RESUMEN
The mechanisms underlying sterol transport in mammalian cells are poorly understood. In particular, how cholesterol internalized from HDL is made available to the cell for storage or modification is unknown. Here, we describe three ER-resident proteins (Aster-A, -B, -C) that bind cholesterol and facilitate its removal from the plasma membrane. The crystal structure of the central domain of Aster-A broadly resembles the sterol-binding fold of mammalian StARD proteins, but sequence differences in the Aster pocket result in a distinct mode of ligand binding. The Aster N-terminal GRAM domain binds phosphatidylserine and mediates Aster recruitment to plasma membrane-ER contact sites in response to cholesterol accumulation in the plasma membrane. Mice lacking Aster-B are deficient in adrenal cholesterol ester storage and steroidogenesis because of an inability to transport cholesterol from SR-BI to the ER. These findings identify a nonvesicular pathway for plasma membrane to ER sterol trafficking in mammals.
Asunto(s)
HDL-Colesterol/metabolismo , Proteínas de la Membrana/fisiología , Proteínas de la Membrana/ultraestructura , Células 3T3 , Animales , Transporte Biológico/fisiología , Antígenos CD36/metabolismo , Células CHO , Proteínas Portadoras/metabolismo , Línea Celular , Membrana Celular/metabolismo , Membrana Celular/fisiología , Colesterol/metabolismo , Cricetulus , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Membranas Mitocondriales/metabolismo , Alineación de Secuencia , Esteroles/metabolismoRESUMEN
Subcutaneous white adipose tissue can be induced to undergo "browning" and acquire thermogenic capacity in response to physiological stimuli such as cold exposure or exercise. In this issue of Cell, Qiu et al. and Rao et al. demonstrate that pink-staining eosinophils and alternatively activated macrophages play key roles in an immune cascade mediating this metabolic switch.
Asunto(s)
Tejido Adiposo Pardo/metabolismo , Eosinófilos/metabolismo , Interleucina-13/metabolismo , Interleucina-4/metabolismo , Macrófagos/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Transducción de Señal , Animales , MasculinoRESUMEN
Regulation of hepatocyte proliferation and liver morphology is of critical importance to tissue and whole-body homeostasis. However, the molecular mechanisms that underlie this complex process are incompletely understood. Here, we describe a role for the ubiquitin ligase BRCA1-associated protein (BRAP) in regulation of hepatocyte morphology and turnover via regulation of MST2, a protein kinase in the Hippo pathway. The Hippo pathway has been implicated in the control of liver morphology, inflammation, and fibrosis. We demonstrate here that liver-specific ablation of Brap in mice results in gross and cellular morphological alterations of the liver. Brap-deficient livers exhibit increased hepatocyte proliferation, cell death, and inflammation. We show that loss of BRAP protein alters Hippo pathway signaling, causing a reduction in phosphorylation of YAP and increased expression of YAP target genes, including those regulating cell growth and interactions with the extracellular environment. Finally, increased Hippo signaling in Brap knockout mice alters the pattern of liver lipid accumulation in dietary models of obesity. These studies identify a role for BRAP as a modulator of the hepatic Hippo pathway with relevance to human liver disease.
Asunto(s)
Vía de Señalización Hippo , Transducción de Señal , Hepatocitos/metabolismo , Hígado/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
Capicua (CIC)'s transcriptional repressor function is implicated in neurodevelopment and in oligodendroglioma (ODG) aetiology. However, CIC's role in these contexts remains obscure, primarily from our currently limited knowledge regarding its biological functions. Moreover, CIC mutations in ODG invariably co-occur with a neomorphic IDH1/2 mutation, yet the functional relationship between these two genetic events is unknown. Here, we analysed models derived from an E6/E7/hTERT-immortalized (i.e. p53- and RB-deficient) normal human astrocyte cell line. To examine the consequences of CIC loss, we compared transcriptomic and epigenomic profiles between CIC wild-type and knockout cell lines, with and without mutant IDH1 expression. Our analyses revealed dysregulation of neurodevelopmental genes in association with CIC loss. CIC ChIP-seq was also performed to expand upon the currently limited ensemble of known CIC target genes. Among the newly identified direct CIC target genes were EPHA2 and ID1, whose functions are linked to neurodevelopment and the tumourigenicity of in vivo glioma tumour models. NFIA, a known mediator of gliogenesis, was discovered to be uniquely overexpressed in CIC-knockout cells expressing mutant IDH1-R132H protein. These results identify neurodevelopment and specific genes within this context as candidate targets through which CIC alterations may contribute to the progression of IDH-mutant gliomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Asunto(s)
Astrocitos/enzimología , Epigenoma , Epigenómica , Perfilación de la Expresión Génica , Isocitrato Deshidrogenasa/genética , Mutación , Proteínas Represoras/genética , Transcriptoma , Astrocitos/patología , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Línea Celular Transformada , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Metilación de ADN , Epigénesis Genética , Regulación del Desarrollo de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Isocitrato Deshidrogenasa/metabolismo , Factores de Transcripción NFI/genética , Factores de Transcripción NFI/metabolismo , Oligodendroglioma/enzimología , Oligodendroglioma/genética , Oligodendroglioma/patología , Receptor EphA2/genética , Receptor EphA2/metabolismo , Proteínas Represoras/deficienciaRESUMEN
RATIONALE: The E3 ubiquitin ligase inducible degrader of the low-density lipoprotein receptor (IDOL) triggers lysosomal degradation of the low-density lipoprotein receptor. The tissue-specific effects of the IDOL pathway on plasma cholesterol and atherosclerosis have not been examined. OBJECTIVE: Given that the liver is the primary determinant of plasma cholesterol levels, we sought to examine the consequence of effect of chronic liver-specific expression of a dominant-active form of IDOL in mice. METHODS AND RESULTS: We expressed a degradation-resistant, dominant-active form of IDOL (super IDOL [sIDOL]) in C57Bl/6J mice from the liver-specific albumin promoter (L-sIDOL transgenics). L-sIDOL mice were fed a Western diet for 20 or 30 weeks and then analyzed for plasma lipid levels and atherosclerotic lesion formation. L-sIDOL mice showed dramatic reductions in hepatic low-density lipoprotein receptor protein and increased plasma low-density lipoprotein cholesterol levels on both chow and Western diets. Moreover, L-sIDOL mice developed marked atherosclerotic lesions when fed a Western diet. Lesion formation in L-sIDOL mice was more robust than in apolipoprotein E*3 Leiden mice and did not require the addition of cholate to the diet. Western diet-fed L-sIDOL mice had elevated expression of liver X receptor target genes and proinflammatory genes in their aortas. CONCLUSIONS: Liver-specific expression of dominant-active IDOL is associated with hypercholesterolemia and a marked elevation in atherosclerotic lesions. Our results show that increased activity of the IDOL pathway in the liver can override other low-density lipoprotein receptor regulatory pathways leading to cardiovascular disease. L-sIDOL mice are a robust, dominantly inherited, diet-inducible model for the study of atherosclerosis.
Asunto(s)
Enfermedades de la Aorta/enzimología , Enfermedades de la Aorta/patología , Aterosclerosis/enzimología , Dieta Alta en Grasa , Dieta Occidental , Hipercolesterolemia/enzimología , Hígado/enzimología , Ubiquitina-Proteína Ligasas/metabolismo , Albúminas/genética , Animales , Aorta/metabolismo , Aorta/patología , Enfermedades de la Aorta/genética , Apolipoproteína E3/genética , Apolipoproteína E3/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , LDL-Colesterol/sangre , Modelos Animales de Enfermedad , Humanos , Hipercolesterolemia/genética , Hipercolesterolemia/patología , Mediadores de Inflamación/metabolismo , Receptores X del Hígado , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación , Receptores Nucleares Huérfanos/metabolismo , Placa Aterosclerótica , Regiones Promotoras Genéticas , Receptores de LDL/metabolismo , Factores de Tiempo , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
The efflux transporter P-glycoprotein (Pgp), encoded by the ABCB1 gene, decreases the bioavailability of a wide range of orally administered drugs. Drug permeability studies using the in vitro Caco-2 cell model commonly rely on small molecule modulators to estimate the contribution of Pgp to drug efflux. The use of such modulators may be limited by their interactions with other membrane transporters. RNA interference, a tool allowing for the specific degradation of a target gene's mRNA, has emerged as a technique to study gene expression and function. This manuscript describes the use of chemically modified small interfering RNA (siRNA) for a dose-dependent suppression of ABCB1 in Caco-2 cells and the subsequent drug permeability assay. We transfected Caco-2 cells while in suspension with chemically modified synthetic siRNA-lipid complexes and then seeded the cells on polycarbonate semipermeable supports. Once the monolayer of Caco-2 cells formed tight junctions and expressed brush border enzymes, we determined the dose-dependent suppression of the ABCB1 gene using RT-qPCR. We measured the duration of silencing at the optimal siRNA dose by Western blot for Pgp protein. The utility of this in vitro model was determined by performing bidirectional transport studies using a well-established substrate for Pgp, rhodamine 123. A single 4 h transfection of the Caco-2 cells with ≥100 nM siRNA reduced the expression of ABCB1 mRNA by >85% at day five in culture. The time-course study revealed that the single transfection reduces Pgp protein levels for 9 days in culture. This magnitude of silencing was sufficient to reduce the efflux of rhodamine 123 as measured by the apparent permeability coefficient and intracellular accumulation. In this study, we demonstrate the dose-dependent, targeted degradation of Pgp in Caco-2 cells as a new model for assessing drug efflux from enterocytes. The dose-dependent nature of the Pgp silencing in this study offers significant improvements over other approaches to creating a Caco-2 model with suppressed ABCB1 expression. We envision that this technique, in conjunction with better small molecule inhibitors, will provide a useful tool for future drug permeability studies.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Western Blotting , Células CACO-2 , Humanos , ARN Interferente Pequeño/genética , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
P-glycoprotein (Pgp, encoded by ABCB1, commonly known as MDR1), an ATP-dependent transporter with a broad range of hydrophobic drug substrates, has been associated with the in vitro intracellular transport of cholesterol; however, these findings have not been confirmed in vivo. In this manuscript we tested the contributions of Pgp to in vivo cholesterol homeostasis by comparing the cholesterol phenotype of wild type mice with mice lacking both murine isoforms of Pgp (Abcb1a(-/-)/1b(-/-)) by measuring cholesterol absorption, circulating cholesterol, and lipoprotein cholesterol profiles. The mice were fed diets containing normal or high levels of dietary fat (25% vs 45% kcal from fat) and cholesterol (0.02% vs 0.20% w/w) for 8 weeks to challenge their capacity to maintain homeostasis. There were no significant differences in cholesterol absorption, circulating cholesterol levels, and lipoprotein profiles between Pgp knockout and wild type mice fed matching diets. Compensatory shifts were observed in the activation of two key transcription factors involved in maintaining cholesterol balance, the Liver X Receptor and SREBP-2, which may have maintained the wild type phenotype in the knockout mice. Deletion of Pgp affected the molar composition of gallbladder bile, when the mice were fed diets containing high levels of dietary fat, cholesterol, or both. The mole fraction of bile salts was reduced in the gallbladder bile of Pgp knockout mice, while the mole fraction of cholesterol was increased. In this paper, we provide evidence that Pgp knockout mice maintain cholesterol homeostasis, even when challenged with high cholesterol diets. We suggest that the specific shifts in cholesterol regulatory networks identified in the jejunum and liver of the knockout mice may have compensated for the lack of Pgp. Our finding that Pgp knockout mice were unable to maintain gallbladder bile composition when challenged with high dietary fat and/or cholesterol compliments recent reports that Pgp may be a secondary bile salt export pump.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Colesterol/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/genética , Animales , Homeostasis/genética , Homeostasis/fisiología , Metabolismo de los Lípidos/genética , Metabolismo de los Lípidos/fisiología , Masculino , RatonesRESUMEN
Intestinal absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1) assists in the initial step of dietary cholesterol uptake, but how cholesterol moves downstream of NPC1L1 is unknown. We show that Aster-B and Aster-C are critical for nonvesicular cholesterol movement in enterocytes. Loss of NPC1L1 diminishes accessible plasma membrane (PM) cholesterol and abolishes Aster recruitment to the intestinal brush border. Enterocytes lacking Asters accumulate PM cholesterol and show endoplasmic reticulum cholesterol depletion. Aster-deficient mice have impaired cholesterol absorption and are protected against diet-induced hypercholesterolemia. Finally, the Aster pathway can be targeted with a small-molecule inhibitor to manipulate cholesterol uptake. These findings identify the Aster pathway as a physiologically important and pharmacologically tractable node in dietary lipid absorption.
Asunto(s)
Colesterol en la Dieta , Enterocitos , Absorción Intestinal , Proteínas de Transporte de Membrana , Animales , Ratones , Transporte Biológico , Colesterol en la Dieta/metabolismo , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/fisiología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones Endogámicos C57BL , Enterocitos/metabolismo , Receptores X del Hígado/metabolismo , Humanos , Yeyuno/metabolismo , Ratones NoqueadosRESUMEN
Intestinal cholesterol absorption is an important contributor to systemic cholesterol homeostasis. Niemann-Pick C1 Like 1 (NPC1L1), the target of the drug ezetimibe (EZ), assists in the initial step of dietary cholesterol uptake. However, how cholesterol moves downstream of NPC1L1 is unknown. Here we show that Aster-B and Aster-C are critical for non-vesicular cholesterol movement in enterocytes, bridging NPC1L1 at the plasma membrane (PM) and ACAT2 in the endoplasmic reticulum (ER). Loss of NPC1L1 diminishes accessible PM cholesterol in enterocytes and abolishes Aster recruitment to the intestinal brush border. Enterocytes lacking Asters accumulate cholesterol at the PM and display evidence of ER cholesterol depletion, including decreased cholesterol ester stores and activation of the SREBP-2 transcriptional pathway. Aster-deficient mice have impaired cholesterol absorption and are protected against diet-induced hypercholesterolemia. Finally, we show that the Aster pathway can be targeted with a small molecule inhibitor to manipulate dietary cholesterol uptake. These findings identify the Aster pathway as a physiologically important and pharmacologically tractable node in dietary lipid absorption. One-Sentence Summary: Identification of a targetable pathway for regulation of dietary cholesterol absorption.
RESUMEN
Atherosclerosis, the gradual formation of a lipid-rich plaque in the arterial wall is the primary cause of Coronary Artery Disease (CAD), the leading cause of mortality worldwide. Hypercholesterolemia, elevated circulating cholesterol, was identified as a key risk factor for CAD in epidemiological studies. Since the approval of Mevacor in 1987, the primary therapeutic intervention for hypercholesterolemia has been statins, drugs that inhibit the biosynthesis of cholesterol. With improved understanding of the risks associated with elevated cholesterol levels, health agencies are recommending reductions in cholesterol that are not achievable in every patient with statins alone, underlying the need for improved combination therapies. The whole body cholesterol pool is derived from two sources, biosynthesis and diet. Although statins are effective at reducing the biosynthesis of cholesterol, they do not inhibit the absorption of cholesterol, making this an attractive target for adjunct therapies. This report summarizes the efforts to target the gastrointestinal absorption of cholesterol, with emphasis on specifically targeting the gastrointestinal tract to avoid the off-target effects sometimes associated with systemic exposure.
Asunto(s)
Anticolesterolemiantes/uso terapéutico , Colesterol/metabolismo , Absorción Intestinal/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Animales , Anticolesterolemiantes/química , Anticolesterolemiantes/farmacología , Apolipoproteínas B/genética , Apolipoproteínas B/metabolismo , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Azetidinas/química , Azetidinas/farmacología , Azetidinas/uso terapéutico , Ácidos y Sales Biliares/metabolismo , Ezetimiba , Cardiopatías/tratamiento farmacológico , Cardiopatías/metabolismo , Humanos , Receptores X del Hígado , Receptores Nucleares Huérfanos/agonistas , Fitosteroles/química , Fitosteroles/farmacología , Fitosteroles/uso terapéutico , Esterol O-Aciltransferasa/antagonistas & inhibidores , Esterol O-Aciltransferasa/metabolismo , Transcripción Genética/efectos de los fármacosRESUMEN
We recently showed that NOTUM, a liver-secreted Wnt inhibitor, can acutely promote browning of white adipose. We now report studies of chronic overexpression of NOTUM in liver indicating that it protects against diet-induced obesity and improves glucose homeostasis in mice. Adeno-associated virus (AAV) vectors were used to overexpress GFP or mouse Notum in the livers of male C57BL/6J mice and the mice were fed an obesifying diet. After 14 weeks of high fat, high sucrose diet feeding, the AAV-Notum mice exhibited decreased obesity and improved glucose tolerance compared to the AAV-GFP mice. Gene expression and immunoblotting analysis of the inguinal fat and brown fat revealed increased expression of beige/brown adipocyte markers in the AAV-Notum group, suggesting enhanced thermogenic capacity by NOTUM. A ß3 adrenergic receptor agonist-stimulated lipolysis test suggested increased lipolysis capacity by NOTUM. The levels of collagen and C-C motif chemokine ligand 2 (CCL2) in the epididymal white adipose tissue of the AAV-Notum mice were significantly reduced, suggesting decreased fibrosis and inflammation, respectively. RNA sequencing analysis of inguinal white adipose of 4-week chow diet-fed mice revealed a highly significant enrichment of extracellular matrix (ECM) functional cluster among the down-regulated genes in the AAV-Notum group, suggesting a potential mechanism contributing to improved glucose homeostasis. Our in vitro studies demonstrated that recombinant human NOTUM protein blocked the inhibitory effects of WNT3A on brown adipocyte differentiation. Furthermore, NOTUM attenuated WNT3A's effects on upregulation of TGF-ß signaling and its downstream targets. Overall, our data suggest that NOTUM modulates adipose tissue function by promoting thermogenic capacity and inhibiting fibrosis through inhibition of Wnt signaling.
Asunto(s)
Dieta Alta en Grasa/efectos adversos , Esterasas/metabolismo , Obesidad/metabolismo , Termogénesis/fisiología , Adipocitos Beige/metabolismo , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Metabolismo Energético/fisiología , Intolerancia a la Glucosa/metabolismo , Lipólisis/fisiología , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
Immune cells are vital constituents of the adipose microenvironment that influence both local and systemic lipid metabolism. Mice lacking IL10 have enhanced thermogenesis, but the roles of specific cell types in the metabolic response to IL10 remain to be defined. We demonstrate here that selective loss of IL10 receptor α in adipocytes recapitulates the beneficial effects of global IL10 deletion, and that local crosstalk between IL10-producing immune cells and adipocytes is a determinant of thermogenesis and systemic energy balance. Single Nuclei Adipocyte RNA-sequencing (SNAP-seq) of subcutaneous adipose tissue defined a metabolically-active mature adipocyte subtype characterized by robust expression of genes involved in thermogenesis whose transcriptome was selectively responsive to IL10Rα deletion. Furthermore, single-cell transcriptomic analysis of adipose stromal populations identified lymphocytes as a key source of IL10 production in response to thermogenic stimuli. These findings implicate adaptive immune cell-adipocyte communication in the maintenance of adipose subtype identity and function.
Asunto(s)
Adipocitos/efectos de los fármacos , Comunicación Celular , Regulación de la Expresión Génica , Subunidad alfa del Receptor de Interleucina-10/metabolismo , Interleucina-10/metabolismo , Linfocitos/metabolismo , Termogénesis , Adipocitos/fisiología , Animales , Ratones , Análisis de la Célula Individual , Transcripción GenéticaRESUMEN
Liver X receptors limit cellular lipid uptake by stimulating the transcription of Inducible Degrader of the LDL Receptor (IDOL), an E3 ubiquitin ligase that targets lipoprotein receptors for degradation. The function of IDOL in systemic metabolism is incompletely understood. Here we show that loss of IDOL in mice protects against the development of diet-induced obesity and metabolic dysfunction by altering food intake and thermogenesis. Unexpectedly, analysis of tissue-specific knockout mice revealed that IDOL affects energy balance, not through its actions in peripheral metabolic tissues (liver, adipose, endothelium, intestine, skeletal muscle), but by controlling lipoprotein receptor abundance in neurons. Single-cell RNA sequencing of the hypothalamus demonstrated that IDOL deletion altered gene expression linked to control of metabolism. Finally, we identify VLDLR rather than LDLR as the primary mediator of IDOL effects on energy balance. These studies identify a role for the neuronal IDOL-VLDLR pathway in metabolic homeostasis and diet-induced obesity.
Asunto(s)
Metabolismo Energético/fisiología , Neuronas/metabolismo , Receptores de LDL/metabolismo , Ubiquitina-Proteína Ligasas/fisiología , Animales , Glucemia/metabolismo , Dieta , Metabolismo Energético/genética , Hipotálamo/metabolismo , Resistencia a la Insulina , Ratones , Ratones Noqueados , Obesidad/metabolismo , Obesidad/prevención & control , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
The development of a safe and efficacious drug involves a balance between bioavailability, toxicity and disposition within the body. If the drug is hydrophobic or acid labile, oral administration may lead to poor systemic exposure, necessitating a parenteral treatment regime. Amphotericin B (AmpB) is one example of a well established, highly efficacious drug that has a 50 year history of intravenous therapy. AmpB formulated as a micellar dispersion (Fungizone; FZ) for IV use, remains one of the most effective agents in the treatment of systemic fungal infections, yet no oral formulations are currently commercially available. Recently, our laboratory has developed new oral lipid-based AmpB formulations with enhanced gastrointestinal (GI) tract absorption and antifungal activity with minimum renal toxicity. This review article will discuss these findings and present data to support two potential mechanisms for the enhanced GI tract absorption of AmpB when formulated in this oral lipid-based delivery system, namely an increase in lymphatic drug transport and a decrease in pre-systemic transporter-mediated drug efflux.
Asunto(s)
Anfotericina B/administración & dosificación , Antifúngicos/administración & dosificación , Micosis/tratamiento farmacológico , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Administración Oral , Anfotericina B/efectos adversos , Anfotericina B/farmacocinética , Animales , Antifúngicos/efectos adversos , Antifúngicos/farmacocinética , Transporte Biológico , Química Farmacéutica , Humanos , Absorción Intestinal , Lípidos/químicaRESUMEN
Pgp (P-glycoprotein, MDR1, ABCB1) is an energy-dependent drug efflux pump that is a member of the ATP-binding cassette (ABC) family of proteins. Preliminary studies have reported that nonspecific inhibitors of Pgp affect synthesis and esterification of cholesterol, putatively by blocking trafficking of cholesterol from the plasma membrane to the endoplasmic reticulum, and that relative increases in Pgp within a given cell type are associated with increased accumulation of cholesterol. Several key efflux proteins involved in the cholesterol metabolic pathway are transcriptionally regulated by the nuclear hormone liver X receptor (LXR). Therefore, to examine the interplay between P-glycoprotein and the cholesterol metabolic pathway, we utilized a high fat, normal cholesterol diet to upregulate LXRalpha without affecting dietary cholesterol. Our research has demonstrated that mice lacking in P-glycoprotein do not exhibit alterations in hepatic total cholesterol storage, circulating plasma total cholesterol levels, or total cholesterol concentration in the bile when compared to control animals on either a normal (25% calories from dietary fat) or high fat (45% calories from dietary fat) diet. However, p-glycoprotein deficient mice (Mdr1a-/-/1b-/-) exhibit increased hepatic LXRalpha protein expression and an elevation in fecal cholesterol concentration when compared to controls.
Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/deficiencia , Colesterol/metabolismo , Proteínas de Unión al ADN/genética , Grasas de la Dieta/farmacología , Receptores Citoplasmáticos y Nucleares/genética , Animales , Heces/química , Expresión Génica , Receptores X del Hígado , Ratones , Ratones Noqueados , Receptores Nucleares HuérfanosRESUMEN
OBJECTIVE: There has been a recent rapid development of research characterizing prospective memory performance in mild cognitive impairment (MCI) in older age. However, this body of literature remains largely separated from routine clinical practice in neuropsychology. Furthermore, there is emerging evidence of effective interventions to improve prospective memory performance. Therefore, our objective in this article was to offer a clinical neuropsychological perspective on the existing research in order to facilitate the translation of the evidence-base into clinical practice. METHOD: By conducting a critical review of the existing research related to prospective memory and MCI, we highlight how this data can be introduced into clinical practice, either within diagnostic assessment or clinical management. CONCLUSIONS: Prospective memory is impaired in older adults with MCI, with a pattern of performance that helps with differential diagnosis from healthy aging. Clinical neuropsychologists are encouraged to add prospective memory assessment to their toolbox for diagnostic evaluation of clients with MCI. Preliminary findings of prospective memory interventions in MCI are promising, but more work is required to determine how different approaches translate to increasing independence in everyday life.
Asunto(s)
Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Memoria Episódica , Neuropsicología/métodos , Anciano , Anciano de 80 o más Años , Cognición/fisiología , Femenino , Humanos , Masculino , Pruebas Neuropsicológicas/normas , Neuropsicología/normasRESUMEN
INTRODUCTION: Prospective memory difficulties are known to occur in Alzheimer's disease, and may provide an early indicator of cognitive decline. Older people reporting high levels of subjective memory decline (SMD) but without evidence of cognitive decline on standard neuropsychological tests are increasingly considered at increased risk for Alzheimer's disease. Therefore, the objective of this study was to investigate whether prospective memory performance is differentially impaired in older people reporting high levels of SMD as compared to a control group. METHOD: A total of 195 community-dwelling older adults (Mage = 73.48 years) were assessed for self-reported complaints of memory decline and allocated to either a group reporting high levels of SMD (SMD, n = 96) or a healthy control group (HC, n = 99). Groups were assessed on neuropsychological tests, an experimental prospective memory task (focal vs. nonfocal cue conditions), and a naturalistic prospective memory task. RESULTS: The groups did not differ in performance on standard neuropsychological tests of working memory, executive attention, and episodic retrospective memory. Furthermore, on an experimental task of prospective memory (the Supermarket Shopping Trip task), although performance of both groups was better when cues for prospective memory were focal to the ongoing activity (η2 = .35), the SMD group were not impaired relative to the control group. On a naturalistic prospective memory task, however, there was a small but significant effect, with the SMD group performing more poorly than the HC group (η2 = .02). CONCLUSIONS: In older adults with high levels of SMD, naturalistic measures of prospective memory provide an approach to assessing memory performance that can offer a means of investigating the memory complaints of people with SMD. Identifying prospective memory difficulties in SMD also offers a focus for intervention.
Asunto(s)
Trastornos de la Memoria/diagnóstico , Memoria Episódica , Pruebas Neuropsicológicas/estadística & datos numéricos , Autorrevelación , Factores de Edad , Anciano , Femenino , Humanos , Masculino , PsicometríaRESUMEN
Uncoated and poly(ethylene glycol) (PEG)-decorated lipid nanocapsules (NC) prepared from medium chain triglycerides were investigated both in vitro and in vivo as parenteral detoxifying colloids for their ability to sequester haloperidol, docetaxel and paclitaxel. In vitro studies showed that the uptake depended on the nature of the drug and the composition of NC core and shell. In the case of haloperidol, maximal affinity was achieved upon incorporation of a complexing fatty acid. In plasma lipoprotein distribution studies, the association of both haloperidol and docetaxel into triglyceride-rich lipoprotein fraction was significantly increased in the presence of NC. The ability of the NC to lower the free drug concentrations in incubation medium was confirmed by cytotoxicity studies, where the antiproliferative activity of docetaxel was significantly decreased in the presence of NC. Using docetaxel as drug model, the NC were finally evaluated for their uptake potential in mice by one of the following administration sequences between the drug solution (Taxotere, DTX) and NC: NC-DTX, PEG(NC)-DTX and DTX-PEG(NC). Irrespective of the administration sequence, the NC increased the blood levels of docetaxel due to the in situ sequestration of drug by the circulating carrier. These findings suggest that lipid NC could be used as a non-specific mode to deal with the sequestration of molecules with high affinity for oils.
Asunto(s)
Cápsulas/farmacocinética , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/farmacocinética , Lípidos/química , Nanoestructuras/química , Preparaciones Farmacéuticas/sangre , Farmacocinética , Animales , Cápsulas/administración & dosificación , Cápsulas/química , Difusión , Portadores de Fármacos/química , Inactivación Metabólica/fisiología , Masculino , Tasa de Depuración Metabólica , Ratones , Especificidad de Órganos , Preparaciones Farmacéuticas/administración & dosificación , Ratas , Ratas Sprague-Dawley , Distribución TisularRESUMEN
PURPOSE: The objective of this study was to determine the influence of two lipid excipients, Peceol(c) and Gelucire(c) 44/14 on P-glycoprotein (Pgp) activity and protein expression in human colon adenocarcinoma cells (Caco-2). Lipid excipients are increasingly used as drug delivery systems for hydrophobic drugs to increase their bioavailability by overcoming the barrier of low absorption. This study will probe a novel mechanism by which lipid excipients reduce Pgp-mediated efflux and thereby increase bioavailability of orally administered therapeutics. METHODS: Non-cytotoxic concentrations of Peceol(c) and Gelucire(c) 44/14 were determined for 24-hour treatments of Caco-2 cells using integrity of the cell membranes and mitochondrial respiration as markers. Pgp activity after treatment with non-cytotoxic concentrations of Peceol(c) and Gelucire(c) 44/14 was measured with a fluorescent Pgp substrate, rhodamine 123 (Rh123). The activity of Pgp was ascertained by measuring accumulation and the directional flux of Rh123 using the Transwell(c) semi-permeable cell culture support system. To assess the effect of Peceol(c) and Gelucire(c) 44/14 on Pgp protein expression, Western blotting with a specific Pgp antibody was performed. RESULTS. The two assays for cytotoxicity were in agreement and showed that concentrations of less than 0.5% (v/v) Peceol(c) and less than 0.02% (w/v) Gelucire(c) 44/14 were not toxic to Caco-2 cells. Rh123 accumulation was increased up to 3-fold in cells treated with sub-toxic concentrations of the excipients. The flux of Rh123 across the cell monolayer was unaffected by treatment in the absorptive (apical to basolateral) direction but the efflux transport was reduced after treatment with Peceol(c), Gelucire(c) 44/14 or the positive control , 100microM verapamil. Some of the reduction in Pgp efflux activity can be explained by the reduction in protein expression after treatment with the lipid excipients; treatment with 0.25% (v/v) and 0.5% (v/v) Peceol(c) reduced Pgp protein levels to 62.4% and 68.4% of the control respectively while Gelucire(c) 44/14 treatments of 0.01% (w/v) and 0.02% (w/v) reduced Pgp to 64.5% and 51.8% respectively. CONCLUSION: In this study we utilized established methodologies to assess the inhibitory effect of the excipients on the Pgp-mediated efflux of the probe, Rh123 and tested the hypothesis that long-term treatment of Caco-2 cells with the lipid excipients, Peceol(c) and Gelucire(c) 44/14, decreased Pgp protein expression. The results suggest a new mechanism which may contribute to the improved bioavailability seen for drugs formulated with lipid-based excipients.
Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/efectos de los fármacos , Excipientes/farmacología , Ácidos Oléicos/farmacología , Polietilenglicoles/farmacología , Rodamina 123/farmacocinética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Adenosina Trifosfatasas/metabolismo , Disponibilidad Biológica , Transporte Biológico/efectos de los fármacos , Células CACO-2 , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Excipientes/administración & dosificación , Excipientes/toxicidad , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Absorción Intestinal/efectos de los fármacos , Lípidos/administración & dosificación , Lípidos/farmacología , Lípidos/toxicidad , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ácidos Oléicos/administración & dosificación , Ácidos Oléicos/toxicidad , Polietilenglicoles/administración & dosificación , Polietilenglicoles/toxicidad , Rodamina 123/administración & dosificación , Rodamina 123/toxicidadRESUMEN
A highly orchestrated gene expression program establishes the properties that define mature adipocytes, but the contribution of posttranscriptional factors to the adipocyte phenotype is poorly understood. Here we have shown that the RNA-binding protein PSPC1, a component of the paraspeckle complex, promotes adipogenesis in vitro and is important for mature adipocyte function in vivo. Cross-linking and immunoprecipitation followed by RNA sequencing revealed that PSPC1 binds to intronic and 3'-untranslated regions of a number of adipocyte RNAs, including the RNA encoding the transcriptional regulator EBF1. Purification of the paraspeckle complex from adipocytes further showed that PSPC1 associates with the RNA export factor DDX3X in a differentiation-dependent manner. Remarkably, PSPC1 relocates from the nucleus to the cytoplasm during differentiation, coinciding with enhanced export of adipogenic RNAs. Mice lacking PSPC1 in fat displayed reduced lipid storage and adipose tissue mass and were resistant to diet-induced obesity and insulin resistance due to a compensatory increase in energy expenditure. These findings highlight a role for PSPC1-dependent RNA maturation in the posttranscriptional control of adipose development and function.