Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 626(7997): 151-159, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38233525

RESUMEN

Enhancers control the location and timing of gene expression and contain the majority of variants associated with disease1-3. The ZRS is arguably the most well-studied vertebrate enhancer and mediates the expression of Shh in the developing limb4. Thirty-one human single-nucleotide variants (SNVs) within the ZRS are associated with polydactyly4-6. However, how this enhancer encodes tissue-specific activity, and the mechanisms by which SNVs alter the number of digits, are poorly understood. Here we show that the ETS sites within the ZRS are low affinity, and identify a functional ETS site, ETS-A, with extremely low affinity. Two human SNVs and a synthetic variant optimize the binding affinity of ETS-A subtly from 15% to around 25% relative to the strongest ETS binding sequence, and cause polydactyly with the same penetrance and severity. A greater increase in affinity results in phenotypes that are more penetrant and more severe. Affinity-optimizing SNVs in other ETS sites in the ZRS, as well as in ETS, interferon regulatory factor (IRF), HOX and activator protein 1 (AP-1) sites within a wide variety of enhancers, cause gain-of-function gene expression. The prevalence of binding sites with suboptimal affinity in enhancers creates a vulnerability in genomes whereby SNVs that optimize affinity, even slightly, can be pathogenic. Searching for affinity-optimizing SNVs in genomes could provide a mechanistic approach to identify causal variants that underlie enhanceropathies.


Asunto(s)
Elementos de Facilitación Genéticos , Extremidades , Polidactilia , Proteínas Proto-Oncogénicas c-ets , Humanos , Elementos de Facilitación Genéticos/genética , Extremidades/embriología , Extremidades/patología , Mutación con Ganancia de Función , Proteínas de Homeodominio/metabolismo , Factores Reguladores del Interferón/metabolismo , Especificidad de Órganos/genética , Penetrancia , Fenotipo , Polidactilia/embriología , Polidactilia/genética , Polidactilia/patología , Polimorfismo de Nucleótido Simple , Unión Proteica , Proteínas Proto-Oncogénicas c-ets/metabolismo , Factor de Transcripción AP-1/metabolismo
2.
Cell Rep ; 42(2): 112052, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36729834

RESUMEN

The notochord is a defining feature of all chordates. The transcription factors Zic and ETS regulate enhancer activity within the notochord. We conduct high-throughput screens of genomic elements within developing Ciona embryos to understand how Zic and ETS sites encode notochord activity. Our screen discovers an enhancer located near Lama, a gene critical for notochord development. Reversing the orientation of an ETS site within this enhancer abolishes expression, indicating that enhancer grammar is critical for notochord activity. Similarly organized clusters of Zic and ETS sites occur within mouse and human Lama1 introns. Within a Brachyury (Bra) enhancer, FoxA and Bra, in combination with Zic and ETS binding sites, are necessary and sufficient for notochord expression. This binding site logic also occurs within other Ciona and vertebrate Bra enhancers. Collectively, this study uncovers the importance of grammar within notochord enhancers and discovers signatures of enhancer logic and grammar conserved across chordates.


Asunto(s)
Ciona intestinalis , Notocorda , Animales , Humanos , Ratones , Ciona intestinalis/genética , Secuencias Reguladoras de Ácidos Nucleicos , Proteínas de Dominio T Box/metabolismo , Factores de Transcripción/metabolismo , Regulación del Desarrollo de la Expresión Génica , Elementos de Facilitación Genéticos/genética
3.
Dev Cell ; 58(21): 2206-2216.e5, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37848026

RESUMEN

Transcriptional enhancers direct precise gene expression patterns during development and harbor the majority of variants associated with phenotypic diversity, evolutionary adaptations, and disease. Pinpointing which enhancer variants contribute to changes in gene expression and phenotypes is a major challenge. Here, we find that suboptimal or low-affinity binding sites are necessary for precise gene expression during heart development. Single-nucleotide variants (SNVs) can optimize the affinity of ETS binding sites, causing gain-of-function (GOF) gene expression, cell migration defects, and phenotypes as severe as extra beating hearts in the marine chordate Ciona robusta. In human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, a SNV within a human GATA4 enhancer increases ETS binding affinity and causes GOF enhancer activity. The prevalence of suboptimal-affinity sites within enhancers creates a vulnerability whereby affinity-optimizing SNVs can lead to GOF gene expression, changes in cellular identity, and organismal-level phenotypes that could contribute to the evolution of novel traits or diseases.


Asunto(s)
Elementos de Facilitación Genéticos , Células Madre Pluripotentes Inducidas , Humanos , Elementos de Facilitación Genéticos/genética , Miocitos Cardíacos/metabolismo , Sitios de Unión , Nucleótidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA