Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nano Lett ; 24(19): 5816-5823, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38684443

RESUMEN

We propose an effective strategy to significantly enhance the thermoelectric power factor (PF) of a series of 2D semimetals and semiconductors by driving them toward a topological phase transition (TPT). Employing first-principles calculations with an explicit consideration of electron-phonon interactions, we analyze the electronic transport properties of germanene across the TPT by applying hydrogenation and biaxial strain. We reveal that the nontrivial semimetal phase, hydrogenated germanene with 8% biaxial strain, achieves a considerable 4-fold PF enhancement, attributed to the highly asymmetric electronic structure and semimetallic nature of the nontrivial phase. We extend the strategy to another two representative 2D materials (stanene and HgSe) and observe a similar trend, with a marked 7-fold and 5-fold increase in PF, respectively. The wide selection of functional groups, universal applicability of biaxial strain, and broad spectrum of 2D semimetals and semiconductors render our approach highly promising for designing novel 2D materials with superior thermoelectric performance.

2.
Inorg Chem ; 63(34): 15584-15591, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39129205

RESUMEN

Three new NaBa2M3Q3(Q2) (M = Ag or Cu; Q = S or Se) chalcogenides were prepared by using solid-state methods and structurally characterized by using single-crystal X-ray diffraction. NaBa2Ag3Se3(Se2) and NaBa2Cu3Se3(Se2) crystallize in monoclinic space group C2/m and have a two-dimensional structure composed of edge-sharing MSe4/4 tetrahedra separated by Na+ and Ba2+ cations, along with (Se2)2- dimers at the center of the spacings between [M3Se3]3- slabs. NaBa2Ag3S3(S2) adopts a related structure with space group C2/m but has additional, crystallographically distinct Ag atoms in the [Ag3S3]3- layer that are linearly coordinated. NaBa2Ag3Se3(Se2) and NaBa2Ag3S3(S2) have indirect band gaps measured to be 1.2 and 1.9 eV, respectively, which is supported by band structures calculated using density functional theory. Mixed-anion NaBa2Cu3Se5-xSx compositions were prepared to probe the presence of anion ordering and heteronuclear (S-Se)2- dimers. Structural analyses of the sulfoselenides indicate that selenium preferentially occupies the Q-Q dimer sites, while Raman spectroscopy reveals a mixture of (S2), (Se2), and heteronuclear (S-Se) units in the sulfur-rich products. The local ordering of the chalcogens is rationalized using simple bonding concepts and adds to a growing framework for understanding ordering phenomena in mixed-anion systems.

3.
Biol Res ; 57(1): 25, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720397

RESUMEN

PURPOSE: Prostate cancer (PCa) is a major urological disease that is associated with significant morbidity and mortality in men. LLGL2 is the mammalian homolog of Lgl. It acts as a tumor suppressor in breast and hepatic cancer. However, the role of LLGL2 and the underlying mechanisms in PCa have not yet been elucidated. Here, we investigate the role of LLGL2 in the regulation of epithelial-mesenchymal transition (EMT) in PCa through autophagy in vitro and in vivo. METHODS: PC3 cells were transfected with siLLGL2 or plasmid LLGL2 and autophagy was examined. Invasion, migration, and wound healing were assessed in PC3 cells under autophagy regulation. Tumor growth was evaluated using a shLLGL2 xenograft mouse model. RESULTS: In patients with PCa, LLGL2 levels were higher with defective autophagy and increased EMT. Our results showed that the knockdown of LLGL2 induced autophagy flux by upregulating Vps34 and ATG14L. LLGL2 knockdown inhibits EMT by upregulating E-cadherin and downregulating fibronectin and α-SMA. The pharmacological activation of autophagy by rapamycin suppressed EMT, and these effects were reversed by 3-methyladenine treatment. Interestingly, in a shLLGL2 xenograft mouse model, tumor size and EMT were decreased, which were improved by autophagy induction and worsened by autophagy inhibition. CONCLUSION: Defective expression of LLGL2 leads to attenuation of EMT due to the upregulation of autophagy flux in PCa. Our results suggest that LLGL2 is a novel target for alleviating PCa via the regulation of autophagy.


Asunto(s)
Autofagia , Transición Epitelial-Mesenquimal , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Autofagia/fisiología , Autofagia/genética , Línea Celular Tumoral , Movimiento Celular/genética , Transición Epitelial-Mesenquimal/genética , Silenciador del Gen , Ratones Desnudos , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
4.
PLoS Genet ; 16(6): e1008868, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32579581

RESUMEN

Parkinson's disease (PD) is a neurodegenerative disorder featuring progressive loss of midbrain dopaminergic (DA) neurons that leads to motor symptoms. The etiology and pathogenesis of PD are not clear. We found that expression of COUP-TFII, an orphan nuclear receptor, in DA neurons is upregulated in PD patients through the analysis of public datasets. We show here that through epigenetic regulation, COUP-TFII contributes to oxidative stress, suggesting that COUP-TFII may play a role in PD pathogenesis. Elevated COUP-TFII expression specifically in DA neurons evokes DA neuronal loss in mice and accelerates the progression of phenotypes in a PD mouse model, MitoPark. Compared to control mice, those with elevated COUP-TFII expression displayed reduced cristae in mitochondria and enhanced cellular electron-dense vacuoles in the substantia nigra pars compacta. Mechanistically, we found that overexpression of COUP-TFII disturbs mitochondrial pathways, resulting in mitochondrial dysfunction. In particular, there is repressed expression of genes encoding cytosolic aldehyde dehydrogenases, which could enhance oxidative stress and interfere with mitochondrial function via 3,4-dihydroxyphenylacetaldehyde (DOPAL) buildup in DA neurons. Importantly, under-expression of COUP-TFII in DA neurons slowed the deterioration in motor functions of MitoPark mice. Taken together, our results suggest that COUP-TFII may be an important contributor to PD development and a potential therapeutic target.


Asunto(s)
Factor de Transcripción COUP II/metabolismo , Neuronas Dopaminérgicas/patología , Mitocondrias/patología , Enfermedad de Parkinson/genética , Ácido 3,4-Dihidroxifenilacético/análogos & derivados , Ácido 3,4-Dihidroxifenilacético/metabolismo , Aldehído Deshidrogenasa , Animales , Encéfalo/citología , Encéfalo/patología , Línea Celular , Línea Celular Tumoral , Estudios de Cohortes , Conjuntos de Datos como Asunto , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Neuronas Dopaminérgicas/citología , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Estrés Oxidativo/genética , Enfermedad de Parkinson/patología , Cultivo Primario de Células , RNA-Seq , Ratas , Regulación hacia Arriba
5.
Int J Mol Sci ; 20(1)2018 Dec 25.
Artículo en Inglés | MEDLINE | ID: mdl-30585210

RESUMEN

Heme oxygenase (HO) catabolizes heme to produce HO metabolites, such as carbon monoxide (CO) and bilirubin (BR), which have gained recognition as biological signal transduction effectors. The neurovascular unit refers to a highly evolved network among endothelial cells, pericytes, astrocytes, microglia, neurons, and neural stem cells in the central nervous system (CNS). Proper communication and functional circuitry in these diverse cell types is essential for effective CNS homeostasis. Neuroinflammation is associated with the vascular pathogenesis of many CNS disorders. CNS injury elicits responses from activated glia (e.g., astrocytes, oligodendrocytes, and microglia) and from damaged perivascular cells (e.g., pericytes and endothelial cells). Most brain lesions cause extensive proliferation and growth of existing glial cells around the site of injury, leading to reactions causing glial scarring, which may act as a major barrier to neuronal regrowth in the CNS. In addition, damaged perivascular cells lead to the breakdown of the blood-neural barrier, and an increase in immune activation, activated glia, and neuroinflammation. The present review discusses the regenerative role of HO metabolites, such as CO and BR, in various vascular diseases of the CNS such as stroke, traumatic brain injury, diabetic retinopathy, and Alzheimer's disease, and the role of several other signaling molecules.


Asunto(s)
Hemo Oxigenasa (Desciclizante)/metabolismo , Enfermedades Neurodegenerativas/patología , Regeneración/fisiología , Bilirrubina/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Monóxido de Carbono/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Neuronas/fisiología , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
6.
J Biol Chem ; 290(36): 22212-24, 2015 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-26209639

RESUMEN

Interleukin-1 receptor type 2 (IL1R2) acts as a decoy receptor of exogenous IL-1; however, its intracellular activity is poorly understood. We previously demonstrated that IL1R2 intracellularly activates the expression of several proinflammatory cytokines and affects cell migration. In this study, we found that intracellular IL1R2 expression was increased in human colorectal cancer cells (CRCs) compared with normal colon cells. We also observed that the mRNA levels of IL1R2 were highly correlated with IL-6 in tumor tissues of CRC patients. By modulating its expression in CRC cells, we verified that enhanced IL1R2 expression transcriptionally activated the expression of IL-6 and VEGF-A. Conditioned medium harvested from IL1R2-overexpressing CRC cells contained higher levels of IL-6 and VEGF-A than that from vector control cells and significantly enhanced the proliferation, migration, and tube formation of cultured endothelial cells. We further demonstrated a positive association of intracellular IL1R2 levels with tumor growth and microvessel density in xenograft mouse models. These results revealed that IL1R2 activates the expression of angiogenic factors. Mechanistically, we revealed that IL1R2 complexes with c-Fos and binds to the AP-1 site at the IL-6 and VEGF-A promoters. Together, these results reveal a novel function of intracellular IL1R2 that acts with c-Fos to enhance the transcription of IL-6 and VEGF-A, which promotes angiogenesis in CRC.


Asunto(s)
Neoplasias del Colon/metabolismo , Interleucina-6/metabolismo , Neovascularización Patológica/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Receptores Tipo II de Interleucina-1/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Western Blotting , Línea Celular , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias del Colon/irrigación sanguínea , Neoplasias del Colon/genética , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HT29 , Humanos , Interleucina-6/genética , Masculino , Ratones Endogámicos BALB C , Ratones Desnudos , Neovascularización Patológica/metabolismo , Unión Proteica , Interferencia de ARN , Receptores Tipo II de Interleucina-1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trasplante Heterólogo , Factor A de Crecimiento Endotelial Vascular/genética
7.
Oncogene ; 43(34): 2595-2610, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39068217

RESUMEN

Castration-resistant prostate cancer (CRPC) nearly inevitably develops after long-term treatment with androgen deprivation therapy (ADT), leading to significant mortality. Investigating the mechanisms driving CRPC development is imperative. Here, we determined that the pioneer transcription factor GATA2, which is frequently amplified in CRPC patients, inhibits interferon (IFN)-ß-mediated antitumor immunity, thereby promoting CRPC progression. Employing a genetically engineered mouse model (GEMM), we demonstrated that GATA2 overexpression hindered castration-induced cell apoptosis and tumor shrinkage, facilitating tumor metastasis and CRPC development. Notably, GATA2 drives castration resistance predominantly via repressing castration-induced activation of IFN-ß signaling and CD8+ T-cell infiltration. This finding aligns with the negative correlation between GATA2 expression and IFNB1 expression, as well as CD8+ T-cell infiltration in CRPC patients. Mechanistically, GATA2 recruited PIAS1 as corepressor, and reprogramed the cistrome of IRF3, a key transcription factor of the IFN-ß axis, in an androgen-independent manner. Furthermore, we identified a novel silencer element that facilitated the function of GATA2 and PIAS1 through looping to the IFNB1 promoter. Importantly, depletion of GATA2 augmented antitumor immunity and attenuated CRPC development. Consequently, our findings elucidate a novel mechanism wherein GATA2 promotes CRPC progression by suppressing IFN-ß axis-mediated antitumor immunity, underscoring GATA2 as a promising therapeutic target for CRPC.


Asunto(s)
Factor de Transcripción GATA2 , Interferón beta , Neoplasias de la Próstata Resistentes a la Castración , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Regulación Neoplásica de la Expresión Génica , Interferón beta/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/inmunología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Transducción de Señal
8.
Chin J Nat Med ; 22(7): 599-607, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39059829

RESUMEN

Panax ginseng (C.A. Mey.) has been traditionally employed in Korea and China to alleviate fatigue and digestive disorders. In particular, Korean red ginseng (KRG), derived from streamed and dried P. ginseng, is known for its anti-aging and anti-inflammatory properties. However, its effects on benign prostatic hyperplasia (BPH), a representative aging-related disease, and the underlying mechanisms remain unclear. This study aims to elucidate the therapeutic effects of KRG on BPH, with a particular focus on mitochondrial dynamics, including fission and fusion processes. The effects of KRG on cell proliferation, apoptosis, and mitochondrial dynamics and morphology were evaluated in a rat model of testosterone propionate (TP)-induced BPH and TP-treated LNCaP cells, with mdivi-1 as a control. The results revealed that KRG treatment reduced the levels of androgen receptors (AR) and prostate-specific antigens in the BPH group. KRG inhibited cell proliferation by downregulating cyclin D and proliferating cell nuclear antigen (PCNA) levels, and it promoted apoptosis by increasing the ratio of B-cell lymphoma protein 2 (Bcl-2)-associated X protein (Bax) to Bcl-2 expression. Notably, KRG treatment enhanced the phosphorylation of dynamin-related protein 1 (DRP-1, serine 637) compared with that in the BPH group, which inhibited mitochondrial fission and led to mitochondrial elongation. This modulation of mitochondrial dynamics was associated with decreased cell proliferation and increased apoptosis. By dysregulating AR signaling and inhibiting mitochondrial fission through enhanced DRP-1 (ser637) phosphorylation, KRG effectively reduced cell proliferation and induced apoptosis. These findings suggest that KRG's regulation of mitochondrial dynamics offers a promising clinical approach for the treatment of BPH.


Asunto(s)
Apoptosis , Proliferación Celular , Dinaminas , Dinámicas Mitocondriales , Panax , Hiperplasia Prostática , Receptores Androgénicos , Transducción de Señal , Animales , Humanos , Masculino , Ratas , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dinaminas/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Panax/química , Extractos Vegetales/farmacología , Hiperplasia Prostática/tratamiento farmacológico , Hiperplasia Prostática/metabolismo , Ratas Sprague-Dawley , Receptores Androgénicos/metabolismo , Transducción de Señal/efectos de los fármacos
9.
iScience ; 27(1): 108617, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38188509

RESUMEN

To investigate whether the defects in transient receptor potential canonical 4 (TRPC4), which is strongly expressed in the hippocampus, are implicated in ASD, we examined the social behaviors of mice in which Trpc4 was deleted (Trpc4-/-). Trpc4-/- mice displayed the core symptoms of ASD, namely, social disability and repetitive behaviors. In microarray analysis of the hippocampus, microRNA (miR)-138-2, the precursor of miR-138, was upregulated in Trpc4-/- mice. We also found that binding of Matrin3 (MATR3), a selective miR-138-2 binding nuclear protein, to miR-138-2 was prominently enhanced, resulting in the downregulation of miR-138 in Trpc4-/- mice. Some parameters of the social defects and repetitive behaviors in the Trpc4-/- mice were rescued by increased miR-138 levels following miR-138-2 infusion in the hippocampus. Together, these results suggest that Trpc4 regulates some signaling components that oppose the development of social behavioral deficits through miR-138 and provide a potential therapeutic strategy for ASD.

10.
Adv Sci (Weinh) ; 11(20): e2307852, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477561

RESUMEN

First-line treatment of multiple myeloma, a prevalent blood cancer lacking a cure, using anti-CD38 daratumumab antibody and lenalidomide is often inadequate due to relapse and severe side effects. To enhance drug safety and efficacy, an antibody-drug conjugate, TE-1146, comprising six lenalidomide drug molecules site-specifically conjugated to a reconfigured daratumumab to deliver cytotoxic lenalidomide to tumor cells is developed. TE-1146 is prepared using the HighDAR platform, which employs i) a maleimide-containing "multi-arm linker" to conjugate multiple drug molecules creating a drug bundle, and ii) a designed peptide with a Zn2+-binding cysteine at the C-termini of a reconfigured daratumumab for site-specific drug bundle conjugation. It is shown that TE-1146 remains intact and effectively enters CD38-expressing tumor cells, releasing lenalidomide, leading to enhanced cell-killing effects compared to lenalidomide/daratumumab alone or their combination. This reveals the remarkable potency of lenalidomide once internalized by myeloma cells. TE-1146 precisely delivers lenalidomide to target CD38-overexpressing tumor cells. In contrast, lenalidomide without daratumumab cannot easily enter cells, whereas daratumumab without lenalidomide relies on Fc-dependent effector functions to kill tumor cells.


Asunto(s)
Anticuerpos Monoclonales , Inmunoconjugados , Lenalidomida , Mieloma Múltiple , Mieloma Múltiple/tratamiento farmacológico , Humanos , Inmunoconjugados/farmacología , Inmunoconjugados/química , Lenalidomida/farmacología , Lenalidomida/uso terapéutico , Anticuerpos Monoclonales/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Ratones , Animales , Modelos Animales de Enfermedad
11.
J Biol Chem ; 287(3): 1903-14, 2012 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-22128156

RESUMEN

The histidine-containing phosphotransfer protein-B (HptB; PA3345) is an intermediate protein involved in transferring a phosphoryl group from multiple sensor kinases to the response regulator PA3346 in Pseudomonas aeruginosa PAO1. The objective of this study was to elucidate the biological significance of the HptB-PA3346 interaction and the regulatory mechanisms thereafter. The transcription profiling analysis of an hptB knock-out mutant showed that the expression of a number of motility-related genes was altered consistent with the non-swarming phenotype observed for the mutant. Domain analysis indicated that the PA3346 C-terminal region (PA3346C) exhibits ∼30% identity with the anti-σ factor SpoIIAB of Bacillus subtilis. The presence of Ser/Thr protein kinase activity targeting an anti-σ antagonist, PA3347, at Ser-56 was confirmed in PA3346C using an in vitro phosphorelay assay. Furthermore, PA3346C and the anti-σ(28) factor FlgM were found to interact with PA3347 individually both in vivo and in vitro. FlgM displaced PA3346C in binding of PA3347 and was then competitively displaced by σ(28) from the PA3347-FlgM complex, forming a phosphorylation-dependent partner-switching system. The significance of PA3347 phosphorylation in linking the partner-switching system and swarming motility was established by analyzing the swarming phenotype of the PA3347 knock-out mutant and its complement strains.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Complejos Multiproteicos/metabolismo , Pseudomonas aeruginosa/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Eliminación de Gen , Complejos Multiproteicos/genética , Estructura Terciaria de Proteína , Pseudomonas aeruginosa/genética
12.
Mar Pollut Bull ; 191: 114975, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37121184

RESUMEN

The transport and ultimate fate of per- and polyfluoroalkyl substances (PFASs) are generally considered to be influenced by partitioning behavior between water, suspended particulate matters (SPM), and sediments. This study examined the distribution and partitioning of the PFASs in the water, SPM, and sediments in a densely populated urban river-coastal system. The total concentrations of eight PFASs (∑8 PFASs) in the water phase, SPM, and sediments varied from 0.59 to 7.40 ng/L, 0.54 to 9.08 ng/g, and 0.05 to 0.13 ng/g, respectively. The PFAS concentrations in the water and SPM phase decreased as the salinity increased, confirming contaminant inputs from the upstream of the river to the estuary zone. Notably, the positive correlation between SPM-bound PFASs and transparent exopolymer particles (TEPs) content, providing first evidence that TEPs may accumulate and concentrate more PFASs on the SPM. Collectively, this results offers useful information about roles of TEPs in determining environmental fate of PFASs.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Ríos , Matriz Extracelular de Sustancias Poliméricas/química , Material Particulado/análisis , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Agua , China , Sedimentos Geológicos
13.
J Microbiol Immunol Infect ; 56(4): 705-717, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37055256

RESUMEN

BACKGROUND: An effective vaccine response is currently a critical issue in the control of COVID-19. Little is known about humoral and cellular immunity comparing protein-based vaccine with other types of vaccines. The relevance of basal immunity to antibody production is also unknown. METHODS: Seventy-eight individuals were enrolled in the study. The primary outcome were the level of spike-specific antibodies and neutralizing antibodies measured by ELISA. Secondary measures included memory T cells and basal immunity estimated by flow cytometry and ELISA. Correlations for all parameters were calculated using the nonparametric Spearman correlation method. RESULTS: We observed that two doses of mRNA-based Moderna mRNA-1273 (Moderna) vaccine produced the highest total spike-binding antibody and neutralizing ability against the wild-type (WT), Delta, and Omicron variants. The protein-based MVC-COV1901 (MVC) vaccine developed in Taiwan produced higher spike-binding antibodies against Delta and Omicron variants and neutralizing ability against the WT strain than the adenovirus-based AstraZeneca-Oxford AZD1222 (AZ) vaccine. Moderna and AZ vaccination produced more central memory T cells in PBMC than the MVC vaccine. However, the MVC vaccine had the lowest adverse effects compared to the Moderna and AZ vaccines. Surprisingly, the basal immunity represented by TNF-α, IFN-γ, and IL-2 prior to vaccination was negatively correlated with the production of spike-binding antibodies and neutralizing ability. CONCLUSION: This study compared memory T cells, total spike-binding antibody levels, and neutralizing capacity against WT, Delta, and Omicron variants between the MVC vaccine and the widely used Moderna and AZ vaccines, which provides valuable information for future vaccine development strategies.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Humanos , SARS-CoV-2 , ChAdOx1 nCoV-19 , Leucocitos Mononucleares , COVID-19/prevención & control , Vacunación , Anticuerpos Neutralizantes , Inmunidad Celular , Análisis de Datos , Anticuerpos Antivirales
14.
J Pharm Pharmacol ; 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-37942668

RESUMEN

Cisplatin-induced acute kidney injury (AKI) is a clinical disease characterized by a sudden loss of renal function within a few hours or days, due to cisplatin uptake. Fulvestrant is an oestrogen receptor alpha (ERα) antagonist used for endocrine therapy. However, the role of fulvestrant in cisplatin-induced AKI remains unclear. In this study, we investigated the effects of fulvestrant on the regulation of apoptotic cell death and autophagic response in cisplatin-induced AKI. The human kidney proximal tubule epithelial cell line (HK-2) was co-treated with fulvestrant and cisplatin. C57BL/6 mice were subcutaneously injected with fulvestrant and cisplatin was administered via intraperitoneal injection. First, cisplatin treatment increased ERα expression, apoptosis, and autophagy in HK-2 cells. Fulvestrant treatment decreased apoptosis and autophagy, which were accompanied by cisplatin treatment in HK-2 cells. Consistent with in vitro results, cisplatin treatment significantly increased ERα expression in vivo. Additionally, cisplatin treatment increased renal injury, apoptosis, and autophagy. Surprisingly, compared to that in the cisplatin-treated mice group, reduced cisplatin-induced renal injury, apoptosis, and autophagy was observed in the cisplatin+fulvestrant-treated mice group. In summary, these results suggest that fulvestrant plays an important role in cisplatin-induced AKI by decreasing apoptosis and autophagy.

15.
Artículo en Inglés | MEDLINE | ID: mdl-21826188

RESUMEN

The objective of this study was to examine the potential of enhancing the antileukemic activity of arsenic trioxide (ATO) by combining it with a folk remedy, crude methanolic extract of Mucuna macrocarpa (CMEMM). Human leukemia cells HL-60, Jurkat, and Molt-3 were treated with various doses of ATO, CMEMM, and combinations thereof for 24 and 48 h. Results indicated that the combination of 2.5 µM ATO and 50 µg/mL CMEMM synergistically inhibited cell proliferation in HL-60 and Jurkat cell lines. Apoptosis triggered by ATO/CMEMM treatment was confirmed by accumulation of cells in the sub-G(1) phase in cell cycle analyses, characteristic apoptotic nuclear fragmentation, and increased percentage of annexin V-positive apoptotic cells. Such combination treatments also led to elevation of reactive oxygen species (ROS). The antioxidants N-acetyl cysteine (NAC), butylated hydroxytoluene, and α-tocopherol prevented cells from ATO/CMEMM-induced apoptosis. The ATO/CMEMM-induced activation of caspase-3 and caspase-9 can be blocked by NAC. In summary, these results suggest that ATO/CMEMM combination treatment exerts synergistic apoptosis-inducing effects in human leukemic cells through a ROS-dependent mechanism and may provide a promising antileukemic approach in the future.

16.
Biochem Pharmacol ; 197: 114918, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35063441

RESUMEN

Multiple sclerosis (MS) is a neuroinflammatory autoimmune disease characterized by multifocal perivascular infiltration of immune cells in the central nervous system (CNS). Cordycepin (3'-deoxyadenosine), an adenosine analogue initially extracted from the fungus Cordyceps militarisa, is one of the candidates that has multiple actions. We investigated that cordycepin attenuated the activation of LPS-induced mouse bone marrow-derived dendritic cells (BMDCs) and human monocyte-derived dendritic cells (MoDCs) through the inhibition of the AKT, ERK, NFκB, and ROS pathways and impaired the migration of BMDCs through the downregulation of adhesion molecules and chemokine receptors in vitro. In experimental autoimmune encephalomyelitis (EAE) model, preventive treatment with cordycepin decreased the expression of trafficking factors in the CNS, inhibited the secretion of inflammatory cytokines (IFN-γ, IL-6, TNF-α, and IL-17), and attenuated disease symptoms. A chemokine array indicated that cordycepin treatment reversed the high levels of CCL6, PARRES2, IL-16, CXCL10, and CCL12 in the brain and spinal cord of EAE mice, consistent with the RNA-seq data. Moreover, cordycepin suppressed the release of neuroinflammatory cytokines by activated microglial cells, macrophages, Th17 cells, Tc1 cells, and Th1 cells in vitro. Furthermore, cordycepin treatment exerted therapeutic effects on attenuating the disease severity in the early disease onset stage and late disease progression stage. Our study suggests that cordycepin treatment may not only prevent the occurrence of MS by inhibiting DC activation and migration but also potentially ameliorates the progression of MS by reducing neuroinflammation, which may provide insights into the development of new approaches for the treatment of MS.


Asunto(s)
Desoxiadenosinas/uso terapéutico , Encefalomielitis Autoinmune Experimental/prevención & control , Mediadores de Inflamación/antagonistas & inhibidores , Leucocitos/efectos de los fármacos , Animales , Línea Celular Transformada , Células Cultivadas , Desoxiadenosinas/farmacología , Relación Dosis-Respuesta a Droga , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/metabolismo , Femenino , Humanos , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Lipopolisacáridos/toxicidad , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/inducido químicamente , Enfermedades Neuroinflamatorias/inmunología , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/prevención & control , Células RAW 264.7 , Linfocitos T Citotóxicos/efectos de los fármacos , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Células TH1/efectos de los fármacos , Células TH1/inmunología , Células TH1/metabolismo , Células Th17/efectos de los fármacos , Células Th17/inmunología , Células Th17/metabolismo
17.
Iran J Pharm Res ; 21(1): e133333, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36896319

RESUMEN

Background: Stauntonia hexaphylla has been a traditional folk remedy for alleviating fever and providing anti-inflammatory properties. Androgenetic alopecia (AGA) is the most common form mediated by the presence of the dihydrotestosterone (DHT). Objectives: In this study, we evaluated the effects of an extract of S. hexaphylla on AGA models and its mechanisms of action. Methods: We studied S. hexaphylla extract to evaluate 5α-reductase and androgen receptor (AR) levels, apoptosis, and cell proliferation in vitro and in vivo. In addition, paracrine factors for androgenic alopecia, such as transforming growth factor beta-1 (TGF-ß1) and dickkopf-a (DKK-1), were examined. Apoptosis was investigated, and the evaluation of proliferation was examined with cytokeratin 14 (CK-14) and proliferating cell nuclear antigen (PCNA). Results: In human follicular dermal papilla cells, the 5α-reductase and AR were decreased following S. hexaphylla treatment, which reduced the Bax/Bcl-2 ratio. Histologically, the dermal thickness and follicle number were higher in the S. hexaphylla groups compared with the AGA group. In addition, the DHT concentration, 5α-reductase, and AR were decreased, thereby downregulating TGF-ß1 and DKK-1 expression and upregulating cyclin D in S. hexaphylla groups. The numbers of keratinocyte-positive and PCNA-positive cells were increased compared to those in the AGA group. Conclusions: The present study demonstrated that the S. hexaphylla extract ameliorated AGA by inhibiting 5α-reductase and androgen signaling, reducing AGA paracrine factors that induce keratinocyte (KC) proliferation, and inhibition apoptosis and catagen prematuration.

18.
Water Res ; 222: 118856, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35863277

RESUMEN

The pervasiveness of microplastics (MPs) in global oceans is raising concerns about their adverse impacts on ecosystems. The mechanistic understanding of MP transport is critical for evaluating its fate, flux, and ecological risks specifically. Currently, bubble bursting is believed to represent an important route for MP transfer from sea surfaces to the atmosphere. However, the detailed mechanisms of the complex physico-chemical interactions between MPs, water composition, and gel particles in the air-sea interface remain unknown. Our results suggested three steps for MP transfer between air-sea phases: (1) MPs incorporating into gel aggregates in the water column; (2) further accumulation of plastic-gel aggregate in the surface layer phase; finally (3) ejection of aggregates from the sea when bubbles of trapped air rise to the surface and burst. The water composition (e.g., high salinity, gel concentration and viscosity) can modulate plastic-gel aggregation and subsequent transport from water to the atmosphere. The possible mechanism may be closely tied to the formation of plastic-gel via cation-linking bridges, thereby enhancing plastic-gel ejection into air. Collectively, this work offers unique insights into the role of marine plastic-gels in determining MP fate and transport, especially at air-sea interfaces. The data also provide a better understanding of the corresponding mechanism that may explain the fates of missing plastics in the ocean.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Atmósfera , Ecosistema , Monitoreo del Ambiente , Geles , Plásticos/química , Agua , Contaminantes Químicos del Agua/análisis
19.
Biomedicines ; 10(8)2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-36009528

RESUMEN

Lethal giant larvae (Lgl) is an apical-basal polarity gene first identified in Drosophila. LLGL2 is one of the mammalian homologs of Lgl. However, little is known about its function in the prostate. In this study, to explore the new role of LLGL2 in the prostate, we examined the proliferative activity of a BPH-1 cell line, a well-established model for the human prostate biology of benign prostatic hyperplasia (BPH). The expression of LLGL2 was dose-dependently increased in BPH-1 cells after treatment with 17ß-estradiol (E2). Additionally, E2 treatment increased the proliferation of the BPH-1 cells. However, the knockdown of LLGL2 with siRNA significantly suppressed the proliferation of the E2-treated BPH-1 cells. Moreover, si-llgl2 treatment up-regulated the expression of LC-3B, ATG7, and p-beclin, which are known to play a pivotal role in autophagosome formation in E2-treated BPH-1 cells. Overexpression of LLGL2 was able to further prove these findings by showing the opposite results from the knockdown of LLGL2 in E2-treated BPH-1 cells. Collectively, our results suggest that LLGL2 is closely involved in the proliferation of prostate cells by regulating autophagosome formation. These results provide a better understanding of the mechanism involved in the effect of LLGL2 on prostate cell proliferation. LLGL2 might serve as a potential target in the diagnosis and/or treatment of human BPH.

20.
BMB Rep ; 55(5): 238-243, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35410641

RESUMEN

Autism or autism spectrum disorder (ASD) is a behavioral syndrome characterized by persistent deficits in social interaction, and repetitive patterns of behavior, interests, or activities. The gene encoding Methyl-CpG binding protein 2 (MeCP2) is one of a few exceptional genes of established causal effect in ASD. Although genetically engineered mice studies may shed light on how MeCP2 loss affects synaptic activity patterns across the whole brain, such studies are not considered practical in ASD patients due to the overall level of impairment, and are technically challenging in mice. For the first time, we show that hippocampal MeCP2 knockdown produces behavioral abnormalities associated with autism-like traits in rats, providing a new strategy to investigate the efficacy of therapeutics in ASD. Ketamine, an N-Methyl-D-aspartate (NMDA) blocker, has been proposed as a possible treatment for autism. Using the MeCP2 knockdown rats in conjunction with a rat model of valproic acid (VPA)-induced ASD, we examined gene expression and ASD behaviors upon ketamine treatment. We report that the core symptoms of autism in MeCP2 knockdown rats with social impairment recovered dramatically following a single treatment with ketamine. [BMB Reports 2022; 55(5): 238-243].


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Ketamina , Proteína 2 de Unión a Metil-CpG , Animales , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/metabolismo , Trastorno Autístico/tratamiento farmacológico , Trastorno Autístico/genética , Trastorno Autístico/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ketamina/farmacología , Proteína 2 de Unión a Metil-CpG/deficiencia , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Ratones , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA