Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochim Biophys Acta Biomembr ; 1860(2): 442-450, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29055659

RESUMEN

Dengue virus (DENV) non-structural (NS) 4A is a membrane protein essential for viral replication. The N-terminal region of NS4A contains several helices interacting with the cell membrane and the C-terminal region consists of three potential transmembrane regions. The secondary structure of the intact NS4A is not known as the previous structural studies were carried out on its fragments. In this study, we purified the full-length NS4A of DENV serotype 4 into dodecylphosphocholine (DPC) micelles. Solution NMR studies reveal that NS4A contains six helices in DPC micelles. The N-terminal three helices are amphipathic and interact with the membrane. The C-terminal three helices are embedded in micelles. Our results suggest that NS4A contains three transmembrane helices. Our studies provide for the first time structural information of the intact NS4A of DENV and will be useful for further understanding its role in viral replication.


Asunto(s)
Proteínas de la Membrana/química , Micelas , Fosforilcolina/análogos & derivados , Estructura Secundaria de Proteína , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Virus del Dengue/genética , Virus del Dengue/metabolismo , Membrana Dobles de Lípidos/química , Membrana Dobles de Lípidos/metabolismo , Espectroscopía de Resonancia Magnética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Fosforilcolina/química , Fosforilcolina/metabolismo , Unión Proteica , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
2.
J Biol Chem ; 291(34): 17743-53, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27365392

RESUMEN

Bacterial topoisomerases are attractive antibacterial drug targets because of their importance in bacterial growth and low homology with other human topoisomerases. Structure-based drug design has been a proven approach of efficiently developing new antibiotics against these targets. Past studies have focused on developing lead compounds against the ATP binding pockets of both DNA gyrase and topoisomerase IV. A detailed understanding of the interactions between ligand and target in a solution state will provide valuable information for further developing drugs against topoisomerase IV targets. Here we describe a detailed characterization of a known potent inhibitor containing a 9H-pyrimido[4,5-b]indole scaffold against the N-terminal domain of the topoisomerase IV E subunit from Escherichia coli (eParE). Using a series of biophysical and biochemical experiments, it has been demonstrated that this inhibitor forms a tight complex with eParE. NMR studies revealed the exact protein residues responsible for inhibitor binding. Through comparative studies of two inhibitors of markedly varied potencies, it is hypothesized that gaining molecular interactions with residues in the α4 and residues close to the loop of ß1-α2 and residues in the loop of ß3-ß4 might improve the inhibitor potency.


Asunto(s)
Topoisomerasa de ADN IV/antagonistas & inhibidores , Topoisomerasa de ADN IV/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Inhibidores de Topoisomerasa/química , Humanos , Indoles/química , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Estructura Secundaria de Proteína
3.
J Virol ; 89(7): 3455-70, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25568208

RESUMEN

UNLABELLED: Flavivirus replication is mediated by a membrane-associated replication complex where viral membrane proteins NS2A, NS2B, NS4A, and NS4B serve as the scaffold for the replication complex formation. Here, we used dengue virus serotype 2 (DENV-2) as a model to characterize viral NS4A-NS4B interaction. NS4A interacts with NS4B in virus-infected cells and in cells transiently expressing NS4A and NS4B in the absence of other viral proteins. Recombinant NS4A and NS4B proteins directly bind to each other with an estimated Kd (dissociation constant) of 50 nM. Amino acids 40 to 76 (spanning the first transmembrane domain, consisting of amino acids 50 to 73) of NS4A and amino acids 84 to 146 (also spanning the first transmembrane domain, consisting of amino acids 101 to 129) of NS4B are the determinants for NS4A-NS4B interaction. Nuclear magnetic resonance (NMR) analysis suggests that NS4A residues 17 to 80 form two amphipathic helices (helix α1, comprised of residues 17 to 32, and helix α2, comprised of residues 40 to 47) that associate with the cytosolic side of endoplasmic reticulum (ER) membrane and helix α3 (residues 52 to 75) that transverses the ER membrane. In addition, NMR analysis identified NS4A residues that may participate in the NS4A-NS4B interaction. Amino acid substitution of these NS4A residues exhibited distinct effects on viral replication. Three of the four NS4A mutations (L48A, T54A, and L60A) that affected the NS4A-NS4B interaction abolished or severely reduced viral replication; in contrast, two NS4A mutations (F71A and G75A) that did not affect NS4A-NS4B interaction had marginal effects on viral replication, demonstrating the biological relevance of the NS4A-NS4B interaction to DENV-2 replication. Taken together, the study has provided experimental evidence to argue that blocking the NS4A-NS4B interaction could be a potential antiviral approach. IMPORTANCE: Flavivirus NS4A and NS4B proteins are essential components of the ER membrane-associated replication complex. The current study systematically characterizes the interaction between flavivirus NS4A and NS4B. Using DENV-2 as a model, we show that NS4A interacts with NS4B in virus-infected cells, in cells transiently expressing NS4A and NS4B proteins, or in vitro with recombinant NS4A and NS4B proteins. We mapped the minimal regions required for the NS4A-NS4B interaction to be amino acids 40 to 76 of NS4A and amino acids 84 to 146 of NS4B. NMR analysis revealed the secondary structure of amino acids 17 to 80 of NS4A and the NS4A amino acids that may participate in the NS4A-NS4B interaction. Functional analysis showed a correlation between viral replication and NS4A-NS4B interaction, demonstrating the biological importance of the NS4A-NS4B interaction. The study has advanced our knowledge of the molecular function of flavivirus NS4A and NS4B proteins. The results also suggest that inhibitors of the NS4A-NS4B interaction could be pursued for flavivirus antiviral development.


Asunto(s)
Virus del Dengue/fisiología , Mapeo de Interacción de Proteínas , Proteínas no Estructurales Virales/metabolismo , Replicación Viral , Animales , Línea Celular , Cricetinae , Análisis Mutacional de ADN , Humanos , Espectroscopía de Resonancia Magnética , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/genética
4.
Protein Expr Purif ; 121: 141-8, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26849963

RESUMEN

Dengue protease is a two-component enzyme and is an important drug target against dengue virus. The protease activity and protein stability of dengue nonstructural protein 3 (NS3) require a co-factor region from a four-span membrane protein NS2B. A natural form of dengue protease containing full-length NS2B and NS3 protease domain NS2BFL-NS3pro will be useful for dengue drug discovery. In current study, detergents that can be used for protease purification were tested. Using a water soluble protease construct, 39 detergents were selected for both NS2B and NS2BFL-NS3pro purification. The results showed that 18 detergents were able to sustain the activity of the natural dengue protease and 11 detergents could be used for NS2B purification. The results obtained in this study will be useful for biochemical and biophysical studies on dengue protease.


Asunto(s)
Virus del Dengue/enzimología , Dengue/enzimología , Detergentes/química , Serina Endopeptidasas/química , Dengue/virología , Virus del Dengue/patogenicidad , Descubrimiento de Drogas , Escherichia coli/genética , Cinética , Serina Endopeptidasas/aislamiento & purificación , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/aislamiento & purificación
5.
Angew Chem Int Ed Engl ; 55(39): 12068-72, 2016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27554985

RESUMEN

Dengue virus nonstructural protein 4B (NS4B) is a membrane protein consisting of 248 residues with a crucial role in virus replication and interference with the host innate immunity. The dengue virus serotype 3 NS4B was reconstituted into lyso-myristoyl phosphatidylglycerol (LMPG) micelles. Backbone resonance assignment of NS4B was obtained using conventional solution NMR experiments. Further studies suggested that NS4B contained eleven helices and six of them form five potential transmembrane regions. This study provides atomic level information for an important drug target to control flavivirus infections.


Asunto(s)
Virus del Dengue/química , Dengue/virología , Proteínas de la Membrana/química , Proteínas no Estructurales Virales/química , Secuencia de Aminoácidos , Humanos , Micelas , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína
6.
Biophys J ; 109(9): 1969-77, 2015 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-26536273

RESUMEN

Bacterial DNA topoisomerases are essential for bacterial growth and are attractive, important targets for developing antibacterial drugs. Consequently, different potent inhibitors that target bacterial topoisomerases have been developed. However, the development of potent broad-spectrum inhibitors against both Gram-positive (G(+)) and Gram-negative (G(-)) bacteria has proven challenging. In this study, we carried out biophysical studies to better understand the molecular interactions between a potent bis-pyridylurea inhibitor and the active domains of the E-subunits of topoisomerase IV (ParE) from a G(+) strain (Streptococcus pneumoniae (sParE)) and a G(-) strain (Pseudomonas aeruginosa (pParE)). NMR results demonstrated that the inhibitor forms a tight complex with ParEs and the resulting complexes adopt structural conformations similar to those observed for free ParEs in solution. Further chemical-shift perturbation experiments and NOE analyses indicated that there are four regions in ParE that are important for inhibitor binding, namely, α2, the loop between ß2 and α3, and the ß2 and ß6 strands. Surface plasmon resonance showed that this inhibitor binds to sParE with a higher KD than pParE. Point mutations in α2 of ParE, such as A52S (sParE), affected its binding affinity with the inhibitor. Taken together, these results provide a better understanding of the development of broad-spectrum antibacterial agents.


Asunto(s)
Topoisomerasa de ADN IV/química , Secuencia de Aminoácidos , Topoisomerasa de ADN IV/antagonistas & inhibidores , Topoisomerasa de ADN IV/genética , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Estructura Secundaria de Proteína , Pseudomonas aeruginosa , Soluciones , Streptococcus pneumoniae , Resonancia por Plasmón de Superficie , Temperatura
7.
Biochem Biophys Res Commun ; 467(4): 961-6, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26471301

RESUMEN

Bacterial topoisomerase IV (ParE) is essential for DNA replication and serves as an attractive target for antibacterial drug development. The X-ray structure of the N-terminal 24 kDa ParE, responsible for ATP binding has been solved. Due to the accessibility of structural information of ParE, many potent ParE inhibitors have been discovered. In this study, a pyridylurea lead molecule against ParE of Escherichia coli (eParE) was characterized with a series of biochemical and biophysical techniques. More importantly, solution NMR analysis of compound binding to eParE provides better understanding of the molecular interactions between the inhibitor and eParE.


Asunto(s)
Adenosina Trifosfato/metabolismo , Topoisomerasa de ADN IV/metabolismo , Topoisomerasa de ADN IV/farmacología , Escherichia coli/enzimología , Adenosina Trifosfato/antagonistas & inhibidores , Secuencia de Aminoácidos , Antibacterianos/farmacología , Unión Competitiva , Topoisomerasa de ADN IV/antagonistas & inhibidores , Topoisomerasa de ADN IV/química , Diseño de Fármacos , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular
8.
Biomol NMR Assign ; 10(1): 135-8, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26482923

RESUMEN

Bacterial DNA topoisomerases are important drug targets due to their importance in DNA replication and low homology to human topoisomerases. The N-terminal 24 kDa region of E. coli topoisomerase IV E subunit (eParE) contains the ATP binding pocket. Structure-based drug discovery has been proven to be an efficient way to develop potent ATP competitive inhibitors against ParEs. NMR spectroscopy is a powerful tool to understand protein and inhibitor interactions in solution. In this study, we report the backbone assignment for the N-terminal domain of E. coli ParE. The secondary structural information and the assignment will aid in structure-based antibacterial agents development targeting eParE.


Asunto(s)
Topoisomerasa de ADN IV/química , Escherichia coli/enzimología , Resonancia Magnética Nuclear Biomolecular , Subunidades de Proteína/química , Antibacterianos/farmacología , Topoisomerasa de ADN IV/metabolismo , Descubrimiento de Drogas , Escherichia coli/efectos de los fármacos , Estructura Secundaria de Proteína , Subunidades de Proteína/metabolismo
9.
Nat Commun ; 7: 13410, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27845325

RESUMEN

The recent outbreak of Zika virus (ZIKV) infections in the Americas represents a serious threat to the global public health. The viral protease that processes viral polyproteins during infection appears as an attractive drug target. Here we report a crystal structure at 1.84 Å resolution of ZIKV non-structural protein NS2B-NS3 protease with the last four amino acids of the NS2B cofactor bound at the NS3 active site. This structure represents a post-proteolysis state of the enzyme during viral polyprotein processing and provides insights into peptide substrate recognition by the protease. Nuclear magnetic resonance (NMR) studies and protease activity assays unravel the protein dynamics upon binding the protease inhibitor BPTI in solution and confirm this finding. The structural and functional insights of the ZIKV protease presented here should advance our current understanding of flavivirus replication and accelerate structure-based antiviral drug discovery against ZIKV.


Asunto(s)
Péptido Hidrolasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , Virus Zika/metabolismo , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Péptido Hidrolasas/química , Unión Proteica , Conformación Proteica , Proteolisis , Proteínas no Estructurales Virales/química
10.
FEBS Lett ; 589(19 Pt B): 2683-9, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26272827

RESUMEN

The N-terminal ATP binding domain of the DNA gyrase B subunit is a validated drug target for antibacterial drug discovery. Structural information for this domain (pGyrB) from Pseudomonas aeruginosa is still missing. In this study, the interaction between pGyrB and a bis-pyridylurea inhibitor was characterized using several biophysical methods. We further carried out structural analysis of pGyrB using NMR spectroscopy. The secondary structures of free and inhibitor bound pGyrB were obtained based on backbone chemical shift assignment. Chemical shift perturbation and NOE experiments demonstrated that the inhibitor binds to the ATP binding pocket. The results of this study will be helpful for drug development targeting P. aeruginosa.


Asunto(s)
Dominio Catalítico , Girasa de ADN/química , Girasa de ADN/metabolismo , Pseudomonas aeruginosa/enzimología , Inhibidores de Topoisomerasa II/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , Urea/química , Urea/metabolismo , Urea/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA