Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mikrochim Acta ; 185(2): 115, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29594454

RESUMEN

The manuscript reports on the preparation of ß-cyclodextrin-modified nanodiamonds (ßCD-ND) for the extraction and preconcentration of the fluorescent anticancer drug doxorubicin (DOX) from biological samples. The inclusion of DOX into the cavities of ß- and γ-cyclodextrin (CD) confirms their utility for selective extraction and elution of the drug based on its good fit to the cyclodextrin cavity. Although both larger cyclodextrins (ßCD and γCD) accommodate DOX, DOX clearly prefers the bigger γCD cavities. Dispersive micro solid-phase extraction using ßCD-ND as sorbent enables the inclusion complexation of DOX. The elution of DOX from ßCD-ND cavities occurs with a basic solution of γCD containing 10% acetonitrile owing to the preferential affinity (i.e. optimal fit) of DOX into the larger γCD cavity. DOX is quantified by monitoring its intrinsic fluorescence (exc/em = 475/595 nm). The method can determine DOX in urine with a limit of detection of 18 ng·mL-1. Recoveries (93.2% and 94.0%) and precision (RSDs of 5.9% and 4.7%) at 100 and 400 ng·mL-1 DOX levels in urine are satisfactory. The matrix effect is negligible even when working with undiluted urine samples. Graphical abstract Nanodiamonds functionalized with ß-cyclodextrin (ßCD-ND) were used as sorbent for the determination of nanomolar levels of doxorubicin (DOX). It is based on host:guest interactions ruled by different stabilities of DOX within cyclodextrin (CD) cavity-size: ßCD/γCD.

2.
Analyst ; 141(9): 2682-7, 2016 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-26870854

RESUMEN

A selective photoluminescence method based on Carbon Quantum Dots (CQDs) functionalized with carboxymethyl-ß-cyclodextrin for the direct determination of water-soluble C60 fullerene has been developed. CQDs were synthesized using a top-down methodology from multiwall carbon nanotubes (MWCNTs) and further functionalized with N-Boc-ethylenediamine to confer monoprotected amine groups onto their surface. Once amine-functionalized CQDs were obtained after deprotection, an amidation reaction with carboxymethyl-ß-cyclodextrin cavitands was achieved and the obtained fluorescent ß-cyclodextrin functionalized Carbon Quantum Dots (cd-CQDs) were investigated for the inclusion complexation of water-soluble C60. Quenching of their fluorescence was observed owing to the non-covalent self-assembly of cd-CQDs and C60, making possible the quantification of C60. A method to determine water-soluble C60 is then proposed with detection and quantification limits of 0.525 and 1.751 µg mL(-1), respectively. The method was validated by determining soluble C60 fullerene in spiked river water. One added value of the paper is the fact that it can be ascribed to the "Third Way in Analytical Nanoscience and Nanotechnology".

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA