Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Blood Cells Mol Dis ; 87: 102527, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33341511

RESUMEN

Hemochromatosis type 4, or ferroportin disease, is considered as the second leading cause of primary iron overload after HFE-related hemochromatosis. The disease, which is predominantly associated with missense variations in the SLC40A1 gene, is characterized by wide clinical heterogeneity. We tested the possibility that some of the reported missense mutations, despite their positions within exons, cause splicing defects. Fifty-eight genetic variants were selected from the literature based on two criteria: a precise description of the nucleotide change and individual evidence of iron overload. The selected variants were investigated by different in silico prediction tools and prioritized for midigene splicing assays. Of the 15 variations tested in vitro, only two were associated with splicing changes. We confirm that the c.1402G>A transition (p.Gly468Ser) disrupts the exon 7 donor site, leading to the use of an exonic cryptic splicing site and the generation of a truncated reading frame. We observed, for the first time, that the p.Gly468Ser substitution has no effect on the ferroportin iron export function. We demonstrate alternative splicing of exon 5 in different cell lines and show that the c.430A>G (p.Asn144Asp) variant promotes exon 5 inclusion. This could be part of a gain-of-function mechanism. We conclude that splicing mutations rarely contribute to hemochromatosis type 4 phenotypes. An in-depth investigation of exon 5 auxiliary splicing sequences may help to elucidate the mechanism by which splicing regulatory proteins regulate the production of the full length SLC40A1 transcript and to clarify its physiological importance.


Asunto(s)
Empalme Alternativo , Proteínas de Transporte de Catión/deficiencia , Hemocromatosis/genética , Mutación Missense , Proteínas de Transporte de Catión/genética , Exones , Genómica , Células Hep G2 , Humanos , Polimorfismo de Nucleótido Simple
2.
Transfusion ; 61(8): 2468-2476, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34110623

RESUMEN

BACKGROUND: Although D variant phenotype is known to be due to genetic defects, including rare missense single nucleotide variants (SNVs), within the RHD gene, few studies have addressed the molecular and cellular mechanisms driving this altered expression. We and others showed previously that splicing is commonly disrupted by SNVs in constitutive splice sites and their vicinity. We thus sought to investigate whether rare missense SNVs located in "deep" exonic regions could also impair this mechanism. STUDY DESIGN AND METHODS: Forty-six missense SNVs reported within exons 6 and 7 were first selected from the Human RhesusBase. Their respective effect on splicing was assessed by using an in vitro assay. An RhD-negative cell model was further generated by using the CRISPR-Cas9 approach. RhD-mutated proteins were overexpressed in the newly created model, and cell membrane expression of the D antigen was measured by flow cytometry. RESULTS: Minigene splicing assay showed that 14 of 46 (30.4%) missense SNVs alter splicing. Very interestingly, further investigation of two missense SNVs, which both affect codon 338 and confer a weak D phenotype, showed various mechanisms: c.1012C>G (p.Leu338Val) disrupts splicing only, while c.1013T>C (p.Leu338Pro) alters only the protein structure, in agreement with in silico prediction tools and 3D protein structure visualization. CONCLUSION: Our functional data set suggests that missense SNVs damage quantitatively D antigen expression by, at least, two different mechanisms (splicing alteration and protein destabilization) that may act independently. These data thereby contribute to extend the current knowledge of the molecular mechanisms governing weakened D expression.


Asunto(s)
Mutación Missense , Polimorfismo de Nucleótido Simple , Sistema del Grupo Sanguíneo Rh-Hr/genética , Expresión Génica , Humanos , Células K562 , Modelos Moleculares , Empalme del ARN , Sistema del Grupo Sanguíneo Rh-Hr/química
3.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203920

RESUMEN

The negatively charged Asp325 residue has proved to be essential for iron export by human (HsFPN1) and primate Philippine tarsier (TsFpn) ferroportin, but its exact role during the iron transport cycle is still to be elucidated. It has been posited as being functionally equivalent to the metal ion-coordinating residue His261 in the C-lobe of the bacterial homolog BbFpn, but the two residues arise in different sequence motifs of the discontinuous TM7 transmembrane helix. Furthermore, BbFpn is not subject to extracellular regulation, contrary to its mammalian orthologues which are downregulated by hepcidin. To get further insight into the molecular mechanisms related to iron export in mammals in which Asp325 is involved, we investigated the behavior of the Asp325Ala, Asp325His, and Asp325Asn mutants in transiently transfected HEK293T cells, and performed a comparative structural analysis. Our biochemical studies clearly distinguished between the Asp325Ala and Asp325His mutants, which result in a dramatic decrease in plasma membrane expression of FPN1, and the Asp325Asn mutant, which alters iron egress without affecting protein localization. Analysis of the 3D structures of HsFPN1 and TsFpn in the outward-facing (OF) state indicated that Asp325 does not interact directly with metal ions but is involved in the modulation of Cys326 metal-binding capacity. Moreover, models of the architecture of mammalian proteins in the inward-facing (IF) state suggested that Asp325 may form an inter-lobe salt-bridge with Arg40 (TM1) when not interacting with Cys326. These findings allow to suggest that Asp325 may be important for fine-tuning iron recognition in the C-lobe, as well as for local structural changes during the IF-to-OF transition at the extracellular gate level. Inability to form a salt-bridge between TM1 and TM7b during iron translocation could lead to protein instability, as shown by the Asp325Ala and Asp325His mutants.


Asunto(s)
Ácido Aspártico/metabolismo , Proteínas de Transporte de Catión/química , Proteínas de Transporte de Catión/metabolismo , Sitios de Unión , Transporte Biológico , Membrana Celular/metabolismo , Células HEK293 , Humanos , Hierro/metabolismo , Estructura Secundaria de Proteína , Relación Estructura-Actividad
4.
Hum Mutat ; 40(10): 1856-1873, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31131953

RESUMEN

It has long been known that canonical 5' splice site (5'SS) GT>GC variants may be compatible with normal splicing. However, to date, the actual scale of canonical 5'SSs capable of generating wild-type transcripts in the case of GT>GC substitutions remains unknown. Herein, combining data derived from a meta-analysis of 45 human disease-causing 5'SS GT>GC variants and a cell culture-based full-length gene splicing assay of 103 5'SS GT>GC substitutions, we estimate that ~15-18% of canonical GT 5'SSs retain their capacity to generate between 1% and 84% normal transcripts when GT is substituted by GC. We further demonstrate that the canonical 5'SSs in which substitution of GT by GC-generated normal transcripts exhibit stronger complementarity to the 5' end of U1 snRNA than those sites whose substitutions of GT by GC did not lead to the generation of normal transcripts. We also observed a correlation between the generation of wild-type transcripts and a milder than expected clinical phenotype but found that none of the available splicing prediction tools were capable of reliably distinguishing 5'SS GT>GC variants that generated wild-type transcripts from those that did not. Our findings imply that 5'SS GT>GC variants in human disease genes may not invariably be pathogenic.


Asunto(s)
Empalme Alternativo , Secuencia de Bases , Regulación de la Expresión Génica , Variación Genética , Sitios de Empalme de ARN , Células Cultivadas , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Exones , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Intrones , Motivos de Nucleótidos , Posición Específica de Matrices de Puntuación , Análisis de Secuencia de ADN
5.
HGG Adv ; : 100335, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39039793

RESUMEN

Heterozygous mutations in SLC40A1, encoding a multi-pass membrane protein of the major facilitator superfamily known as ferroportin 1 (FPN1), are responsible for two distinct hereditary iron overload diseases: ferroportin disease, which is associated with reduced FPN1 activity (i.e. decrease in cellular iron export), and SLC40A1-related hemochromatosis, which is associated with abnormally high FPN1 activity (i.e. resistance to hepcidin). Here, we report three SLC40A1 missense variants with opposite functional consequences. In cultured cells, the p.Arg40Gln and p.Ser47Phe substitutions partially reduced the ability of FPN1 to export iron, and also partially reduced its sensitivity to hepcidin. The p.Ala350Val substitution had more profound effects, resulting in low FPN1 iron egress and weak FPN1/hepcidin interaction. Structural analyses helped to differentiate the first two substitutions, which are predicted to cause local instabilities, and the third, which is thought to prevent critical rigid-body movements that are essential to the iron transport cycle. The phenotypic traits observed in a total of 12 affected individuals are highly suggestive of ferroportin disease. Our findings dismantle the classical dualism of FPN1 loss- versus gain-of-function, highlight some specific and unexpected functions of FPN1 transmembrane helices in the molecular mechanism of iron export and its regulation by hepcidin, and extend the spectrum of rare genetic variants that may cause ferroportin disease.

6.
Redox Biol ; 75: 103211, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38908072

RESUMEN

Ferroptosis is a pervasive non-apoptotic form of cell death highly relevant in various degenerative diseases and malignancies. The hallmark of ferroptosis is uncontrolled and overwhelming peroxidation of polyunsaturated fatty acids contained in membrane phospholipids, which eventually leads to rupture of the plasma membrane. Ferroptosis is unique in that it is essentially a spontaneous, uncatalyzed chemical process based on perturbed iron and redox homeostasis contributing to the cell death process, but that it is nonetheless modulated by many metabolic nodes that impinge on the cells' susceptibility to ferroptosis. Among the various nodes affecting ferroptosis sensitivity, several have emerged as promising candidates for pharmacological intervention, rendering ferroptosis-related proteins attractive targets for the treatment of numerous currently incurable diseases. Herein, the current members of a Germany-wide research consortium focusing on ferroptosis research, as well as key external experts in ferroptosis who have made seminal contributions to this rapidly growing and exciting field of research, have gathered to provide a comprehensive, state-of-the-art review on ferroptosis. Specific topics include: basic mechanisms, in vivo relevance, specialized methodologies, chemical and pharmacological tools, and the potential contribution of ferroptosis to disease etiopathology and progression. We hope that this article will not only provide established scientists and newcomers to the field with an overview of the multiple facets of ferroptosis, but also encourage additional efforts to characterize further molecular pathways modulating ferroptosis, with the ultimate goal to develop novel pharmacotherapies to tackle the various diseases associated with - or caused by - ferroptosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA