Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(16): e2319790121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38593079

RESUMEN

Bacteriophages (phages) play critical roles in modulating microbial ecology. Within the human microbiome, the factors influencing the long-term coexistence of phages and bacteria remain poorly investigated. Saccharibacteria (formerly TM7) are ubiquitous members of the human oral microbiome. These ultrasmall bacteria form episymbiotic relationships with their host bacteria and impact their physiology. Here, we showed that during surface-associated growth, a human oral Saccharibacteria isolate (named TM7x) protects its host bacterium, a Schaalia odontolytica strain (named XH001) against lytic phage LC001 predation. RNA-Sequencing analysis identified in XH001 a gene cluster with predicted functions involved in the biogenesis of cell wall polysaccharides (CWP), whose expression is significantly down-regulated when forming a symbiosis with TM7x. Through genetic work, we experimentally demonstrated the impact of the expression of this CWP gene cluster on bacterial-phage interaction by affecting phage binding. In vitro coevolution experiments further showed that the heterogeneous populations of TM7x-associated and TM7x-free XH001, which display differential susceptibility to LC001 predation, promote bacteria and phage coexistence. Our study highlights the tripartite interaction between the bacterium, episymbiont, and phage. More importantly, we present a mechanism, i.e., episymbiont-mediated modulation of gene expression in host bacteria, which impacts their susceptibility to phage predation and contributes to the formation of "source-sink" dynamics between phage and bacteria in biofilm, promoting their long-term coexistence within the human microbiome.


Asunto(s)
Bacteriófagos , Humanos , Bacteriófagos/fisiología , Simbiosis , Bacterias/genética
2.
PLoS Pathog ; 19(6): e1011470, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37347782

RESUMEN

The study of carrier state phages challenged the canonical lytic-lysogenic binary, and carrier state appears to be ubiquitous and ecologically important. However, the mechanisms of the carrier state are not well elucidated due to the limited phage models. Herein, we reported phage HQ103, similar to Escherichia coli phage P2. In contrast to the temperate P2 phage, the HQ103 phage does not insert its genome into the bacterial chromosome and displays a dual behavior depending on the temperature. At 37°C, HQ103 lyses the host and forms clear plaques due to the truncation of repressor CI and mutation of promoter Pc. In contrast, HQ103 maintains a carrier state lifestyle with Y. pestis at an environmental temperature (21°C). Mechanistically, we found that the host-encoded histone-like nucleoid-structuring protein H-NS, which is highly expressed at 21°C to silence the Cox promoter Pe and inhibits the phage lytic cycle. Subsequently, the HQ103 carrier state Y. pestis could grow and co-exist with the phage in the soil at 21°C for one month. Thus, this study reveals a novel carrier state lifestyle of phage HQ103 due to the H-NS mediated xenogeneic silencing and demonstrates that the carrier state lifestyle could promote long-term phage-host coexist in nature.


Asunto(s)
Bacteriófagos , Yersinia pestis , Bacteriófagos/genética , Suelo , Portador Sano , Temperatura , Lisogenia
3.
J Virol ; 96(17): e0106322, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36000841

RESUMEN

Bacteriophages (phages) are an integral part of the human oral microbiome. Their roles in modulating bacterial physiology and shaping microbial communities have been discussed but remain understudied due to limited isolation and characterization of oral phage. Here, we report the isolation of LC001, a lytic phage targeting human oral Schaalia odontolytica (formerly known as Actinomyces odontolyticus) strain XH001. We showed that LC001 attached to and infected surface-grown, but not planktonic, XH001 cells, and it displayed remarkable host specificity at the strain level. Whole-genome sequencing of spontaneous LC001-resistant, surface-grown XH001 mutants revealed that the majority of the mutants carry nonsense or frameshift mutations in XH001 gene APY09_05145 (renamed ltg-1), which encodes a putative lytic transglycosylase (LT). The mutants are defective in LC001 binding, as revealed by direct visualization of the significantly reduced attachment of phage particles to the XH001 spontaneous mutants compared that to the wild type. Meanwhile, targeted deletion of ltg-1 produced a mutant that is defective in LC001 binding and resistant to LC001 infection even as surface-grown cells, while complementation of ltg-1 in the mutant background restored the LC001-sensitive phenotype. Intriguingly, similar expression levels of ltg-1 were observed in surface-grown and planktonic XH001, which displayed LC001-binding and nonbinding phenotypes, respectively. Furthermore, the overexpression of ltg-1 failed to confer an LC001-binding and -sensitive phenotype to planktonic XH001. Thus, our data suggested that rather than directly serving as a phage receptor, ltg-1-encoded LT may increase the accessibility of phage receptor, possibly via its enzymatic activity, by cleaving the peptidoglycan structure for better receptor exposure during peptidoglycan remodeling, a function that can be exploited by LC001 to facilitate infection. IMPORTANCE The evidence for the presence of a diverse and abundant phage population in the host-associated oral microbiome came largely from metagenomic analysis or the observation of virus-like particles within saliva/plaque samples, while the isolation of oral phage and investigation of their interaction with bacterial hosts are limited. Here, we report the isolation of LC001, the first lytic phage targeting oral Schaalia odontolytica. Our study suggested that LC001 may exploit the host bacterium-encoded lytic transglycosylase function to gain access to the receptor, thus facilitating its infection.


Asunto(s)
Actinomycetaceae , Bacteriófagos , Glicosiltransferasas , Actinomycetaceae/enzimología , Actinomycetaceae/virología , Receptores de Bacteriógrafos/metabolismo , Bacteriófagos/enzimología , Bacteriófagos/genética , Bacteriófagos/fisiología , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Especificidad del Huésped , Humanos , Microbiota , Boca/microbiología , Boca/virología , Mutación , Peptidoglicano/metabolismo , Plancton/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo
4.
J Virol ; 95(17): e0039921, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34133887

RESUMEN

Bacteriophages are considered the most abundant entities on earth. However, there are merely seven sequenced double-stranded RNA (dsRNA) phages, compared to thousands of sequenced double-stranded DNA (dsDNA) phages. Interestingly, dsRNA viruses are quite common in fungi and usually have a lifestyle of commensalism or mutualism. Thus, the classical protocol of using double-layer agar plates to characterize phage plaques might be significantly biased in the isolation of dsRNA phages beyond strictly lytic lifestyles. Thus, we applied a protocol for isolating fungal viruses to identify RNA phages in bacteria and successfully isolated a novel dsRNA phage, phiNY, from Microvirgula aerodenitrificans. phiNY has a genome consisting of three dsRNA segments, and its genome sequence has no nucleotide sequence similarity with any other phage. Although phiNY encodes a lytic protein of glycoside hydrolase, and phage particles are consistently released during bacterial growth, phiNY replication did not block bacterial growth, nor did it form any plaques on agar plates. More strikingly, the phiNY-infected strain grew faster than the phiNY-negative strain, indicating a mutualistic parasitic lifestyle. Thus, this study not only reveals a new mutualistic parasitic dsRNA phage but also implies that other virus isolation methods would be valuable to identify phages with nonlytic lifestyles. IMPORTANCE Viruses with dsRNA genomes are quite diverse and infect organisms in all three domains of life. Although dsRNA viruses that infect humans, plants, and fungi are quite common, dsRNA viruses that infect bacteria, known as bacteriophages, are quite understudied, and only seven dsRNA phages have been sequenced so far. One possible explanation for the rare isolation of dsRNA phages might be the protocol of the double-layer agar plate assay. Phages without strictly lytic lifestyles might not form plaques. Thus, we applied the protocol of isolating fungal viruses to identify RNA phages inside bacteria and successfully isolated a novel dsRNA phage, phiNY, with a mutualistic parasitic lifestyle. This study implies that dsRNA phages without strictly lytic lifestyles might be common in nature and deserve more investigations.


Asunto(s)
Bacteriófagos/fisiología , Betaproteobacteria/virología , Virus Fúngicos/fisiología , Genoma Viral , Glicósido Hidrolasas/metabolismo , ARN Bicatenario/genética , Simbiosis , Virus Fúngicos/aislamiento & purificación , Glicósido Hidrolasas/genética , Filogenia
5.
Appl Opt ; 60(31): 9875-9886, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34807176

RESUMEN

In integral imaging, reproducing the depth information of three-dimensional (3D) objects accurately is one of the goals of scientific researchers. Based on the existing research, this paper proposes a new, to the best of our knowledge, elemental image array (EIA) generation algorithm, which does not need to know the depth information of the spatial scene. By dividing the distance between the display lens array (LA) and the synthetic LA equally, and comparing the variance of the pixels corresponding to the partial of the display LA at different positions, it can obtain the depth information of the 3D objects accurately, and then the value of the synthetic pixel can be calculated. Thus, a new EIA with accurate depth information is generated. Finally, the proposed algorithm has been verified in experiments of both virtual objects and real objects.

6.
Virus Genes ; 56(4): 498-507, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32449140

RESUMEN

Acinetobacter pittii is an important pathogen causing nosocomial infection worldwide. In this study, a multidrug-resistant A. pittii ABC38 was used as host bacterium to isolate the lytic phage vB_ApiP_XC38. The biological characteristics of vB_ApiP_XC38 were studied and the genome was sequenced and analyzed. vB_ApiP_XC38 belonged to Podoviridae family. The phage had double-stranded genome, which comprised 79,328 bp with 39.58% G+C content displaying very low similarity (< 1% identity) with published genomes of other phages and bacteria. A total of 97 open reading frames (ORFs) were predicted and contained nucleotide metabolism and replication module, structural components module, and lysis module. The ANI, AAI, and phylogenetic analysis indicated that all phages were found distant from vB_ApiP_XC38. Altogether, morphological, genomics, and phylogenetic analysis suggest that vB_ApiP_XC38 is more likely a novel phage of A. pittii.


Asunto(s)
Acinetobacter/virología , Bacteriófagos/genética , Genoma Viral/genética , Podoviridae/genética , Acinetobacter/genética , Composición de Base/genética , ADN Viral/genética , Genómica , Sistemas de Lectura Abierta/genética , Filogenia
7.
Nucleic Acids Res ; 46(9): 4505-4514, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29514250

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen with a relatively large genome, and has been shown to routinely lose genomic fragments during environmental selection. However, the underlying molecular mechanisms that promote chromosomal deletion are still poorly understood. In a recent study, we showed that by deleting a large chromosomal fragment containing two closely situated genes, hmgA and galU, P. aeruginosa was able to form 'brown mutants', bacteriophage (phage) resistant mutants with a brown color phenotype. In this study, we show that the brown mutants occur at a frequency of 227 ± 87 × 10-8 and contain a deletion ranging from ∼200 to ∼620 kb. By screening P. aeruginosa transposon mutants, we identified mutL gene whose mutation constrained the emergence of phage-resistant brown mutants. Moreover, the P. aeruginosa MutL (PaMutL) nicking activity can result in DNA double strand break (DSB), which is then repaired by non-homologous end joining (NHEJ), leading to chromosomal deletions. Thus, we reported a noncanonical function of PaMutL that promotes chromosomal deletions through NHEJ to prevent phage predation.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacteriófagos , Deleción Cromosómica , Reparación del ADN por Unión de Extremidades , Proteínas MutL/metabolismo , Pseudomonas aeruginosa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/fisiología , Roturas del ADN de Doble Cadena , Proteínas MutL/genética , Proteínas MutL/fisiología , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/virología , Reparación del ADN por Recombinación
9.
Zhongguo Zhong Yao Za Zhi ; 45(12): 2954-2959, 2020 Jun.
Artículo en Zh | MEDLINE | ID: mdl-32627472

RESUMEN

In this study, we aimed to establish a rat liver micro-tissue evaluation system to evaluate the hepatotoxicity of the main monomers in Polygonum multiflorum. Rat primary hepatocytes were isolated and purified by two-step in situ perfusion method to prepare hepatic parenchymal cells. The ultra-low adsorption plate and the inverted model were used to establish an in vitro hepatotoxicity evaluation system. After the system was established, the main monomer components(monanthone with emodin type, rhein, emodin, emodin-8-O-ß-D-glucopyranoside, physcion) of P. multiflorum were selected for in vitro hepatotoxicity evaluation. This study showed that the primary cells of the liver can form liver micro-tissues in the low adsorption plate method and the mold perfusion method, with good liver structure and function, which can be used to evaluate the hepatotoxicity of the drug to be tested after long-term administration. The five monomers to be tested in P. multiflorum can significantly affect the proliferation of primary liver micro-tissues in rats in a dose-and time-dependent manner. The hepatotoxic effects were as follows: monanthone with emodin type > rhein > emodin > emodin-8-O-ß-D-glucopyranoside > physcion. The results suggested that the emodin-type monoterpene and rhein might be the potential hepatotoxic components, while the metabolites of emodin-8-O-ß-D-glucoside and emodin methyl ether showed more toxic risks. The rat primary hepatocyte micro-tissue model system established in this experiment could be used to achieve long-term drug administration in vitro, which was consistent with the clinical features of liver injury caused by long-term use of P. multiflorum. The experimental results provided important information and reference on the clinical application and toxic component of P. multiflorum.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Emodina , Fallopia multiflora , Polygonum , Animales , Glucósidos , Extractos Vegetales , Ratas
10.
Chembiochem ; 2018 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-29900646

RESUMEN

The DNA replisome inevitably encounters DNA damage during DNA replication. The T7 DNA replisome contains a DNA polymerase (gp5), the processivity factor thioredoxin (trx), a helicase-primase (gp4), and a ssDNA-binding protein (gp2.5). T7 protein interactions mediate this DNA replication. However, whether the protein interactions could promote DNA damage bypass is still little addressed. In this study, we investigated strand-displacement DNA synthesis past 8-oxoG or O6 -MeG lesions at the synthetic DNA fork by the T7 DNA replisome. DNA damage does not obviously affect the binding affinities between helicase, polymerase, and DNA fork. Relative to unmodified G, both 8-oxoG and O6 -MeG-as well as GC-rich template sequence clusters-inhibit strand-displacement DNA synthesis and produce partial extension products. Relative to the gp4 ΔC-tail, gp4 promotes DNA damage bypass. The presence of gp2.5 also promotes it. Thus, the interactions of polymerase with helicase and ssDNA-binding protein facilitate DNA damage bypass. Accessory proteins in other complicated DNA replisomes also facilitate bypassing DNA damage in similar manner. This work provides new mechanistic information relating to DNA damage bypass by the DNA replisome.

11.
Appl Environ Microbiol ; 84(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29915115

RESUMEN

The human oral cavity is home to a large number of bacteria and bacteriophages (phages). However, the biology of oral phages as members of the human microbiome is not well understood. Recently, we isolated Actinomyces odontolyticus subsp. actinosynbacter strain XH001 from the human oral cavity, and genomic analysis revealed the presence of an intact prophage named xhp1. Here, we demonstrated that xhp1 is a linear plasmid-like prophage, which is a newly identified phage of A. odontolyticus The prophage xhp1 genome is a 35-kb linear double-stranded DNA with 10-bp single-stranded, 3' cohesive ends. xhp1 exists extrachromosomally, with an estimated copy number of 5. Annotation of xhp1 revealed 54 open reading frames, while phylogenetic analysis suggests that it has limited similarity with other phages. xhp1 phage particles can be induced by mitomycin C and belong to the Siphoviridae family, according to transmission electron microscopic examination. The released xhp1 particles can reinfect the xhp1-cured XH001 strain and result in tiny blurry plaques. Moreover, xhp1 promotes XH001 biofilm formation through spontaneous induction and the release of host extracellular DNA (eDNA). In conclusion, we identified a linear plasmid-like prophage of A. odontolyticus, which enhances bacterial host biofilm assembly and could be beneficial to the host for its persistence in the oral cavity.IMPORTANCE The biology of phages as members of the human oral microbiome is understudied. Here, we report the characterization of xhp1, a novel linear plasmid-like prophage identified from a human oral isolate, Actinomyces odontolyticus subsp. actinosynbacter strain XH001. xhp1 can be induced and reinfect xhp1-cured XH001. The spontaneous induction of xhp1 leads to the lysis of a subpopulation of bacterial hosts and the release of eDNA that promotes biofilm assembly, thus potentially contributing to the persistence of A. odontolyticus within the oral cavity.


Asunto(s)
Actinomyces/crecimiento & desarrollo , Actinomyces/virología , Biopelículas/crecimiento & desarrollo , Profagos/clasificación , Profagos/genética , Actinomyces/aislamiento & purificación , Genoma Bacteriano/genética , Genoma Viral/genética , Humanos , Lisogenia/genética , Microscopía Electrónica de Transmisión , Boca/microbiología , Filogenia , Plásmidos/genética , Profagos/aislamiento & purificación , Siphoviridae/clasificación , Siphoviridae/genética , Siphoviridae/aislamiento & purificación
12.
Curr Microbiol ; 75(10): 1362-1371, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29922971

RESUMEN

ß-Galactosidase is an essential enzyme for the metabolism of lactose in human beings and has an important role in the treatment of lactose intolerance (LI). ß-Galactosidase expressed by intestinal microflora, such as lactic acid bacteria (LAB), also alleviates LI. A promising approach to LI management is to exploit a food-grade LAB delivery system that can inhabit the human intestine and overproduce ß-galactosidase. In this study, we constructed a food-grade ß-galactosidase surface display delivery system and then integrated into the chromosome of Lactococcus lactis (L. lactis) NZ9000 using recombination. Western blot and immunofluorescence analyses confirmed that ß-galactosidase was expressed on the cell surface of recombinant L. lactis stain NZ-SDL. The whole-cell biocatalyst exhibits Vmax and Km values of 121.38 ± 7.17 UONPG/g and 65.36 ± 5.54 mM, based on ONPG hydrolysis. The optimum temperature for enzyme activity is 37 °C and the optimum pH is 5.0. Activity of the whole-cell biocatalyst is promoted by Mg2+, Ca2+, and K+, but inhibited by Zn2+, Fe2+, and Fe3+. The system has a thermal stability similar to purified ß-galactosidase but better pH stability, and is also more stable in artificial intestinal juice. Oral administration and intraperitoneal injections of NZ-SDL in mice cause no detectable health effects. In conclusion, we have successfully constructed a food-grade gene expression system in L. lactis that displays ß-galactosidase on the cell surface. This system exhibits good enzyme activity and stability in vitro, and is safe in vivo. It is therefore a promising candidate for use in LI management.


Asunto(s)
Membrana Celular/metabolismo , Expresión Génica , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo , Animales , Biocatálisis , Clonación Molecular , Activación Enzimática , Femenino , Técnica del Anticuerpo Fluorescente , Ingeniería Genética , Vectores Genéticos/genética , Hidrólisis , Ratones , Transporte de Proteínas
13.
PLoS Genet ; 11(7): e1005310, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26132554

RESUMEN

Viruses often encode proteins with multiple functions due to their compact genomes. Existing approaches to identify functional residues largely rely on sequence conservation analysis. Inferring functional residues from sequence conservation can produce false positives, in which the conserved residues are functionally silent, or false negatives, where functional residues are not identified since they are species-specific and therefore non-conserved. Furthermore, the tedious process of constructing and analyzing individual mutations limits the number of residues that can be examined in a single study. Here, we developed a systematic approach to identify the functional residues of a viral protein by coupling experimental fitness profiling with protein stability prediction using the influenza virus polymerase PA subunit as the target protein. We identified a significant number of functional residues that were influenza type-specific and were evolutionarily non-conserved among different influenza types. Our results indicate that type-specific functional residues are prevalent and may not otherwise be identified by sequence conservation analysis alone. More importantly, this technique can be adapted to any viral (and potentially non-viral) protein where structural information is available.


Asunto(s)
Virus de la Influenza A/genética , Virus de la Influenza B/genética , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Secuencia de Bases , Evolución Biológica , Línea Celular , Biología Computacional , Secuencia Conservada/genética , Biblioteca de Genes , Células HEK293 , Humanos , Análisis de Secuencia de ADN
14.
BMC Genomics ; 17: 46, 2016 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-26754751

RESUMEN

BACKGROUND: Epistasis is one of the central themes in viral evolution due to its importance in drug resistance, immune escape, and interspecies transmission. However, there is a lack of experimental approach to systematically probe for epistatic residues. RESULTS: By utilizing the information from natural occurring sequences and high-throughput genetics, this study established a novel strategy to identify epistatic residues. The rationale is that a substitution that is deleterious in one strain may be prevalent in nature due to the presence of a naturally occurring compensatory substitution. Here, high-throughput genetics was applied to influenza A virus M segment to systematically identify deleterious substitutions. Comparison with natural sequence variation showed that a deleterious substitution M1 Q214H was prevalent in circulating strains. A coevolution analysis was then performed and indicated that M1 residues 121, 207, 209, and 214 naturally coevolved as a group. Subsequently, we experimentally validated that M1 A209T was a compensatory substitution for M1 Q214H. CONCLUSIONS: This work provided a proof-of-concept to identify epistatic residues by coupling high-throughput genetics with phylogenetic information. In particular, we were able to identify an epistatic interaction between M1 substitutions A209T and Q214H. This analytic strategy can potentially be adapted to study any protein of interest, provided that the information on natural sequence variants is available.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Virus de la Influenza A/genética , Filogenia , Proteínas de la Matriz Viral/genética , Sustitución de Aminoácidos , Epistasis Genética , Humanos , Virus de la Influenza A/patogenicidad , Eliminación de Secuencia/genética
15.
Mol Microbiol ; 98(2): 243-57, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26138696

RESUMEN

Streptococcus suis has emerged as a causative agent of human meningitis and streptococcal toxic shock syndrome over the last years. The high pathogenicity of S. suis may be due in part to a laterally acquired pathogenicity island (renamed SsPI-1), which can spontaneously excise and transfer to recipients. Cells harboring excised SsPI-1 can potentially lose this island if cell division occurs prior to its reintegration; however, attempts to cure SsPI-1 from the host cells have been unsuccessful. Here, we report that an SsPI-1-borne Epsilon/Zeta toxin-antitoxin system (designated SezAT) promotes SsPI-1 stability in bacterial populations. The sezAT locus consists of two closely linked sezT and sezA genes encoding a toxin and its cognate antitoxin, respectively. Overproduction of SezT induces a bactericidal effect that can be neutralized by co-expression of SezA, but not by its later action. When devoid of a functional SezAT system, large-scale deletion of SsPI-1 is straightforward. Thus, SezAT serves to ensure inheritance of SsPI-1 during cell division, which may explain the persistence of epidemic S. suis. This report presents the first functional characterization of TA loci in S. suis, and the first biochemical evidence for the adaptive significance of the Epsilon/Zeta system in the evolution of pathogen virulence.


Asunto(s)
Antitoxinas/genética , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Islas Genómicas , Streptococcus suis/genética , Streptococcus suis/patogenicidad , Cromosomas Bacterianos , Humanos , Infecciones Estreptocócicas/microbiología , Virulencia/genética
16.
BMC Genomics ; 15: 803, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-25233860

RESUMEN

BACKGROUND: Whole-genome sequencing is an important method to understand the genetic information, gene function, biological characteristics and survival mechanisms of organisms. Sequencing large genomes is very simple at present. However, we encountered a hard-to-sequence genome of Pseudomonas aeruginosa phage PaP1. Shotgun sequencing method failed to complete the sequence of this genome. RESULTS: After persevering for 10 years and going over three generations of sequencing techniques, we successfully completed the sequence of the PaP1 genome with a length of 91,715 bp. Single-molecule real-time sequencing results revealed that this genome contains 51 N-6-methyladenines and 152 N-4-methylcytosines. Three significant modified sequence motifs were predicted, but not all of the sites found in the genome were methylated in these motifs. Further investigations revealed a novel immune mechanism of bacteria, in which host bacteria can recognise and repel modified bases containing inserts in a large scale. This mechanism could be accounted for the failure of the shotgun method in PaP1 genome sequencing. This problem was resolved using the nfi- mutant of Escherichia coli DH5α as a host bacterium to construct a shotgun library. CONCLUSIONS: This work provided insights into the hard-to-sequence phage PaP1 genome and discovered a new mechanism of bacterial immunity. The methylome of phage PaP1 is responsible for the failure of shotgun sequencing and for bacterial immunity mediated by enzyme Endo V activity; this methylome also provides a valuable resource for future studies on PaP1 genome replication and modification, as well as on gene regulation and host interaction.


Asunto(s)
Genoma Viral , Fagos Pseudomonas/genética , Fagos Pseudomonas/inmunología , Metilación de ADN , Biblioteca Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , Datos de Secuencia Molecular , Proteínas Asociadas a Pancreatitis , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/inmunología , Pseudomonas aeruginosa/virología , Análisis de Secuencia de ADN
17.
Microbiol Spectr ; 12(4): e0379723, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38483478

RESUMEN

Hospital-acquired infections (HAIs) represent one of the significant causes of morbidity and mortality worldwide, and controlling pathogens in the hospital environment is of great importance. Currently, the standard disinfection method in the hospital environment is chemical disinfection. However, disinfectants are usually not used strictly according to the label, making them less effective in disinfection. Therefore, there is an emergent need to find a better approach that can be used in hospitals to control pathogenic bacteria in the clinical environment. Bacteriophages (phages) are effective in killing bacteria and have been applied in the treatment of bacterial infections but have not received enough attention regarding the control of contamination in the clinical environment. In this study, we found that various phages remain active in the presence of chemical disinfectants. Moreover, the combined use of specific phages and chemical disinfectants is more effective in removing bacterial biofilms and eliminating bacteria on hard surfaces. Thus, this proof-of-concept study indicates that adding phages directly to chemical disinfectants might be an effective and economical approach to enhance clinical environment disinfection. IMPORTANCE: In this study, we investigated whether the combination of bacteriophages and chemical disinfectants can enhance the efficacy of reducing bacterial contamination on hard surfaces in the clinical setting. We found that specific phages are active in chemical disinfectants and that the combined use of phages and chemical disinfectants was highly effective in reducing bacterial presence on hard surfaces. As a proof-of-concept, we demonstrated that adding specific phages directly to chemical disinfectants is an effective and cost-efficient strategy for clinical environment disinfection.


Asunto(s)
Bacteriófagos , Infección Hospitalaria , Desinfectantes , Humanos , Desinfectantes/farmacología , Desinfección/métodos , Bacterias
18.
Nat Microbiol ; 9(7): 1828-1841, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38886583

RESUMEN

Bacteriophages have evolved diverse strategies to overcome host defence mechanisms and to redirect host metabolism to ensure successful propagation. Here we identify a phage protein named Dap1 from Pseudomonas aeruginosa phage PaoP5 that both modulates bacterial host behaviour and contributes to phage fitness. We show that expression of Dap1 in P. aeruginosa reduces bacterial motility and promotes biofilm formation through interference with DipA, a c-di-GMP phosphodiesterase, which causes an increase in c-di-GMP levels that trigger phenotypic changes. Results also show that deletion of dap1 in PaoP5 significantly reduces genome packaging. In this case, Dap1 directly binds to phage HNH endonuclease, prohibiting host Lon-mediated HNH degradation and promoting phage genome packaging. Moreover, PaoP5Δdap1 fails to rescue P. aeruginosa-infected mice, implying the significance of dap1 in phage therapy. Overall, these results highlight remarkable dual functionality in a phage protein, enabling the modulation of host behaviours and ensuring phage fitness.


Asunto(s)
Terapia de Fagos , Infecciones por Pseudomonas , Fagos Pseudomonas , Pseudomonas aeruginosa , Proteínas Virales , Pseudomonas aeruginosa/virología , Pseudomonas aeruginosa/patogenicidad , Pseudomonas aeruginosa/genética , Animales , Ratones , Fagos Pseudomonas/genética , Fagos Pseudomonas/fisiología , Infecciones por Pseudomonas/terapia , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/inmunología , Virulencia , Proteínas Virales/genética , Proteínas Virales/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/metabolismo , GMP Cíclico/análogos & derivados , Femenino , Bacteriófagos/fisiología , Bacteriófagos/genética
19.
Curr Microbiol ; 66(6): 535-43, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23328903

RESUMEN

While screening for alternative antibiotics against multidrug-resistant Acinetobacter baumannii, we isolated a virulent A. baumannii bacteriophage Abp1. Transmission electron microscopy revealed that the phage had an icosahedral head with a short tail and should be classified as a member of the Podoviridae family. SDS-PAGE showed that Abp1 contained at least one major and nine minor proteins. In a single-step growth test, we demonstrated that Abp1 had a latent period of 10 min and a burst size of 350. Abp1 also had a relatively narrow host range. The entire genome was sequenced, and the final assembly yielded a 42,185 bp, linear, double-stranded DNA molecule with a G+C content of 39.15 % and containing 54 putative genes. Among these genes, 26 were functionally known, leaving 28 unknown putative genes. Abp1 is a new member of the phiKMV-like virus subgroup of the T7 group; its genome sequence is very similar to that of the A. baumannii phage phiAB1.


Asunto(s)
Acinetobacter baumannii/efectos de los fármacos , Acinetobacter baumannii/virología , Genoma Viral , Podoviridae/genética , Proteínas Virales/genética , Acinetobacter baumannii/aislamiento & purificación , Composición de Base/genética , Secuencia de Bases , ADN Viral/genética , Farmacorresistencia Bacteriana Múltiple , Especificidad del Huésped , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN
20.
Front Microbiol ; 14: 1250848, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37869667

RESUMEN

Phage therapy, a century-long treatment targeting bacterial infection, was widely abandoned after the clinical availability of antibiotics in the mid-20th century. However, the crisis of antimicrobial resistance today led to its revival in many countries. While many articles dive into its clinical application now, little research is presenting phage therapy from a regulatory perspective. Here, we focus on the regulations of phage therapy by dividing sections into Eastern Europe where it was never abandoned and Western Europe, Australia, the United States, India, and China where it only re-attracted researchers' attention in recent decades. New insights about its regulations in China are provided as little English literature has specifically discussed this previously. Ultimately, by introducing the regulations in phage therapy for human health across representative countries, we hope to provide ideas of how countries may borrow each other's adapting legislation in phage therapy to best overcome the current regulatory hurdles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA