapped to genes enriched for terms related to cardiac and immune functions. Lastly, a greater percentage of CHD-associated DMRs than background regions were differentially methylated in DS vs TD samples. Conclusions: A sex-specific signature of DNA methylation was detected in NDBS of DS-CHD compared to DS non-CHD individuals. This supports the hypothesis that epigenetics can reflect the variability of phenotypes in DS, particularly CHDs.

9.
Mol Ther Nucleic Acids ; 32: 773-793, 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37346977

RESUMEN

Antisense oligonucleotide (ASO) therapeutics are being investigated for a broad range of neurological diseases. While ASOs have been effective in the clinic, improving productive ASO internalization into target cells remains a key area of focus in the field. Here, we investigated how the delivery of ASO-loaded lipid nanoparticles (LNPs) affects ASO activity, subcellular trafficking, and distribution in the brain. We show that ASO-LNPs increase ASO activity up to 100-fold in cultured primary brain cells as compared to non-encapsulated ASO. However, in contrast to the widespread ASO uptake and activity observed following free ASO delivery in vivo, LNP-delivered ASOs did not downregulate mRNA levels throughout the brain after intracerebroventricular injection. This lack of activity was likely due to ASO accumulation in cells lining the ventricles and blood vessels. Furthermore, we reveal a formulation-dependent activation of the immune system post dosing, suggesting that LNP encapsulation cannot mask cellular ASO backbone-mediated toxicities. Together, these data provide insights into how LNP encapsulation affects ASO distribution as well as activity in the brain, and a foundation that enables future optimization of brain-targeting ASO-LNPs.

10.
iScience ; 26(11): 108362, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-37965143

RESUMEN

Heterozygous mutations in the granulin (GRN) gene are a leading cause of frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Polymorphisms in TMEM106B have been associated with disease risk in GRN mutation carriers and protective TMEM106B variants associated with reduced levels of TMEM106B, suggesting that lowering TMEM106B might be therapeutic in the context of FTLD. Here, we tested the impact of full deletion and partial reduction of TMEM106B in mouse and iPSC-derived human cell models of GRN deficiency. TMEM106B deletion did not reverse transcriptomic or proteomic profiles in GRN-deficient microglia, with a few exceptions in immune signaling markers. Neither homozygous nor heterozygous Tmem106b deletion normalized disease-associated phenotypes in Grn -/-mice. Furthermore, Tmem106b reduction by antisense oligonucleotide (ASO) was poorly tolerated in Grn -/-mice. These data provide novel insight into TMEM106B and GRN function in microglia cells but do not support lowering TMEM106B levels as a viable therapeutic strategy for treating FTD-GRN.

11.
Environ Int ; 158: 106993, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34991254

RESUMEN

BACKGROUND: Wildfire smoke is responsible for around 20% of all particulate emissions in the U.S. and affects millions of people worldwide. Children are especially vulnerable, as ambient air pollution exposure during early childhood is associated with reduced lung function. Most studies, however, have focused on the short-term impacts of wildfire smoke exposures. We aimed to identify long-term baseline epigenetic changes associated with early-life exposure to wildfire smoke. We collected nasal epithelium samples for whole genome bisulfite sequencing (WGBS) from two groups of adult female rhesus macaques: one group born just before the 2008 California wildfire season and exposed to wildfire smoke during early-life (n = 8), and the other group born in 2009 with no wildfire smoke exposure during early-life (n = 14). RNA-sequencing was also performed on a subset of these samples. RESULTS: We identified 3370 differentially methylated regions (DMRs) (difference in methylation ≥ 5%, empirical p < 0.05) and 1 differentially expressed gene (FLOT2) (FDR < 0.05, fold of change ≥ 1.2). The DMRs were annotated to genes significantly enriched for synaptogenesis signaling, protein kinase A signaling, and a variety of immune processes, and some DMRs significantly correlated with gene expression differences. DMRs were also significantly enriched within regions of bivalent chromatin (top odds ratio = 1.46, q-value < 3 × 10-6) that often silence key developmental genes while keeping them poised for activation in pluripotent cells. CONCLUSIONS: These data suggest that early-life exposure to wildfire smoke leads to long-term changes in the methylome over genes impacting the nervous and immune systems. Follow-up studies will be required to test whether these changes influence transcription following an immune/respiratory challenge.


Asunto(s)
Epigenoma , Incendios Forestales , Adolescente , Animales , Preescolar , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Humanos , Macaca mulatta , Humo/efectos adversos
12.
Cell Rep ; 38(9): 110442, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35235788

RESUMEN

Polychlorinated biphenyls (PCBs) are developmental neurotoxicants implicated as environmental risk factors for neurodevelopmental disorders (NDDs). Here, we report the effects of prenatal exposure to a human-relevant mixture of PCBs on the DNA methylation profiles of mouse placenta and fetal brain. Thousands of differentially methylated regions (DMRs) distinguish placenta and fetal brain from PCB-exposed mice from sex-matched vehicle controls. In both placenta and fetal brain, PCB-associated DMRs are enriched for functions related to neurodevelopment and cellular signaling and enriched within regions of bivalent chromatin. The placenta and brain PCB DMRs overlap significantly and map to a shared subset of genes enriched for Wnt signaling, Slit/Robo signaling, and genes differentially expressed in NDD models. The consensus PCB DMRs also significantly overlap with DMRs from human NDD brain and placenta. These results demonstrate that PCB-exposed placenta contains a subset of DMRs that overlap fetal brain DMRs relevant to an NDD.


Asunto(s)
Trastornos del Neurodesarrollo , Bifenilos Policlorados , Animales , Encéfalo , Metilación de ADN/genética , Femenino , Ratones , Trastornos del Neurodesarrollo/genética , Placenta , Bifenilos Policlorados/toxicidad , Embarazo
13.
Front Genet ; 13: 929471, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36035158

RESUMEN

Environmental exposures to endocrine disrupting compounds (EDCs) such as the organochlorines have been linked with various diseases including neurodevelopmental disorders. Autism spectrum disorder (ASD) is a highly complex neurodevelopmental disorder that is considered strongly genetic in origin due to its high heritability. However, the rapidly rising prevalence of ASD suggests that environmental factors may also influence risk for ASD. In the present study, whole genome bisulfite sequencing was used to identify genome-wide differentially methylated regions (DMRs) in a total of 52 sperm samples from a cohort of men from the Faroe Islands (Denmark) who were equally divided into high and low exposure groups based on their serum levels of the long-lived organochlorine 1,1-dichloro-2,2-bis(p-chlorophenyl)ethylene (DDE), a primary breakdown product of the now banned insecticide dichlorodiphenyltrichloroethane (DDT). Aside from being considered a genetic isolate, inhabitants of the Faroe Islands have a native diet that potentially exposes them to a wide range of seafood neurotoxicants in the form of persistent organic pollutants (POPs). The DMRs were mapped to the human genome using Bismark, a 3-letter aligner used for methyl-seq analyses. Gene ontology, functional, and pathway analyses of the DMR-associated genes showed significant enrichment for genes involved in neurological functions and neurodevelopmental processes frequently impacted by ASD. Notably, these genes also significantly overlap with autism risk genes as well as those previously identified in sperm from fathers of children with ASD in comparison to that of fathers of neurotypical children. These results collectively suggest a possible mechanism involving altered methylation of a significant number of neurologically relevant ASD risk genes for introducing epigenetic changes associated with environmental exposures into the sperm methylome. Such changes may provide the potential for transgenerational inheritance of ASD as well as other disorders.

14.
Cell Rep ; 40(8): 111189, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-36001972

RESUMEN

Oligodendrocyte dysfunction has been implicated in the pathogenesis of neurodegenerative diseases, so understanding oligodendrocyte activation states would shed light on disease processes. We identify three distinct activation states of oligodendrocytes from single-cell RNA sequencing (RNA-seq) of mouse models of Alzheimer's disease (AD) and multiple sclerosis (MS): DA1 (disease-associated1, associated with immunogenic genes), DA2 (disease-associated2, associated with genes influencing survival), and IFN (associated with interferon response genes). Spatial analysis of disease-associated oligodendrocytes (DAOs) in the cuprizone model reveals that DA1 and DA2 are established outside of the lesion area during demyelination and that DA1 repopulates the lesion during remyelination. Independent meta-analysis of human single-nucleus RNA-seq datasets reveals that the transcriptional responses of MS oligodendrocytes share features with mouse models. In contrast, the oligodendrocyte activation signature observed in human AD is largely distinct from those observed in mice. This catalog of oligodendrocyte activation states (http://research-pub.gene.com/OligoLandscape/) will be important to understand disease progression and develop therapeutic interventions.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Enfermedades Neurodegenerativas , Animales , Cuprizona/uso terapéutico , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/genética , Esclerosis Múltiple/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Oligodendroglía
15.
Nat Commun ; 13(1): 5538, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-36130949

RESUMEN

Maternal obesity during pregnancy is associated with neurodevelopmental disorder (NDD) risk. We utilized integrative multi-omics to examine maternal obesity effects on offspring neurodevelopment in rhesus macaques by comparison to lean controls and two interventions. Differentially methylated regions (DMRs) from longitudinal maternal blood-derived cell-free fetal DNA (cffDNA) significantly overlapped with DMRs from infant brain. The DMRs were enriched for neurodevelopmental functions, methylation-sensitive developmental transcription factor motifs, and human NDD DMRs identified from brain and placenta. Brain and cffDNA methylation levels from a large region overlapping mir-663 correlated with maternal obesity, metabolic and immune markers, and infant behavior. A DUX4 hippocampal co-methylation network correlated with maternal obesity, infant behavior, infant hippocampal lipidomic and metabolomic profiles, and maternal blood measurements of DUX4 cffDNA methylation, cytokines, and metabolites. We conclude that in this model, maternal obesity was associated with changes in the infant brain and behavior, and these differences were detectable in pregnancy through integrative analyses of cffDNA methylation with immune and metabolic factors.


Asunto(s)
Ácidos Nucleicos Libres de Células , Obesidad Materna , Animales , Biomarcadores/metabolismo , Encéfalo/metabolismo , Ácidos Nucleicos Libres de Células/metabolismo , Citocinas/metabolismo , ADN/metabolismo , Metilación de ADN , Epigénesis Genética , Femenino , Humanos , Lactante , Macaca mulatta/genética , Embarazo , Factores de Transcripción/metabolismo
16.
Genome Biol ; 23(1): 46, 2022 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-35168652

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) involves complex genetics interacting with the perinatal environment, complicating the discovery of common genetic risk. The epigenetic layer of DNA methylation shows dynamic developmental changes and molecular memory of in utero experiences, particularly in placenta, a fetal tissue discarded at birth. However, current array-based methods to identify novel ASD risk genes lack coverage of the most structurally and epigenetically variable regions of the human genome. RESULTS: We use whole genome bisulfite sequencing in placenta samples from prospective ASD studies to discover a previously uncharacterized ASD risk gene, LOC105373085, renamed NHIP. Out of 134 differentially methylated regions associated with ASD in placental samples, a cluster at 22q13.33 corresponds to a 118-kb hypomethylated block that replicates in two additional cohorts. Within this locus, NHIP is functionally characterized as a nuclear peptide-encoding transcript with high expression in brain, and increased expression following neuronal differentiation or hypoxia, but decreased expression in ASD placenta and brain. NHIP overexpression increases cellular proliferation and alters expression of genes regulating synapses and neurogenesis, overlapping significantly with known ASD risk genes and NHIP-associated genes in ASD brain. A common structural variant disrupting the proximity of NHIP to a fetal brain enhancer is associated with NHIP expression and methylation levels and ASD risk, demonstrating a common genetic influence. CONCLUSIONS: Together, these results identify and initially characterize a novel environmentally responsive ASD risk gene relevant to brain development in a hitherto under-characterized region of the human genome.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Trastorno del Espectro Autista/genética , Trastorno Autístico/complicaciones , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Encéfalo/metabolismo , Metilación de ADN , Epigénesis Genética , Epigenoma , Femenino , Genes Reguladores , Humanos , Recién Nacido , Placenta/metabolismo , Embarazo , Estudios Prospectivos
17.
Front Mol Neurosci ; 14: 671891, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149355

RESUMEN

Neurodevelopment in humans is a long, elaborate, and highly coordinated process involving three trimesters of prenatal development followed by decades of postnatal development and maturation. Throughout this period, the brain is highly sensitive and responsive to the external environment, which may provide a range of inputs leading to positive or negative outcomes. Fetal alcohol spectrum disorders (FASD) result from prenatal alcohol exposure (PAE). Although the molecular mechanisms of FASD are not fully characterized, they involve alterations to the regulation of gene expression via epigenetic marks. As in the prenatal stages, the postnatal period of neurodevelopment is also sensitive to environmental inputs. Often this sensitivity is reflected in children facing adverse conditions, such as maternal separation. This exposure to early life stress (ELS) is implicated in the manifestation of various behavioral abnormalities. Most FASD research has focused exclusively on the effect of prenatal ethanol exposure in isolation. Here, we review the research into the effect of prenatal ethanol exposure and ELS, with a focus on the continuum of epigenomic and transcriptomic alterations. Interestingly, a select few experiments have assessed the cumulative effect of prenatal alcohol and postnatal maternal separation stress. Regulatory regions of different sets of genes are affected by both treatments independently, and a unique set of genes are affected by the combination of treatments. Notably, epigenetic and gene expression changes converge at the clustered protocadherin locus and oxidative stress pathway. Functional studies using epigenetic editing may elucidate individual contributions of regulatory regions for hub genes and further profiling efforts may lead to the development of non-invasive methods to identify children at risk. Taken together, the results favor the potential to improve neurodevelopmental outcomes by epigenetic management of children born with FASD using favorable postnatal conditions with or without therapeutic interventions.

18.
Epigenetics Chromatin ; 14(1): 13, 2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750431

RESUMEN

BACKGROUND: Down syndrome (DS) is characterized by a genome-wide profile of differential DNA methylation that is skewed towards hypermethylation in most tissues, including brain, and includes pan-tissue differential methylation. The molecular mechanisms involve the overexpression of genes related to DNA methylation on chromosome 21. Here, we stably overexpressed the chromosome 21 gene DNA methyltransferase 3L (DNMT3L) in the human SH-SY5Y neuroblastoma cell line and assayed DNA methylation at over 26 million CpGs by whole genome bisulfite sequencing (WGBS) at three different developmental phases (undifferentiated, differentiating, and differentiated). RESULTS: DNMT3L overexpression resulted in global CpG and CpG island hypermethylation as well as thousands of differentially methylated regions (DMRs). The DNMT3L DMRs were skewed towards hypermethylation and mapped to genes involved in neurodevelopment, cellular signaling, and gene regulation. Consensus DNMT3L DMRs showed that cell lines clustered by genotype and then differentiation phase, demonstrating sets of common genes affected across neuronal differentiation. The hypermethylated DNMT3L DMRs from all pairwise comparisons were enriched for regions of bivalent chromatin marked by H3K4me3 as well as differentially methylated sites from previous DS studies of diverse tissues. In contrast, the hypomethylated DNMT3L DMRs from all pairwise comparisons displayed a tissue-specific profile enriched for regions of heterochromatin marked by H3K9me3 during embryonic development. CONCLUSIONS: Taken together, these results support a mechanism whereby regions of bivalent chromatin that lose H3K4me3 during neuronal differentiation are targeted by excess DNMT3L and become hypermethylated. Overall, these findings demonstrate that DNMT3L overexpression during neurodevelopment recreates a facet of the genome-wide DS DNA methylation signature by targeting known genes and gene clusters that display pan-tissue differential methylation in DS.


Asunto(s)
Metilación de ADN , Síndrome de Down , Línea Celular Tumoral , Islas de CpG , ADN , ADN (Citosina-5-)-Metiltransferasas/genética , Síndrome de Down/genética , Epigénesis Genética , Femenino , Humanos , Neuronas , Embarazo
19.
Genome Med ; 12(1): 88, 2020 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-33054850

RESUMEN

BACKGROUND: Autism spectrum disorder (ASD) is a neurodevelopmental disorder with complex heritability and higher prevalence in males. The neonatal epigenome has the potential to reflect past interactions between genetic and environmental factors during early development and influence future health outcomes. METHODS: We performed whole-genome bisulfite sequencing of 152 umbilical cord blood samples from the MARBLES and EARLI high-familial risk prospective cohorts to identify an epigenomic signature of ASD at birth. Samples were split into discovery and replication sets and stratified by sex, and their DNA methylation profiles were tested for differentially methylated regions (DMRs) between ASD and typically developing control cord blood samples. DMRs were mapped to genes and assessed for enrichment in gene function, tissue expression, chromosome location, and overlap with prior ASD studies. DMR coordinates were tested for enrichment in chromatin states and transcription factor binding motifs. Results were compared between discovery and replication sets and between males and females. RESULTS: We identified DMRs stratified by sex that discriminated ASD from control cord blood samples in discovery and replication sets. At a region level, 7 DMRs in males and 31 DMRs in females replicated across two independent groups of subjects, while 537 DMR genes in males and 1762 DMR genes in females replicated by gene association. These DMR genes were significantly enriched for brain and embryonic expression, X chromosome location, and identification in prior epigenetic studies of ASD in post-mortem brain. In males and females, autosomal ASD DMRs were significantly enriched for promoter and bivalent chromatin states across most cell types, while sex differences were observed for X-linked ASD DMRs. Lastly, these DMRs identified in cord blood were significantly enriched for binding sites of methyl-sensitive transcription factors relevant to fetal brain development. CONCLUSIONS: At birth, prior to the diagnosis of ASD, a distinct DNA methylation signature was detected in cord blood over regulatory regions and genes relevant to early fetal neurodevelopment. Differential cord methylation in ASD supports the developmental and sex-biased etiology of ASD and provides novel insights for early diagnosis and therapy.


Asunto(s)
Trastorno del Espectro Autista/etiología , Metilación de ADN , Epigenoma , Sangre Fetal , Genes Ligados a X , Neurogénesis , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Biomarcadores , Encéfalo/metabolismo , Preescolar , Biología Computacional/métodos , Epigénesis Genética , Recuento de Eritrocitos , Femenino , Regulación de la Expresión Génica , Humanos , Lactante , Recién Nacido , Aprendizaje Automático , Masculino , Especificidad de Órganos/genética , Pronóstico
20.
Epigenetics ; 14(7): 672-684, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31010359

RESUMEN

Down Syndrome (DS) is the most common genetic cause of intellectual disability, in which an extra copy of human chromosome 21 (HSA21) affects regional DNA methylation profiles across the genome. Although DNA methylation has been previously examined at select regulatory regions across the genome in a variety of DS tissues and cells, differentially methylated regions (DMRs) have yet to be examined in an unbiased sequencing-based approach. Here, we present the first analysis of DMRs from whole genome bisulfite sequencing (WGBS) data of human DS and matched control brain, specifically frontal cortex. While no global differences in DNA methylation were observed, we identified 3,152 DS-DMRs across the entire genome, the majority of which were hypermethylated in DS. DS-DMRs were significantly enriched at CpG islands and de-enriched at specific gene body and regulatory regions. Functionally, the hypermethylated DS-DMRs were enriched for one-carbon metabolism, membrane transport, and glutamatergic synaptic signalling, while the hypomethylated DMRs were enriched for proline isomerization, glial immune response, and apoptosis. Furthermore, in a cross-tissue comparison to previous studies of DNA methylation from diverse DS tissues and reference epigenomes, hypermethylated DS-DMRs showed a strong cross-tissue concordance, while a more tissue-specific pattern was observed for the hypomethylated DS-DMRs. Overall, this approach highlights that low-coverage WGBS of clinical samples can identify epigenetic alterations to known biological pathways, which are potentially relevant to therapeutic treatments and include metabolic pathways. These results also provide new insights into the genome-wide effects of genetic alterations on DNA methylation profiles indicative of altered neurodevelopment and brain function.


Asunto(s)
Encéfalo/metabolismo , Metilación de ADN/genética , Síndrome de Down/genética , Lóbulo Frontal/metabolismo , Encéfalo/patología , Islas de CpG/genética , Síndrome de Down/patología , Epigénesis Genética/genética , Lóbulo Frontal/patología , Genoma Humano/genética , Humanos , Masculino , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA