Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Hum Mol Genet ; 31(17): 2951-2963, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-35416977

RESUMEN

Pierpont syndrome is a rare disorder characterized mainly by global developmental delay, unusual facial features, altered fat distribution in the limbs and hearing loss. A specific mutation (p.Tyr446Cys) in TBL1XR1, encoding a WD40 repeat-containing protein, which is a component of the SMRT/NCoR (silencing mediator retinoid and thyroid hormone receptors/nuclear receptor corepressors), has been reported as the genetic cause of Pierpont syndrome. Here, we used CRISPR-cas9 technology to generate a mutant mouse with the Y446C mutation in Tbl1xr1, which is also present in Pierpont syndrome. Several aspects of the phenotype were studied in the mutant mice: growth, body composition, hearing, motor behavior, thyroid hormone state and lipid and glucose metabolism. The mutant mice (Tbl1xr1Y446C/Y446C) displayed delayed growth, altered body composition with increased relative lean mass and impaired hearing. Expression of several genes involved in fatty acid metabolism differed in white adipose tissue, but not in liver or muscle of mutant mice compared to wild-type mice (Tbl1xr1+/+). No difference in thyroid hormone plasma concentrations was observed. Tbl1xr1Y446C/Y446C mice can be used as a model for distinct features of Pierpont syndrome, which will enable future studies on the pathogenic mechanisms underlying the various phenotypic characteristics.


Asunto(s)
Proteínas Nucleares , Proteínas Represoras , Animales , Discapacidades del Desarrollo , Modelos Animales de Enfermedad , Facies , Lipomatosis , Ratones , Mutación , Proteínas Nucleares/genética , Receptores de Hormona Tiroidea/genética , Receptores de Hormona Tiroidea/metabolismo , Proteínas Represoras/genética , Hormonas Tiroideas
2.
Am J Hum Genet ; 108(1): 115-133, 2021 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-33308444

RESUMEN

Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a member of a small family of multifunctional cell surface-anchored glycoproteins functioning as co-receptors for a variety of growth factors. Here we report that bi-allelic inactivating variants in SCUBE3 have pleiotropic consequences on development and cause a previously unrecognized syndromic disorder. Eighteen affected individuals from nine unrelated families showed a consistent phenotype characterized by reduced growth, skeletal features, distinctive craniofacial appearance, and dental anomalies. In vitro functional validation studies demonstrated a variable impact of disease-causing variants on transcript processing, protein secretion and function, and their dysregulating effect on bone morphogenetic protein (BMP) signaling. We show that SCUBE3 acts as a BMP2/BMP4 co-receptor, recruits the BMP receptor complexes into raft microdomains, and positively modulates signaling possibly by augmenting the specific interactions between BMPs and BMP type I receptors. Scube3-/- mice showed craniofacial and dental defects, reduced body size, and defective endochondral bone growth due to impaired BMP-mediated chondrogenesis and osteogenesis, recapitulating the human disorder. Our findings identify a human disease caused by defective function of a member of the SCUBE family, and link SCUBE3 to processes controlling growth, morphogenesis, and bone and teeth development through modulation of BMP signaling.


Asunto(s)
Huesos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Discapacidades del Desarrollo/metabolismo , Osteogénesis/fisiología , Transducción de Señal/fisiología , Animales , Proteína Morfogenética Ósea 2/metabolismo , Proteína Morfogenética Ósea 4/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular , Línea Celular Tumoral , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Células HEK293 , Células Hep G2 , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Células MCF-7 , Masculino , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL
3.
Genet Med ; 26(3): 101050, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38126281

RESUMEN

PURPOSE: Hao-Fountain syndrome (HAFOUS) is a neurodevelopmental disorder caused by pathogenic variants in USP7. HAFOUS is characterized by developmental delay, intellectual disability, speech delay, behavioral abnormalities, autism spectrum disorder, seizures, hypogonadism, and mild dysmorphic features. We investigated the phenotype of 18 participants with HAFOUS and performed DNA methylation (DNAm) analysis, aiming to generate a diagnostic biomarker. Furthermore, we performed comparative analysis with known episignatures to gain more insight into the molecular pathophysiology of HAFOUS. METHODS: We assessed genomic DNAm profiles of 18 individuals with pathogenic variants and variants of uncertain significance (VUS) in USP7 to map and validate a specific episignature. The comparison between the USP7 cohort and 56 rare genetic disorders with earlier reported DNAm episignatures was performed with statistical and functional correlation. RESULTS: We mapped a sensitive and specific DNAm episignature for pathogenic variants in USP7 and utilized this to reclassify the VUS. Comparative epigenomic analysis showed evidence of HAFOUS similarity to a number of other rare genetic episignature disorders. CONCLUSION: We discovered a sensitive and specific DNAm episignature as a robust diagnostic biomarker for HAFOUS that enables VUS reclassification in USP7. We also expand the phenotypic spectrum of 9 new and 5 previously reported individuals with HAFOUS.


Asunto(s)
Anomalías Múltiples , Trastorno del Espectro Autista , Enfermedades del Desarrollo Óseo , Anomalías Craneofaciales , Sordera , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN/genética , Trastorno del Espectro Autista/genética , Peptidasa Específica de Ubiquitina 7/genética , Epigenómica , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Trastornos del Neurodesarrollo/genética , Fenotipo , Biomarcadores
4.
Genet Med ; 25(8): 100871, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37120726

RESUMEN

PURPOSE: HNRNPU haploinsufficiency is associated with developmental and epileptic encephalopathy 54. This neurodevelopmental disorder is characterized by developmental delay, intellectual disability, speech impairment, and early-onset epilepsy. We performed genome-wide DNA methylation (DNAm) analysis in a cohort of individuals to develop a diagnostic biomarker and gain functional insights into the molecular pathophysiology of HNRNPU-related disorder. METHODS: DNAm profiles of individuals carrying pathogenic HNRNPU variants, identified through an international multicenter collaboration, were assessed using Infinium Methylation EPIC arrays. Statistical and functional correlation analyses were performed comparing the HNRNPU cohort with 56 previously reported DNAm episignatures. RESULTS: A robust and reproducible DNAm episignature and global DNAm profile were identified. Correlation analysis identified partial overlap and similarity of the global HNRNPU DNAm profile to several other rare disorders. CONCLUSION: This study demonstrates new evidence of a specific and sensitive DNAm episignature associated with pathogenic heterozygous HNRNPU variants, establishing its utility as a clinical biomarker for the expansion of the EpiSign diagnostic test.


Asunto(s)
Metilación de ADN , Trastornos del Neurodesarrollo , Humanos , Metilación de ADN/genética , Epigenómica , Fenotipo , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Biomarcadores
5.
Am J Med Genet A ; 191(2): 479-489, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36380655

RESUMEN

To optimize care for children with Marfan syndrome (MFS) in the Netherlands, Dutch MFS growth charts were constructed. Additionally, we aimed to investigate the effect of FBN1 variant type (haploinsufficiency [HI]/dominant negative [DN]) on growth, and compare MFS-related height increase across populations. Height and weight data of individuals with MFS aged 0-21 years were retrospectively collected. Generalized Additive Models for Location, Scale and Shape (GAMLSS) was used for growth chart modeling. To investigate genotype-phenotype relationships, FBN1 variant type was included as an independent variable in height-for-age and BMI-for-age models. MFS-related height increase was compared with that of previous MFS growth studies from the United States, Korea, and France. Height and weight data of 389 individuals with MFS were included (210 males). Height-for-age, BMI-for-age, and weight-for-height charts reflected the tall and slender MFS habitus throughout childhood. Mean increase in height of individuals with MFS compared with the general Dutch population was significantly lower than in the other three MFS populations compared to their reference populations. FBN1-HI variants were associated with taller height in both sexes, and decreased BMI in females (p-values <0.05). This Dutch MFS growth study broadens the notion that genetic background and MFS variant type (HI/DN) influence tall and slender stature in MFS.


Asunto(s)
Síndrome de Marfan , Masculino , Femenino , Humanos , Síndrome de Marfan/diagnóstico , Síndrome de Marfan/epidemiología , Síndrome de Marfan/genética , Gráficos de Crecimiento , Estudios Retrospectivos , Países Bajos/epidemiología , Mutación , Genotipo , Fenotipo , Fibrilina-1/genética
6.
Int J Mol Sci ; 24(7)2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-37047575

RESUMEN

Fetal alcohol spectrum disorder (FASD) encompasses neurodevelopmental disabilities and physical birth defects associated with prenatal alcohol exposure. Previously, we attempted to identify epigenetic biomarkers for FASD by investigating the genome-wide DNA methylation (DNAm) profiles of individuals with FASD compared to healthy controls. In this study, we generated additional gene expression profiles in a subset of our previous FASD cohort, encompassing the most severely affected individuals, to examine the functional integrative effects of altered DNAm status on gene expression. We identified six differentially methylated regions (annotated to the SEC61G, REEP3, ZNF577, HNRNPF, MSC, and SDHAF1 genes) associated with changes in gene expression (p-value < 0.05). To the best of our knowledge, this study is the first to assess whole blood gene expression and DNAm-gene expression associations in FASD. Our results present novel insights into the molecular footprint of FASD in whole blood and opens opportunities for future research into multi-omics biomarkers for the diagnosis of FASD.


Asunto(s)
Trastornos del Espectro Alcohólico Fetal , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Embarazo , Trastornos del Espectro Alcohólico Fetal/diagnóstico , Trastornos del Espectro Alcohólico Fetal/genética , Efectos Tardíos de la Exposición Prenatal/genética , Fenotipo , Metilación de ADN , Biomarcadores , Canales de Translocación SEC/genética
7.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-36430143

RESUMEN

Clark-Baraitser syndrome is a rare autosomal dominant intellectual disability syndrome caused by pathogenic variants in the TRIP12 (Thyroid Hormone Receptor Interactor 12) gene. TRIP12 encodes an E3 ligase in the ubiquitin pathway. The ubiquitin pathway includes activating E1, conjugating E2 and ligating E3 enzymes which regulate the breakdown and sorting of proteins. This enzymatic pathway is crucial for physiological processes. A significant proportion of TRIP12 variants are currently classified as variants of unknown significance (VUS). Episignatures have been shown to represent a powerful diagnostic tool to resolve inconclusive genetic findings for Mendelian disorders and to re-classify VUSs. Here, we show the results of DNA methylation episignature analysis in 32 individuals with pathogenic, likely pathogenic and VUS variants in TRIP12. We identified a specific and sensitive DNA methylation (DNAm) episignature associated with pathogenic TRIP12 variants, establishing its utility as a clinical biomarker for Clark-Baraitser syndrome. In addition, we performed analysis of differentially methylated regions as well as functional correlation of the TRIP12 genome-wide methylation profile with the profiles of 56 additional neurodevelopmental disorders.


Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X , Humanos , Facies , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina/metabolismo , Proteínas Portadoras/metabolismo
8.
Eur J Pediatr ; 180(7): 2333-2338, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33585976

RESUMEN

Screening for hypo- or hyperthyroidism in adults is generally done by measuring the serum thyrotropin (thyroid-stimulating hormone, TSH) concentration. This is an efficient approach in case of suspected acquired thyroid disease. However, in infants and children, congenital hypothalamus-pituitary-thyroid (HPT) axis disorders also need to be considered, including primary and central congenital hypothyroidism, and even rarer thyroid hormone receptor and transporter defects. In primary congenital hypothyroidism, TSH will be elevated, but in the other congenital HPT axis disorders, TSH is usually within the normal range. Free thyroxine (FT4) assessment is essential for the diagnosis in these conditions.Conclusion: Here we discuss a number of rare congenital HPT axis disorders in which TSH is normal, but FT4 is low, and provide a clinical algorithm to distinguish between these disorders. What is Known: • A single thyroid-stimulating hormone (TSH) measurement is an appropriate screening method for primary hypothyroidism. • For central hypothyroidism and rare thyroid hormone receptor and transporter defects a free thyroxine (FT4) measurement is essential for the diagnosis because TSH is usually normal. What is New: • Here we present a new problem-oriented clinical algorithm including a diagnostic flow-chart for low FT4 and normal TSH in infants and children.


Asunto(s)
Hipotiroidismo Congénito , Enfermedades de la Tiroides , Adulto , Niño , Hipotiroidismo Congénito/diagnóstico , Humanos , Lactante , Enfermedades de la Tiroides/diagnóstico , Pruebas de Función de la Tiroides , Tirotropina , Tiroxina
9.
Gene ; 927: 148707, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885822

RESUMEN

Transducin ß-like 1 X-linked receptor 1 (mouse Tbl1xr1) or TBL1X/Y related 1 (human TBL1XR1), part of the NCoR/SMRT corepressor complex, is involved in nuclear receptor signaling. Variants in TBL1XR1 cause a variety of neurodevelopmental disorders including Pierpont syndrome caused by the p.Tyr446Cys variant. We recently reported a mouse model carrying the Tbl1xr1Y446C/Y446C variant as a model for Pierpont syndrome. To obtain insight into mechanisms involved in altered brain development we studied gene expression patterns in the cortex of mutant and wild type (WT) mice, using RNA-sequencing, differentially expressed gene (DEG) analysis, gene set enrichment analysis (GSEA), weighted gene correlation network analysis (WGCNA) and hub gene analysis. We validated results in mutated mouse cortex, as well as in BV2 and SK-N-AS cell lines, in both of which Tbl1xr1 was knocked down by siRNA. Two DEGs (adj.P. Val < 0.05) were found in the cortex, Mpeg1 (downregulated in mutant mice) and 2900052N01Rik (upregulated in mutant mice). GSEA, WGCNA and hub gene analysis demonstrated changes in genes involved in ion channel function and neuroinflammation in the cortex of the Tbl1xr1Y446C/Y446C mice. The lowered expression of ion channel genes Kcnh3 and Kcnj4 mRNA was validated in the mutant mouse cortex, and increased expression of TRIM9, associated with neuroinflammation, was confirmed in the SK-N-AS cell line. Conclusively, our results show altered expression of genes involved in ion channel function and neuroinflammation in the cortex of the Tbl1xr1Y446C/Y446C mice. These may partly explain the impaired neurodevelopment observed in individuals with Pierpont syndrome and related TBL1XR1-related disorders.


Asunto(s)
Corteza Cerebral , Receptores Citoplasmáticos y Nucleares , Proteínas Represoras , Animales , Humanos , Masculino , Ratones , Línea Celular , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
10.
Thyroid ; 34(5): 559-565, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38563802

RESUMEN

Background: Initial evaluation of the hypothalamus-pituitary-thyroid axis is done by measuring serum free thyroxine (fT4) and thyrotropin concentrations. For correct interpretation of these measurements, reliable age-specific reference intervals (RIs) are fundamental. Since neonatal fT4 RIs conforming to the Clinical and Laboratory Standards Institute guidelines are not available for all assays, we set out to create literature-based uniform age-specific neonatal fT4 RIs that may be used for every assay. Methods: For meta-analysis of individual participant fT4 concentrations, we systematically searched MEDLINE and Embase (search date December 6, 2023; PROSPERO registration CRD42016041871). We searched for studies reporting fT4 concentrations in healthy term newborns aged 2-27 days, born to mothers without thyroid disease in iodine-sufficient regions. Authors were invited to supply data. Due to standardization differences between assays, data could not be combined for meta-analysis directly, and we attempted to normalize the data using two distinct methods. Results: We obtained 4206 fT4 concentrations from 20 studies that used 13 different assays from 6 manufacturers. First, we set out to normalize fT4 data using the mean and standard deviation of (assay-specific) adult RIs. fT4 concentrations were transformed into Z-scores, assuming a normal distribution. Using a linear mixed-effects model (LMM), we still found a significant difference between fT4 concentration across studies (p < 0.001), after this normalization. As a second approach, we normalized the fT4 concentrations using data from a method/assay comparison study. We used the relationship between the Cobas assay and the other assays as a reference point to convert all values to Cobas values. However, this method also failed to produce consistent results, with significant differences between the normalized data (LMM p < 0.001). Conclusions: We conclude that our attempts at normalizing fT4 assay results were unsuccessful. Confounders related to our unsuccessful analysis may be assay related and/or biological. These findings have significant implications for patient care, since relying on RIs from literature may result in erroneous interpretation of results. Therefore, we strongly recommend to establish local RIs for accurate interpretation of serum fT4 concentrations in neonates.


Asunto(s)
Tiroxina , Humanos , Tiroxina/sangre , Recién Nacido , Valores de Referencia , Pruebas de Función de la Tiroides/normas , Femenino , Tirotropina/sangre , Masculino , Tamizaje Neonatal/métodos
11.
Clin Obes ; 14(4): e12661, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38596856

RESUMEN

Most patients with GNB1 encephalopathy have developmental delay and/or intellectual disability, brain anomalies and seizures. Recently, two cases with GNB1 encephalopathy caused by haploinsufficiency have been reported that also show a Prader-Willi-like phenotype of childhood hypotonia and severe obesity. Here we present three new cases from our expert centre for genetic obesity in which GNB1 truncating and splice variants, probably leading to haploinsufficiency, were identified. They all have obesity, hyperphagia and intellectual deficit. The clinical cases and their weight courses are presented, together with a review of all 68 published cases with GNB1 encephalopathy. Information on weight was not mentioned in most of these articles, so we contacted authors for additional clinical information on weight status and hyperphagia. Of the 42 patients whose weight status we could determine, obesity was present in 8 patients (19%). Obesity is significantly over-represented in the group with truncating and splicing variants. In this group, we see an obesity prevalence of 75%. Since GNB1 has been linked to several key genes in the hypothalamic leptin-melanocortin pathway, which regulates satiety and energy expenditure, our data support the potential association between GNB1 haploinsufficiency and genetic obesity. We also suggest GNB1 is a candidate gene for the known obesity phenotype of the 1p36 microdeletion syndrome given this chromosomal region includes the GNB1 gene. Knowledge of an additional obesity phenotype is important for prognosis, early interventions against obesity and awareness when prescribing weight-inducing medication.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP , Haploinsuficiencia , Obesidad , Humanos , Masculino , Femenino , Subunidades beta de la Proteína de Unión al GTP/genética , Obesidad/genética , Niño , Discapacidad Intelectual/genética , Preescolar , Fenotipo , Adolescente , Hiperfagia/genética , Adulto
12.
HGG Adv ; 5(3): 100287, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38553851

RESUMEN

CREB-binding protein (CBP, encoded by CREBBP) and its paralog E1A-associated protein (p300, encoded by EP300) are involved in histone acetylation and transcriptional regulation. Variants that produce a null allele or disrupt the catalytic domain of either protein cause Rubinstein-Taybi syndrome (RSTS), while pathogenic missense and in-frame indel variants in parts of exons 30 and 31 cause phenotypes recently described as Menke-Hennekam syndrome (MKHK). To distinguish MKHK subtypes and define their characteristics, molecular and extended clinical data on 82 individuals (54 unpublished) with variants affecting CBP (n = 71) or p300 (n = 11) (NP_004371.2 residues 1,705-1,875 and NP_001420.2 residues 1,668-1,833, respectively) were summarized. Additionally, genome-wide DNA methylation profiles were assessed in DNA extracted from whole peripheral blood from 54 individuals. Most variants clustered closely around the zinc-binding residues of two zinc-finger domains (ZZ and TAZ2) and within the first α helix of the fourth intrinsically disordered linker (ID4) of CBP/p300. Domain-specific methylation profiles were discerned for the ZZ domain in CBP/p300 (found in nine out of 10 tested individuals) and TAZ2 domain in CBP (in 14 out of 20), while a domain-specific diagnostic episignature was refined for the ID4 domain in CBP/p300 (in 21 out of 21). Phenotypes including intellectual disability of varying degree and distinct physical features were defined for each of the regions. These findings demonstrate existence of at least three MKHK subtypes, which are domain specific (MKHK-ZZ, MKHK-TAZ2, and MKHK-ID4) rather than gene specific (CREBBP/EP300). DNA methylation episignatures enable stratification of molecular pathophysiologic entities within a gene or across a family of paralogous genes.


Asunto(s)
Proteína de Unión a CREB , Metilación de ADN , Proteína p300 Asociada a E1A , Humanos , Metilación de ADN/genética , Proteína de Unión a CREB/genética , Masculino , Proteína p300 Asociada a E1A/genética , Femenino , Niño , Adolescente , Preescolar , Adulto , Fenotipo , Adulto Joven , Síndrome de Rubinstein-Taybi/genética , Mutación , Dominios Proteicos/genética
13.
HGG Adv ; 5(3): 100289, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38571311

RESUMEN

Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder caused by pathogenic variants in TCF4, leading to intellectual disability, specific morphological features, and autonomic nervous system dysfunction. Epigenetic dysregulation has been implicated in PTHS, prompting the investigation of a DNA methylation (DNAm) "episignature" specific to PTHS for diagnostic purposes and variant reclassification and functional insights into the molecular pathophysiology of this disorder. A cohort of 67 individuals with genetically confirmed PTHS and three individuals with intellectual disability and a variant of uncertain significance (VUS) in TCF4 were studied. The DNAm episignature was developed with an Infinium Methylation EPIC BeadChip array analysis using peripheral blood cells. Support vector machine (SVM) modeling and clustering methods were employed to generate a DNAm classifier for PTHS. Validation was extended to an additional cohort of 11 individuals with PTHS. The episignature was assessed in relation to other neurodevelopmental disorders and its specificity was examined. A specific DNAm episignature for PTHS was established. The classifier exhibited high sensitivity for TCF4 haploinsufficiency and missense variants in the basic-helix-loop-helix domain. Notably, seven individuals with TCF4 variants exhibited negative episignatures, suggesting complexities related to mosaicism, genetic factors, and environmental influences. The episignature displayed degrees of overlap with other related disorders and biological pathways. This study defines a DNAm episignature for TCF4-related PTHS, enabling improved diagnostic accuracy and VUS reclassification. The finding that some cases scored negatively underscores the potential for multiple or nested episignatures and emphasizes the need for continued investigation to enhance specificity and coverage across PTHS-related variants.


Asunto(s)
Metilación de ADN , Hiperventilación , Discapacidad Intelectual , Factor de Transcripción 4 , Humanos , Factor de Transcripción 4/genética , Hiperventilación/genética , Hiperventilación/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Femenino , Masculino , Niño , Facies , Adolescente , Epigenómica/métodos , Epigénesis Genética , Hipercinesia/genética , Preescolar , Adulto , Adulto Joven
14.
J Crohns Colitis ; 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37526299

RESUMEN

INTRODUCTION: Predictive biomarkers for treatment efficacy of ulcerative colitis (UC) treatments are lacking. Here, we performed a longitudinal study investigating the association and potential predictive power of genome-wide peripheral blood (PB) DNA methylation signatures and response to tofacitinib treatment in UC. METHODS: We recruited moderate-to-severe UC patients starting tofacitinib treatment and measured PB DNA methylation profiles at baseline (T1), after 8 weeks (T2), and in a subset (n=8), after a median of 20 weeks (T3) using the Illumina Infinium HumanMethylation EPIC BeadChip. After 8 weeks, we categorized responders (R) from non-responders (NR) based on a centrally read endoscopic response (decrease in endoscopic mayo score ≥1 or UCEIS ≥2) combined with corticosteroid-free clinical- and/or biochemical response. T1 PB samples were used for biomarker identification, while T2 and publicly available intra-class correlation (ICC) data were used for stability analyses. RNA-sequencing was performed to understand the downstream effects of the predictor CpG loci. RESULTS: In total, 16 R and 15 NR patients with a median disease duration of 7 (4-12) years and overall comparable patient characteristics at baseline were analyzed. We identified a panel of 53 differentially methylated positions (DMPs) associated with response to tofacitinib (AUROC 0.74). Most DMPs (77%) demonstrated both short- and long-term hyper stability (ICC ≥0.90), irrespective of inflammatory status. Gene expression analysis showed lower FGFR2 (pBH=0.011) and LRPAP1 (pBH=0.020), and higher OR2L13 (pBH=0.016) expression at T1 in R compared to NR. CONCLUSION: Our observations demonstrate the utility of genome-wide PB DNA methylation signatures to predict response to tofacitinib.

15.
Thyroid ; 33(1): 53-62, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36326208

RESUMEN

Background: In Down syndrome (DS), there is high occurrence of congenital hypothyroidism (CH) and subclinical hypothyroidism (SH) early in life. The etiology of CH and early SH in DS remains unclear. Previous research has shown genome-wide transcriptional and epigenetic alterations in DS. Thus, we hypothesized that CH and early SH could be caused by epigenetically driven transcriptional downregulation of thyroid-related genes, through promoter region hypermethylation. Methods: We extracted whole blood DNA methylation (DNAm) profiles of DS and non-DS individuals from four independent Illumina array-based datasets (252 DS individuals and 519 non-DS individuals). The data were divided into discovery and validation datasets. Epigenome-wide association analysis was performed using a linear regression model, after which we filtered results for thyroid-related genes. Results: In the discovery dataset, we identified significant associations for DS in 18 thyroid-related genes. Twenty-one of 30 significant differentially methylated positions (DMPs) were also significant in the validation dataset. A meta-analysis of the discovery and validation datasets detected 31 DMPs, including 29 promoter-associated cytosine-guanine dinucleotides (CpG) with identical direction of effect across the datasets, and two differentially methylated regions. Twenty-seven DMPs were hypomethylated and promoter associated. The mean methylation difference of hypomethylated thyroid-related DMPs decreased with age. Conclusions: Contrary to our hypothesis of generalized hypermethylation of promoter regions of thyroid-related genes-indicative of epigenetic silencing of promoters and subsequent transcriptional downregulation, causing biochemical thyroid abnormalities in DS-we found an enrichment of hypomethylated DMPs annotated to promoter regions of these genes. This suggests that CH and early SH in DS are not caused by differential methylation of thyroid-related genes. Considering that epigenetic regulation is dynamic, we hypothesize that the observed thyroid-related gene DNAm changes could be a rescue phenomenon in an attempt to ameliorate the thyroid phenotype, through epigenetic upregulation of thyroid-related genes. This hypothesis is supported by the finding of decreasing methylation difference of thyroid-related genes with age. The prevalence of early SH declines with age, so hypothetically, epigenetic upregulation of thyroid-related genes also diminishes. While this study provides interesting insights, the exact origin of CH and early SH in DS remains unknown.


Asunto(s)
Metilación de ADN , Síndrome de Down , Humanos , Epigénesis Genética , Síndrome de Down/genética , Glándula Tiroides , Fenotipo
16.
Thyroid ; 32(4): 472-474, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35102753

RESUMEN

Pathogenic variants in TSHB are known to cause severe isolated central congenital hypothyroidism (CH). In this study, we present the clinical, biochemical, and genetic features of the first patient with a mild central CH phenotype. We identified a novel homozygous variant in TSHB: (Chr1: NM_000549.5):c.290A>G p.(Tyr97Cys) in a newborn girl detected by neonatal CH screening, whose central CH was initially overlooked because of misinterpretation of her plasma-free thyroxine (fT4) concentration. This report adds to the phenotypic spectrum of TSHB variants and underlines the importance of using age-specific fT4 reference intervals to diagnose central CH.


Asunto(s)
Hipotiroidismo Congénito , Hipotiroidismo Congénito/diagnóstico , Hipotiroidismo Congénito/genética , Femenino , Homocigoto , Humanos , Recién Nacido , Tamizaje Neonatal , Valores de Referencia , Pruebas de Función de la Tiroides , Hormonas Tiroideas , Tiroxina/uso terapéutico
17.
J Endocr Soc ; 6(4): bvac019, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-35233476

RESUMEN

CONTEXT: Natriuretic peptide receptor-C (NPR-C, encoded by NPR3) belongs to a family of cell membrane-integral proteins implicated in various physiological processes, including longitudinal bone growth. NPR-C acts as a clearance receptor of natriuretic peptides, including C-type natriuretic peptide (CNP), that stimulate the cGMP-forming guanylyl cyclase-coupled receptors NPR-A and NPR-B. Pathogenic variants in CNP, NPR2, and NPR3 may cause a tall stature phenotype associated with macrodactyly of the halluces and epiphyseal dysplasia. OBJECTIVE: Here we report on a boy with 2 novel biallelic inactivating variants of NPR3. METHODS: History and clinical characteristics were collected. Biochemical indices of natriuretic peptide clearance and in vitro cellular localization of NPR-C were studied to investigate causality of the identified variants. RESULTS: We identified 2 novel compound heterozygous NPR3 variants c.943G>A p.(Ala315Thr) and c.1294A>T p.(Ile432Phe) in a boy with tall stature and macrodactyly of the halluces. In silico analysis indicated decreased stability of NPR-C, presumably resulting in increased degradation or trafficking defects. Compared to other patients with NPR-C loss-of-function, the phenotype seemed to be milder: pseudo-epiphyses in hands and feet were absent, biochemical features were less severe, and there was some co-localization of p.(Ile432Phe) NPR-C with the cell membrane, as opposed to complete cytoplasmic retention. CONCLUSION: With this report on a boy with tall stature and macrodactyly of the halluces we further broaden the genotypic and phenotypic spectrum of NPR-C-related tall stature.

18.
Artículo en Inglés | MEDLINE | ID: mdl-35848593

RESUMEN

Isolated aldosterone synthase deficiency is a rare autosomal recessive disorder caused by pathogenic variants in CYP11B2, resulting in impaired aldosterone synthesis. We report on a neonate with isolated aldosterone synthase deficiency caused by a novel homozygous CYP11B2 variant Chr8:NM_000498.3:c.400G>A p.(Gly134Arg). The patient presented shortly after birth with severe signs of aldosterone deficiency. Interestingly, segregation analysis revealed that the patient's asymptomatic father was also homozygous for the CYP11B2 variant. Biochemical evaluation of the father indicated subclinical enzyme impairment, characterized by elevated aldosterone precursors. Apparently, this homozygous variant led to different clinical phenotypes in two affected relatives. In this manuscript we elaborate on the performed biochemical and genetic work-up and describe potential pitfalls of CYP11B2 sequencing due to its homology to CYP11B2.

19.
Front Endocrinol (Lausanne) ; 12: 686317, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566885

RESUMEN

Central congenital hypothyroidism (CH) is defined as thyroid hormone (TH) deficiency at birth due to insufficient stimulation by the pituitary of the thyroid gland. The incidence of central CH is currently estimated at around 1:13,000. Central CH may occur in isolation, but in the majority of cases (60%) it is part of combined pituitary hormone deficiencies (CPHD). In recent years several novel genetic causes of isolated central CH have been discovered (IGSF1, TBL1X, IRS4), and up to 90% of isolated central CH cases can be genetically explained. For CPHD the etiology usually remains unknown, although pituitary stalk interruption syndrome does seem to be the most common anatomic pituitary malformation associated with CPHD. Recent studies have shown that central CH is a more severe condition than previously thought, and that early detection and treatment leads to good neurodevelopmental outcome. However, in the neonatal period the clinical diagnosis is often missed despite hospital admission because of feeding problems, hypoglycemia and prolonged jaundice. This review provides an update on the etiology and prognosis of central CH, and a practical approach to diagnosis and management of this intriguing condition.


Asunto(s)
Hipotiroidismo Congénito/diagnóstico , Tiroxina/uso terapéutico , Hipotiroidismo Congénito/tratamiento farmacológico , Hipotiroidismo Congénito/genética , Terapia de Reemplazo de Hormonas , Humanos , Inmunoglobulinas/genética , Recién Nacido , Proteínas Sustrato del Receptor de Insulina/genética , Proteínas de la Membrana/genética , Tamizaje Neonatal , Pronóstico , Tirotropina de Subunidad beta/genética , Transducina/genética
20.
Thyroid ; 31(11): 1757-1762, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34382419

RESUMEN

Background: Pituitary resistance to thyroid hormone (PRTH) is often seen in congenital hypothyroidism (CH), presenting as elevated thyrotropin (TSH) values despite (high-)normal thyroid hormone (TH) values achieved by levothyroxine treatment. In this study, we describe a girl with CH who was referred because of difficulties interpreting thyroid function tests. She was thought to have PRTH associated with CH, but genetic studies discovered a pathogenic variant in THRB, causing resistance to TH (RTH-ß). Methods: Clinical, genetic, and biochemical data of the proband's family were collected. Results: The 3-year-old girl was diagnosed with CH due to a homozygous pathogenic c.470del p.(Asn157Thrfs*3) SLC5A5 variant in the neonatal period. She needed a notably high levothyroxine dose to normalize TSH, leading to high free thyroxine levels. There were no signs of hyperthyroidism. Sequencing identified a heterozygous pathogenic c.947G>A p.(Arg316His) THRB variant. Conclusions: To our knowledge, this is the first report of concomitant SLC5A5 and THRB variants causing CH and RTH-ß.


Asunto(s)
Hipotiroidismo Congénito/tratamiento farmacológico , Hipotiroidismo Congénito/genética , Receptores beta de Hormona Tiroidea/genética , Síndrome de Resistencia a Hormonas Tiroideas/genética , Tiroxina/uso terapéutico , Preescolar , Consanguinidad , Femenino , Humanos , Linaje , Simportadores , Turquía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA