Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant Cell Rep ; 40(6): 1013-1024, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32980909

RESUMEN

KEY MESSAGE: The altered rice leaf color based on the knockout of CAO1 gene generated using CRISPR/Cas9 technology plays important roles in chlorophyll degradation and ROS scavenging to regulate both natural and induced senescence in rice. Rice chlorophyllide a oxygenase (OsCAO1), identified as the chlorophyll b synthesis under light condition, plays a critical role in regulating rice plant photosynthesis. In this study, the development of edited lines with pale green leaves by knockout of OsCAO1 gene known as a chlorophyll synthesis process is reported. Eighty-one genetically edited lines out of 181 T0 plants were generated through CRISPR/Cas9 system. The edited lines have short narrow flag leaves and pale green leaves compared with wild-type 'Dongjin' plants (WT). Additionally, edited lines have lower chlorophyll b and carotenoid contents both at seedling and mature stages. A transcriptome analysis identified 580 up-regulated and 206 downregulated genes in the edited lines. The differentially expressed genes (DEGs) involved in chlorophyll biosynthesis, magnesium chelatase subunit (CHLH), and glutamate-1-semialdehyde2, 1-aminomutase (GSA) metabolism decreased significantly. Meanwhile, the gel consistency (GC) levels of rice grains, chalkiness ratios and chalkiness degrees (CD) decreased in the edited lines. Thus, knockout of OsCAO1 influenced growth period, leaf development and grain quality characters of rice. Overall, the result suggests that OsCAO1 also plays important roles in chlorophyll degradation and ROS scavenging to regulate both natural and induced rice senescence.


Asunto(s)
Sistemas CRISPR-Cas , Técnicas de Inactivación de Genes/métodos , Oryza/fisiología , Clorofila/biosíntesis , Clorofila/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Homocigoto , Tasa de Mutación , Oryza/genética , Fenotipo , Plantas Modificadas Genéticamente
2.
Nanotechnology ; 31(4): 045304, 2020 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-31593938

RESUMEN

Polarized ultraviolet (UV) emitters are essential for various applications, such as photoalignment devices for liquid crystals, high-resolution imaging devices, highly sensitive sensors, and steppers. To increase the high polarization ratio (PR) of a UV emitter, the grating period should be decreased than that of the visible emitter. However, the fabrication of the short period grating directly on UV emitters is still limited. In this study, we demonstrate that 200, 100, and 50 nm period aluminum (Al)-based wire-grid polarizers (WGPs) can be fabricated directly on UV emitters by a solvent-assisted nanotransfer process. The UV emitter with a grating period of 100 nm shows a PR of 84%, and an electroluminescence efficiency that is 22.5% and 48% higher than those of UV emitters with 50 nm and 200 nm period WGPs, respectively, due to the increased photon extraction efficiency (PEE). The higher PEE is attributed to the optical cavity property of the Al metal reflector with low light loss and the surface plasmon effect of the Al grating layer.

3.
Int J Mol Sci ; 21(15)2020 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752068

RESUMEN

The rice SLR1 gene encodes the DELLA protein, and a loss-of-function mutation is dwarfed by inhibiting plant growth. We generate slr1-d mutants with a semi-dominant dwarf phenotype to target mutations of the DELLA/TVHYNP domain using CRISPR/Cas9 genome editing in rice. Sixteen genetic edited lines out of 31 transgenic plants were generated. Deep sequencing results showed that the mutants had six different mutation types at the target site of the TVHYNP domain of the SLR1 gene. The homo-edited plants selected individuals without DNA (T-DNA) transcribed by segregation in the T1 generation. The slr1-d7 and slr1-d8 plants caused a gibberellin (GA)-insensitive dwarf phenotype with shrunken leaves and shortened internodes. A genome-wide gene expression analysis by RNA-seq indicated that the expression levels of two GA-related genes, GA20OX2 (Gibberellin oxidase) and GA3OX2, were increased in the edited mutant plants, suggesting that GA20OX2 acts as a convert of GA12 signaling. These mutant plants are required by altering GA responses, at least partially by a defect in the phytohormone signaling system process and prevented cell elongation. The new mutants, namely, the slr1-d7 and slr1-d8 lines, are valuable semi-dominant dwarf alleles with potential application value for molecule breeding using the CRISPR/Cas9 system in rice.


Asunto(s)
Oryza/genética , Reguladores del Crecimiento de las Plantas/genética , Proteínas de Plantas/genética , Transcriptoma/genética , Alelos , Secuencia de Aminoácidos/genética , Sistemas CRISPR-Cas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Giberelinas/metabolismo , Mutación/genética , Oryza/crecimiento & desarrollo , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Transducción de Señal/genética
4.
J Nanosci Nanotechnol ; 19(10): 6112-6118, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31026918

RESUMEN

We propose a high efficiency flip chip-based ultraviolet (UV) emitter with aluminum (Al) reflector that includes indium tin oxide (ITO) nano grains for current injection between the Al and p-AlGaN layer. Al has attracted attention as a reflector for high efficiency UV emitters because of its high reflectance in the UV region. To improve the efficiency of UV emitter, we generated periodic microhole arrays on the p-AlGaN layer, which serve as a scattering center in the flip chip structure and enhance the light extraction efficiency. The light output power of the fabricated flip chip-based UV emitter with ITO nano grains/Al reflector and microhole arrays on the p-AlGaN layer is significantly improved by 72% and 45% at an injection current of 20 mA, compared to that of UV emitter with only Al reflector and ITO nano grains/Al reflector.

5.
J Nanosci Nanotechnol ; 19(10): 6328-6333, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31026956

RESUMEN

We investigated the optical and electrical properties of a ß-Ga2O3/Ag/ß-Ga2O3 multilayer transparent conductive electrode deposited on an α-Al2O3 (0001) substrate. For the deposition of a continuous Ag layer, we preliminarily performed anultraviolet-ozone pretreatment of the Ga2O3 bottom layer. To obtain a stable ß-phase of Ga2O3, the ß-Ga2O3/Ag/ß-Ga2O3 multilayer was annealed at 700 °C under N2 atmosphere. The transmittance and sheet resistance of the ß-Ga2O3/Ag/ß-Ga2O3 multilayer were critically affected by the surface morphology and thickness of the Ag interlayer. The multilayer with optimized thicknesses (ß-Ga2O3 top layer: 30 nm; Ag interlayer: 12 nm; ß-Ga2O3 bottom layer: 60 nm) exhibited a resistance of 8.48 Ωsq-1, an average optical transmittance of 87.16% in the ultraviolet wavelength range from 300 to 350 nm, and a figure of merit of 29.81 × 10-3 Ω-1.

6.
Regul Toxicol Pharmacol ; 106: 7-14, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31009651

RESUMEN

This study aimed to determine the safety and tolerability of the subretinal injection of hESC-derived RPE cells at higher doses than the established clinical dose (5 × 104 cells/150 µL) by using minipigs. The hESC-derived RPE cells (60 or 120 × 104 cells/150 µL) were injected in subretinal region, and minipigs were sacrificed at Weeks 4, 8, and 12 post-surgery. Time-course examination was performed by using fundus photography, optical coherence tomography (OCT), histopathology, and fluorescence in situ hybridization (FISH). After surgery, retinal bleb and pigmentation were seen and retinal bleb became smaller gradually. In histopathology, cell clusters consisting of a uniform population of the round to oval cells were seen at the subretinal injection site. In immunohistochemistry, most of the cells were positive for anti-CD3 and CD45 antibodies but negative for anti-human nuclei antibody; transplanted cells were not detectable by DNA probe in FISH assay. Cell clusters were thought to be a host immune response to trauma or transplanted cells. There were no other changes related to subretinal RPE cell injection. These results suggested that subretinal injection of hESC-derived RPE cells (60 and 120 × 104 cells/150 µL) in minipigs is well-tolerated and safe.


Asunto(s)
Células Madre Embrionarias Humanas/citología , Epitelio Pigmentado de la Retina/citología , Epitelio Pigmentado de la Retina/trasplante , Seguridad , Porcinos Enanos , Animales , Humanos , Hibridación Fluorescente in Situ , Porcinos , Tomografía de Coherencia Óptica
7.
Mol Cancer ; 17(1): 175, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30563517

RESUMEN

Even when targets responsible for chemoresistance are identified, drug development is often hampered due to the poor druggability of these proteins. We systematically analyzed therapy-resistance with a large-scale cancer cell transcriptome and drug-response datasets and predicted the candidate drugs based on the gene expression profile. Our results implicated the epithelial-mesenchymal transition as a common mechanism underlying resistance to chemotherapeutic drugs. Notably, we identified ITGB3, whose expression was abundant in both drug resistance and mesenchymal status, as a promising target to overcome chemoresistance. We also confirmed that depletion of ITGB3 sensitized cancer cells to conventional chemotherapeutic drugs by modulating the NF-κB signaling pathway. Considering the poor druggability of ITGB3 and the lack of feasible drugs to directly inhibit this protein, we took an in silico screening for drugs mimicking the transcriptome-level changes caused by knockdown of ITGB3. This approach successfully identified atorvastatin as a novel candidate for drug repurposing, paving an alternative path to drug screening that is applicable to undruggable targets.


Asunto(s)
Resistencia a Antineoplásicos/genética , Transición Epitelial-Mesenquimal/genética , Integrina beta3/genética , Neoplasias Pulmonares/genética , Células A549 , Línea Celular Tumoral , Descubrimiento de Drogas/métodos , Humanos , FN-kappa B/genética , Farmacogenética/métodos , Transducción de Señal/genética
8.
Nanotechnology ; 29(1): 015301, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29115278

RESUMEN

Self-standing ZnO nanotube (ZNT) arrays were fabricated on the surface of a GaN-based emitter with an indium tin oxide (ITO) transparent layer using a hydrothermal method and temperature cooling down process. For the greater enhancement of photon extraction efficiency, ZNT/SiO2 core-shell nanostructure arrays were fabricated on the emitter with a 430 nm wavelength. The optical output power of ZNT/SiO2 core-shell arrays on the emitter with ITO electrode was remarkably enhanced by 18.5%, 28.1%, and 55.9%, compared to those of ZNTs, ZNRs on an ITO film on an emitter and ITO film on an emitter as a conventional emitter, respectively. The large enhancement in optical output is attributable to the synergistic effect of efficient photon injection from the ITO/GaN layer to ZNTs because of the well-matched refractive indices and wave-guiding, in addition to the superior photon extraction by the SiO2 coating layer on the ZNTs.

9.
Gastroenterology ; 150(1): 181-193.e8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26435271

RESUMEN

BACKGROUND & AIMS: Endoplasmic reticulum (ER) stress has been implicated in a variety of diseases. Hepatic stellate cells (HSCs) contribute to the development of liver fibrosis. Information on the link between ER stress and HSC activation is scarce. We investigated the effects of ER stress in HSCs on the progression of liver fibrosis and the regulation of this process in cells and mice. METHODS: Proteins and messenger RNAs were measured in 2 sets of liver samples (n = 25 and n = 44) collected from patients with chronic hepatitis C virus infection and/or fibrosis. ER stress was induced in cells and mice using chemical agents. Lentiviral vectors were constructed to express glucose-regulated protein 78 (GRP78; also known as HSPA5) or heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) from the α-smooth muscle actin promoter and injected into C57BL/6 mice for HSC-specific gene expression. Liver tissues and HSCs were collected from mice or rats and analyzed using immunoblottings and quantitative reverse-transcription polymerase chain reaction. LX-2 cells were transfected with small interfering RNAs, microRNA mimics, or overexpression vectors. RESULTS: Hepatic ER stress was much higher in liver tissues from patients with severe vs mild fibrosis. ER stress induced fibrogenic genes in HSCs. Targeted lentiviral delivery of glucose-regulated protein 78 to HSCs in mice reduced fiber accumulation in liver. Levels of SMAD2, but not SMAD3, were increased in fibrotic liver tissues from patients or mice exposed to ER stress; small interfering RNA-mediated knockdown of SMAD2 reduced ER stress-mediated activation of HSCs. In rat HSCs, ER stress increased levels of SMAD2 messenger RNA by decreasing levels of microRNA 18a (MIR18A), an inhibitor of SMAD2 expression, rather than transactivating the SMAD2 gene. ER stress-activated PKR-like endoplasmic reticulum kinase, also known as EIF2AK3 (PERK) phosphorylated HNRNPA1, a protein required for the maturational processing of primary MIR18A, at Thr51, accelerating its degradation. Overexpression of HNRNPA1 (or its T51A mutant) in HSCs of mice inhibited liver fibrosis. Severe fibrotic liver tissues from patients had increased levels of phosphorylated PERK and reduced levels of HNRNPA1 in HSCs, compared with mild fibrotic liver tissues. CONCLUSIONS: ER stress in HSCs promotes liver fibrosis by inducing overexpression of SMAD2, via dysregulation of MIR18A; this dysregulation is mediated by PERK phosphorylation and destabilization of HNRNPA1.


Asunto(s)
Estrés del Retículo Endoplásmico/genética , Cirrosis Hepática/patología , Proteína Smad2/genética , eIF-2 Quinasa/metabolismo , Animales , Apoptosis/genética , Células Cultivadas , Modelos Animales de Enfermedad , Chaperón BiP del Retículo Endoplásmico , Células Estrelladas Hepáticas/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/fisiopatología , Ratones , Ratones Endogámicos C57BL , Fosforilación/genética , Ratas , Sensibilidad y Especificidad , Tunicamicina/farmacología , Regulación hacia Arriba
10.
BMC Vet Res ; 12(1): 164, 2016 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-27502594

RESUMEN

BACKGROUND: Current studies report that aberrations in epigenetic regulators or chromatin modifications are related to tumor development and maintenance. EZH2 (Enhancer of zeste homolog 2) is one of the catalytic subunits of Polycomb repressive complex 2, a crucial epigenetic regulator. EZH2 has a master regulatory function in such processes as cell proliferation, stem cell differentiation, and early embryogenesis. In humans, EZH2 is linked to oncogenic function in several carcinomas, including breast cancer, and dysregulation of EZH2 has been particularly associated with loss of differentiation and the development of poorly differentiated breast cancer. In our present study, we were interested in determining whether EZH2 is increased in canine mammary tumors, which show similarities to human breast cancer. RESULTS: Investigation of the expression of EZH2 in canine mammary tumors revealed that EZH2 protein was overexpressed in canine mammary carcinomas, as in human breast cancer. In addition, the immunohistochemical expression level of EZH2 was associated with the degree of malignancy in canine mammary carcinoma. This is the first report to describe EZH2 expression in canine mammary tumors. CONCLUSIONS: Because the expression of EZH2 was similar in canine mammary carcinoma and human breast cancer, spontaneous canine mammary tumors may be a suitable model for studying EZH2 and treatment development.


Asunto(s)
Enfermedades de los Perros/fisiopatología , Proteína Potenciadora del Homólogo Zeste 2/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Mamarias Animales/fisiopatología , Animales , Modelos Animales de Enfermedad , Perros , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Femenino , Humanos
11.
Front Plant Sci ; 14: 1183406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469771

RESUMEN

The family Schisandraceae is a basal angiosperm plant group distributed in East and Southeast Asia and includes many medicinal plant species such as Schisandra chinensis. In this study, mitochondrial genomes (mitogenomes) of two species, Schisandra repanda and Kadsura japonica, in the family were characterized through de novo assembly using sequencing data obtained with Oxford Nanopore and Illumina sequencing technologies. The mitogenomes of S. repanda were assembled into one circular contig (571,107 bp) and four linear contigs (10,898-607,430 bp), with a total of 60 genes: 38 protein-coding genes (PCGs), 19 tRNA genes, and 3 rRNA genes. The mitogenomes of K. japonica were assembled into five circular contigs (211,474-973,503 bp) and three linear contigs (8,010-72,712 bp), with a total of 66 genes: 44 PCGs, 19 tRNA genes, and 3 rRNA genes. The mitogenomes of the two species had complex structural features with high repeat numbers and chloroplast-derived sequences, as observed in other plant mitogenomes. Phylogenetic analysis based on PCGs revealed the taxonomical relationships of S. repanda and K. japonica with other species from Schisandraceae. Finally, molecular markers were developed to distinguish between S. repanda, K. japonica, and S. chinensis on the basis of InDel polymorphisms present in the mitogenomes. The mitogenomes of S. repanda and K. japonica will be valuable resources for molecular and taxonomic studies of plant species that belong to the family Schisandraceae.

12.
Plants (Basel) ; 12(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36616184

RESUMEN

We generated an orange-colored (OC) rice callus line by targeted mutagenesis of the orange gene (OsOr) using the CRISPR-Cas9 system. The OC line accumulated more lutein, ß-carotene, and two ß-carotene isomers compared to the WT callus line. We also analyzed the expression levels of carotenoid biosynthesis genes by qRT-PCR. Among the genes encoding carotenoid metabolic pathway enzymes, the number of transcripts of the PSY2, PSY3, PDS, ZDS and ß-LCY genes were higher in the OC line than in the WT line. In contrast, transcription of the ε-LCY gene was downregulated in the OC line compared to the WT line. In addition, we detected increases in the transcript levels of two genes involved in carotenoid oxidation in the OC lines. The developed OC lines also showed increased tolerance to salt stress. Collectively, these findings indicate that targeted mutagenesis of the OsOr gene via CRISPR/Cas9-mediated genome editing results in ß-carotene accumulation in rice calli. Accordingly, we believe that this type of genome-editing technology could represent an effective alternative approach for enhancing the ß-carotene content of plants.

13.
Genes (Basel) ; 12(12)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34946840

RESUMEN

In plants, the orange (Or) gene plays roles in regulating carotenoid biosynthesis and responses to environmental stress. The present study investigated whether the expression of rice Or (OsOr) gene could enhance rice tolerance to heat stress conditions. The OsOr gene was cloned and constructed with OsOr or OsOr-R115H (leading to Arg to His substitution at position 115 on the OsOr protein), and transformed into rice plants. The chlorophyll contents and proline contents of transgenic lines were significantly higher than those of non-transgenic (NT) plants under heat stress conditions. However, we found that the levels of electrolyte leakage and malondialdehyde in transgenic lines were significantly reduced compared to NT plants under heat stress conditions. In addition, the levels of expression of four genes related to reactive oxygen species (ROS) scavenging enzymes (OsAPX2, OsCATA, OsCATB, OsSOD-Cu/Zn) and five genes (OsLEA3, OsDREB2A, OsDREB1A, OsP5CS, SNAC1) responded to abiotic stress was showed significantly higher in the transgenic lines than NT plants under heat stress conditions. Therefore, OsOr-R115H could be exploited as a promising strategy for developing new rice cultivars with improved heat stress tolerance.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/genética , Expresión Génica/genética , Oryza/genética , Proteínas de Plantas/genética , Termotolerancia/genética , Clorofila/genética , Plantas Modificadas Genéticamente/genética , Prolina/genética , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/genética
14.
Comp Med ; 70(4): 349-354, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32718384

RESUMEN

PKM2 is a pyruvate kinase isoform that is the final and rate-limiting step in aerobic glycolysis in tumor cells. Increased expression of PKM2 has been detected in human cancers. The present study examined the expression of PKM2 in canine mammary tumors and assessed its prognostic significance. Paraffin sections of 5 adenomas, 67 carcinomas, and 5 samples of nonneoplastic hyperplasia from 77 dogs, aged 8 to 18 y, were evaluated. Significantly higher levels of PKM2 were detected among the carcinomas compared with all other tissues examined. The level of PKM2 expression in carcinoma tissue correlated positively with the tumor grade. These findings suggest that PKM2 may have a similar role in canine mammary tumors to its role in human breast cancer. As such, canine mammary tumors may be useful models for studies focused on the progression of human neoplastic disease.


Asunto(s)
Adenoma/genética , Adenoma/veterinaria , Enfermedades de los Perros/genética , Neoplasias Mamarias Animales/genética , Piruvato Quinasa/metabolismo , Adenoma/metabolismo , Adenoma/patología , Animales , Neoplasias de la Mama/genética , Modelos Animales de Enfermedad , Enfermedades de los Perros/metabolismo , Enfermedades de los Perros/patología , Perros , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Mamarias Animales/metabolismo , Neoplasias Mamarias Animales/patología , Piruvato Quinasa/genética
15.
Sci Rep ; 10(1): 21257, 2020 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-33277567

RESUMEN

In vitro plant regeneration involves a two-step practice of callus formation and de novo organogenesis. During callus formation, cellular competence for tissue regeneration is acquired, but it is elusive what molecular processes and genetic factors are involved in establishing cellular pluripotency. To explore the mechanisms underlying pluripotency acquisition during callus formation in monocot plants, we performed a transcriptomic analysis on the pluripotent and non-pluripotent rice calli using RNA-seq. We obtained a dataset of differentially expressed genes (DEGs), which accounts for molecular processes underpinning pluripotency acquisition and maintenance. Core regulators establishing root stem cell niche were implicated in pluripotency acquisition in rice callus, as observed in Arabidopsis. In addition, KEGG analysis showed that photosynthetic process and sugar and amino acid metabolism were substantially suppressed in pluripotent calli, whereas lipid and antioxidant metabolism were overrepresented in up-regulated DEGs. We also constructed a putative coexpression network related to cellular pluripotency in rice and proposed potential candidates conferring pluripotency in rice callus. Overall, our transcriptome-based analysis can be a powerful resource for the elucidation of the molecular mechanisms establishing cellular pluripotency in rice callus.


Asunto(s)
Oryza/genética , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , RNA-Seq , Nicho de Células Madre/fisiología , Transcriptoma/genética
16.
Plants (Basel) ; 9(9)2020 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-32933074

RESUMEN

The utilization of male sterility into hybrid seed production reduces its cost and ensures high purity of tomato varieties because it does not produce pollen and has exserted stigmas. Here, we report on the generation of gene edited lines into male sterility phenotype by knockout of SlMS10 gene (Solyc02g079810) encoding the bHLH transcription factor that regulates meiosis and cell death of the tapetum during microsporogenesis in the tomato. Twenty-eight gene edited lines out of 60 transgenic plants were selected. Of these, eleven different mutation types at the target site of the SlMS10 gene were selected through deep sequencing analysis. These mutations were confirmed to be transmitted to subsequent generations. The null lines without the transferred DNA (T-DNA) were obtained by segregation in the T1 and T2 generations. In addition, we showed that the cr-ms10-1-4 mutant line exhibited dysfunctional meiosis and abnormal tapetum during flower development, resulting in no pollen production. RT-PCR analysis showed that the most genes associated with pollen and tapetum development in tomatoes had lower expression in the cr-ms10-1-4 mutant line compared to wild type. We demonstrate that modification of the SlMS10 gene via CRISPR/Cas9-mediated genome editing results in male sterility of tomato plants. Our results suggest an alternative approach to generating male sterility in crops.

17.
Korean J Food Sci Anim Resour ; 38(5): 1055-1063, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30479511

RESUMEN

The aim of study was to investigate the correlation between the level of 17 antibiotic residues and 6 antibiotic resistances of Escherichia coli isolates in chicken meats. A total of 58 chicken meats were collected from retail grocery stores in five provinces in Korea. The total detection rate of antibiotic residues was 45% (26 out of 58). Ten out of 17 antibiotics were detected in chicken meats. None of the antibiotics exceeded the maximum residue level (MRLs) in chicken established by the Ministry of Food and Drug Safety (MFDS). The most detected antibiotics were amoxicillin (15.5%), followed by enrofloxacin (12.1%) and sulfamethoxazole (10.3%). In a total of 58 chicken meats, 51 E. coli strains were isolated. E. coli isolates showed the highest resistance to ampicillin (75%), followed by tetracycline (69%), ciprofloxacin (65%), trimethoprim/ sulfamethoxazole (41%), ceftiofur (22%), and amoxicillin/clavulanic acid (12%). The results of study showed basic information on relationship between antibiotic residue and resistance for 6 compounds in 13 chicken samples. Further investigation on the antibiotic resistance patterns of various bacteria species is needed to improve food safety.

18.
ACS Appl Mater Interfaces ; 10(16): 14124-14131, 2018 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-29620842

RESUMEN

Metal nanowires have been gaining increasing attention as the most promising stretchable transparent electrodes for emerging field of stretchable optoelectronic devices. Nanowelding technology is a major challenge in the fabrication of metal nanowire networks because the optoelectronic performances of metal nanowire networks are mostly limited by the high junction resistance between nanowires. We demonstrate the spontaneous and selective welding of Ag nanowires (AgNWs) by Ag solders via an electrochemical Ostwald ripening process and high electrostatic potential at the junctions of AgNWs. The AgNWs were welded by depositing Ag nanoparticles (AgNPs) on the conducting substrate and then exposing them to water at room temperature. The AgNPs were spontaneously dissolved in water to form Ag+ ions, which were then reduced to single-crystal Ag solders selectively at the junctions of the AgNWs. Hence, the welded AgNWs showed higher optoelectronic and stretchable performance compared to that of as-formed AgNWs. These results indicate that electrochemical Ostwald ripening-based welding can be used as a promising method for high-performance metal nanowire electrodes in various next-generation devices such as stretchable solar cells, stretchable displays, organic light-emitting diodes, and skin sensors.

19.
R Soc Open Sci ; 5(12): 181303, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30662739

RESUMEN

The Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) system can be used not only to study gene expression at a specific cell cycle stage, but also to monitor cell cycle transitions in real time. In this study, we used a single clone of FUCCI-expressing HeLa cells (FUCCI-HeLa cells) and monitored the cell cycle in individual live cells over time by determining the ratios between red fluorescence (RF) of RFP-Cdt1 and green fluorescence (GF) of GFP-Geminin. Cytotoxic and cytostatic compounds, the latter of which induced G2 or mitotic arrest, were identified based on periodic cycling of the RF/GF and GF/RF ratios in FUCCI-HeLa cells treated with anti-cancer drugs. With this cell cycle monitoring system, ten flavonoids were screened. Of these, apigenin and luteolin, which have a flavone backbone, were cytotoxic, whereas kaempferol, which has a flavonol backbone, was cytostatic and induced G2 arrest. In summary, we developed a system to quantitatively monitor the cell cycle in real time. This system can be used to identify novel compounds that modulate the cell cycle and to investigate structure-activity relationships.

20.
ACS Appl Mater Interfaces ; 8(3): 1565-70, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26752616

RESUMEN

We report on the optical and electrical properties of MgxZn1-xO/Ag/MgxZn1-xO transparent conductive electrodes. The transmittance and sheet resistance of MgxZn1-xO/Ag/MgxZn1-xO multilayers deposited at room temperature were strongly dependent on the thickness and surface morphology of Ag layer. The optical absorption edge of MgxZn1-xO/Ag/MgxZn1-xO showed a blue shift with increasing Mg composition due to the increased band gap of MgxZn1-xO. The Haack figure of merit value of Mg0.28Zn0.72O/Ag/Mg0.28Zn0.72O with a 14 nm-thick Ag layer, which has a sheet resistance of 6.36 Ω/sq and an average transmittance of 89.2% at wavelengths in the range from 350 to 780 nm, was 69% higher than that of a ZnO/Ag/ZnO multilayer electrode. These results indicate that MgxZn1-xO/Ag/MgxZn1-xO multilayers, which also show low surface roughness, can be used as highly conductive transparent electrodes in various optoelectronic devices operating over a wide wavelength region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA