Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38791598

RESUMEN

CIGB-258, a 3 kDa peptide from heat shock protein 60, exhibits synergistic anti-inflammatory activity with apolipoprotein A-I (apoA-I) in reconstituted high-density lipoproteins (rHDLs) via stabilization of the rHDL structure. This study explored the interactions between CIGB-258 and apoA-I in the lipid-free state to assess their synergistic effects in the structural and functional enhancement of apoA-I and HDL. A co-treatment of lipid-free apoA-I and CIGB-258 inhibited the cupric ion-mediated oxidation of low-density lipoprotein (LDL) and a lowering of oxidized species in the dose-responsive manner of CIGB-258. The co-presence of CIGB-258 caused a blue shift in the wavelength of maximum fluorescence (WMF) of apoA-I with protection from proteolytic degradation. The addition of apoA-I:CIGB-258, with a molar ratio of 1:0.1, 1:0.5, and 1:1, to HDL2 and HDL3 remarkably enhanced the antioxidant ability against LDL oxidation up to two-fold higher than HDL alone. HDL-associated paraoxonase activities were elevated up to 28% by the co-addition of apoA-I and CIGB-258, which is linked to the suppression of Cu2+-mediated HDL oxidation with the slowest electromobility. Isothermal denaturation by a urea treatment showed that the co-presence of CIGB-258 attenuated the exposure of intrinsic tryptophan (Trp) and increased the mid-points of denaturation from 2.33 M for apoA-I alone to 2.57 M for an apoA-I:CIGB-258 mixture with a molar ratio of 1:0.5. The addition of CIGB-258 to apoA-I protected the carboxymethyllysine (CML)-facilitated glycation of apoA-I with the prevention of Trp exposure. A co-treatment of apoA-I and CIGB-258 synergistically safeguarded zebrafish embryos from acute death by CML-toxicity, suppressing oxidative stress and apoptosis. In adult zebrafish, the co-treatment of apoA-I+CIGB-258 exerted the highest anti-inflammatory activity with a higher recovery of swimming ability and survivability than apoA-I alone or CIGB-258 alone. A co-injection of apoA-I and CIGB-258 led to the lowest infiltration of neutrophils and interleukin (IL)-6 generation in hepatic tissue, with the lowest serum triglyceride, aspartate transaminase, and alanine transaminase levels in plasma. In conclusion, the co-presence of CIGB-258 ameliorated the beneficial functionalities of apoA-I, such as antioxidant and anti-glycation activities, by enhancing the structural stabilization and protection of apoA-I. The combination of apoA-I and CIGB-258 synergistically enforced the anti-inflammatory effect against CML toxicity in embryos and adult zebrafish.


Asunto(s)
Antiinflamatorios , Antioxidantes , Apolipoproteína A-I , Lipoproteínas HDL , Pez Cebra , Apolipoproteína A-I/metabolismo , Apolipoproteína A-I/química , Animales , Antioxidantes/farmacología , Antioxidantes/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Lipoproteínas HDL/metabolismo , Lipoproteínas HDL/química , Lipoproteínas LDL/metabolismo , Oxidación-Reducción/efectos de los fármacos , Sinergismo Farmacológico
2.
Small ; : e2308375, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38073328

RESUMEN

The demand for self-powered photodetectors (PDs) capable of NIR detection without external power is growing with the advancement of NIR technologies such as LIDAR and object recognition. Lead sulfide quantum dot-based photodetectors (PbS QPDs) excel in NIR detection; however, their self-powered operation is hindered by carrier traps induced by surface defects and unfavorable band alignment in the zinc oxide nanoparticle (ZnO NP) electron-transport layer (ETL). In this study, an effective azide-ion (N3 - ) treatment is introduced on a ZnO NP ETL to reduce the number of traps and improve the band alignment in a PbS QPD. The ZnO NP ETL treated with azide ions exhibited notable improvements in carrier lifetime and mobility as well as an enhanced internal electric field within the thin-film heterojunction of the ZnO NPs and PbS QDs. The azide-ion-treated PbS QPD demonstrated a increase in short-circuit current density upon NIR illumination, marking a responsivity of 0.45 A W-1 , specific detectivity of 4 × 1011 Jones at 950 nm, response time of 8.2 µs, and linear dynamic range of 112 dB.

3.
Adv Funct Mater ; 30(46)2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-38053980

RESUMEN

Exposure of aged mice to a young systemic milieu revealed remarkable rejuvenation effects on aged tissues, including skeletal muscle. Although some candidate factors have been identified, the exact identity and the underlying mechanisms of putative rejuvenating factors remain elusive, mainly due to the complexity of in vivo parabiosis. Here, we present an in vitro muscle parabiosis system that integrates young- and old-muscle stem cell vascular niche on a three-dimensional microfluidic platform designed to recapitulate key features of native muscle stem cell microenvironment. This innovative system enables mechanistic studies of cellular dynamics and molecular interactions within the muscle stem cell niche, especially in response to conditional extrinsic stimuli of local and systemic factors. We demonstrate that vascular endothelial growth factor (VEGF) signaling from endothelial cells and myotubes synergistically contribute to the rejuvenation of the aged muscle stem cell function. Moreover, with the adjustable on-chip system, we can mimic both blood transfusion and parabiosis and detect the time-varying effects of anti-geronic and pro-geronic factors in a single organ or multi-organ systems. Our unique approach presents a complementary in vitro model to supplement in vivo parabiosis for identifying potential anti-geronic factors responsible for revitalizing aging organs.

4.
Microb Pathog ; 137: 103784, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31600538

RESUMEN

Bioluminescence imaging is a non-invasive tool for in vivo real-time monitoring of infectious disease progression in animal models. However, no bioluminescence imaging assay has been developed to monitor Acinetobacter baumannii infections. In the current study, bioluminescent strains of A. baumannii ATCC 17978 and its isogenic ΔompA mutant were constructed by integrating the promoter of the ompA gene and the luxCDABE luciferase gene into the bacterial chromosome. In an acute murine pneumonia model, bioluminescence of the two reporter strains was clearly visible in the lungs and the bioluminescent signal increased over time. Bioluminescence was correlated with bacterial burden and histopathology in reporter strain-infected mice, suggesting that bioluminescent bacteria are useful for monitoring A. baumannii infections in animal models.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/fisiología , Mediciones Luminiscentes/métodos , Neumonía/microbiología , Acinetobacter baumannii/química , Acinetobacter baumannii/genética , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Proteínas Luminiscentes/química , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Ratones Endogámicos BALB C
5.
Biopolymers ; 109(1)2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29105737

RESUMEN

Development of bioadhesives with tunable mechanical strength, high adhesiveness, biocompatibility, and injectability is greatly desirable in all surgeries to replace or complement the sutures and staples. Herein, the dual catalytic activity of horseradish peroxidase is exploited to in situ form the hydroxyphenyl propionic acid-gelatin/thiolated gelatin (GH/GS) adhesive hydrogels including two alternative crosslinks (phenol-phenol and disulfide bonds) with fast gelation (few seconds - several minutes) and improved physicochemical properties. Their elastic moduli increase from 6.7 to 10.3 kPa by adding GS polymer that leads to the better stability of GH/GS hydrogels than GH ones. GH/GS adhesive strength is respectively 6.5-fold and 15.8-fold higher than GH-only and fibrin glue that is due to additional disulfide linkages between hydrogels and tissues. Moreover, in vitro cell study with human dermal fibroblast showed the cell-compatibility of GH/GS hydrogels. Taken together, GH/GS hydrogels can be considered as promising potential adhesive materials for various biomedical applications.


Asunto(s)
Gelatina , Hidrogeles , Animales , Gelatina/química , Gelatina/farmacología , Peroxidasa de Rábano Silvestre/química , Hidrogeles/síntesis química , Hidrogeles/química , Hidrogeles/farmacología , Porcinos , Adhesivos Tisulares/síntesis química , Adhesivos Tisulares/química , Adhesivos Tisulares/farmacología
6.
Int J Mol Sci ; 19(2)2018 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-29370101

RESUMEN

Human mesenchymal stem cells (hMSCs) have been widely studied for therapeutic development in tissue engineering and regenerative medicine. They can be harvested from human donors via tissue biopsies, such as bone marrow aspiration, and cultured to reach clinically relevant cell numbers. However, an unmet issue lies in the fact that the hMSC donors for regenerative therapies are more likely to be of advanced age. Their stem cells are not as potent compared to those of young donors, and continue to lose healthy, stemness-related activities when the hMSCs are serially passaged in tissue culture plates. Here, we have developed a cheap, scalable, and effective copolymer film to culture hMSCs obtained from aged human donors over several passages without loss of reactive oxygen species (ROS) handling or differentiation capacity. Assays of cell morphology, reactive oxygen species load, and differentiation potential demonstrate the effectiveness of copolymer culture on reduction in senescence-related activities of aging donor-derived hMSCs that could hinder the therapeutic potential of autologous stem cell therapies.


Asunto(s)
Envejecimiento/metabolismo , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Cultivo Primario de Células/métodos , Especies Reactivas de Oxígeno/metabolismo , Materiales Biocompatibles/química , Proliferación Celular , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Poliésteres , Polietilenglicoles
7.
Int J Mol Sci ; 18(8)2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28777301

RESUMEN

Directing angiogenic differentiation of mesenchymal stem cells (MSCs) still remains challenging for successful tissue engineering. Without blood vessel formation, stem cell-based approaches are unable to fully regenerate damaged tissues due to limited support for cell viability and desired tissue/organ functionality. Herein, we report in situ cross-linkable gelatin-hydroxyphenyl propionic acid (GH) hydrogels that can induce pro-angiogenic profiles of MSCs via purely material-driven effects. This hydrogel directed endothelial differentiation of mouse and human patient-derived MSCs through integrin-mediated interactions at the cell-material interface, thereby promoting perfusable blood vessel formation in vitro and in vivo. The causative roles of specific integrin types (α1 and αvß3) in directing endothelial differentiation were verified by blocking the integrin functions with chemical inhibitors. In addition, to verify the material-driven effect is not species-specific, we confirmed in vitro endothelial differentiation and in vivo blood vessel formation of patient-derived human MSCs by this hydrogel. These findings provide new insight into how purely material-driven effects can direct endothelial differentiation of MSCs, thereby promoting vascularization of scaffolds towards tissue engineering and regenerative medicine applications in humans.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Gelatina/farmacología , Hidrogeles/farmacología , Células Madre Mesenquimatosas/citología , Neovascularización Fisiológica/efectos de los fármacos , Animales , Células Cultivadas , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Humanos , Integrinas/metabolismo , Masculino , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/efectos de los fármacos , Ratones Desnudos , Alcohol Polivinílico/química , Propionatos/farmacología , Sus scrofa , Andamios del Tejido/química
8.
Macromol Rapid Commun ; 37(23): 1860-1880, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27673474

RESUMEN

Veins used as grafts in heart bypass or as access points in hemodialysis exhibit high failure rates, thereby causing significant morbidity and mortality for patients. Interventional or revisional surgeries required to correct these failures have been met with limited success and exorbitant costs, particularly for the US Centers for Medicare & Medicaid Services. Vein stenosis or occlusion leading to failure is primarily the result of neointimal hyperplasia. Systemic therapies have achieved little long-term success, indicating the need for more localized, sustained, biomaterial-based solutions. Numerous studies have demonstrated the ability of external stents to reduce neointimal hyperplasia. However, successful results from animal models have failed to translate to the clinic thus far, and no external stent is currently approved for use in the US to prevent vein graft or hemodialysis access failures. This review discusses current progress in the field, design considerations, and future perspectives for biomaterial-based external stents. More comparative studies iteratively modulating biomaterial and biomaterial-drug approaches are critical in addressing mechanistic knowledge gaps associated with external stent application to the arteriovenous environment. Addressing these gaps will ultimately lead to more viable solutions that prevent vein graft and hemodialysis access failures.


Asunto(s)
Materiales Biocompatibles/química , Diálisis Renal , Stents , Injerto Vascular/efectos adversos , Venas/cirugía , Animales , Materiales Biocompatibles/uso terapéutico , Humanos , Insuficiencia del Tratamiento
9.
Adv Funct Mater ; 24(43): 6771-6781, 2014 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-26327818

RESUMEN

Clinical trials utilizing mesenchymal stem cells (MSCs) for severe vascular diseases have highlighted the need to effectively engraft cells and promote pro-angiogenic activity. A functional material accomplishing these two goals is an ideal solution as spatiotemporal and batch-to-batch variability in classical therapeutic delivery can be minimized, and tissue regeneration would begin rapidly at the implantation site. Gelatin may serve as a promising biomaterial due to its excellent biocompatibility, biodegradability, and non-immuno/antigenicity. However, the dissolution of gelatin at body temperature and quick enzymatic degradation in vivo have limited its use thus far. To overcome these challenges, an injectable, in situ crosslinkable gelatin was developed by conjugating enzymatically-crosslinkable hydroxyphenyl propionic acid (GHPA). When MSCs are cultured in 3D in vitro or injected in vivo in GHPA, spontaneous endothelial differentiation occurs, as evidenced by marked increases in endothlelial cell marker expressions (Flk1, Tie2, ANGPT1, vWF) in addition to forming an extensive perfusable vascular network after 2-week subcutaneous implantation. Additionally, favorable host macrophage response is achieved with GHPA as shown by decreased iNOS and increased MRC1 expression. These results indicate GHPA as a promising soluble factor-free cell delivery template which induces endothelial differentiation of MSCs with robust neovasculature formation and favorable host response.

10.
Biomacromolecules ; 15(6): 1979-84, 2014 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-24739122

RESUMEN

Many women around the world are suffering from urinary incontinence, defined as the unintentional leakage of urine by external abnormal pressure. Although various kinds of materials have been utilized to treat this disease, therapies that are more effective are still needed for the treatment of urinary incontinence. Here, we present a macro/nanogel composed of in situ forming gelatin-based macrogels and self-assembled heparin-based nanogels, which can serve as an injectable and bioactive bulking material for the treatment of urinary incontinence. The hybrid hydrogels were prepared via enzymatic reaction in the presence of horseradish peroxidase and hydrogen peroxide. Incorporating a growth factor (GF)-loaded heparin nanogel into a gelatin gel matrix enabled the hybrid gel matrix to release GF continuously up to 28 days. Moreover, we demonstrated that the hydrogel composites stimulated the regeneration of the urethral muscle tissue surrounding the urethral wall and promoted the recovery of their biological function when injected in vivo. Thus, the macro/nanohydrogels may provide an advanced therapeutic technique for the treatment of urinary incontinence as well as an application for regenerative medicine.


Asunto(s)
Materiales Biocompatibles/administración & dosificación , Polietilenglicoles/administración & dosificación , Polietileneimina/administración & dosificación , Uretra/efectos de los fármacos , Incontinencia Urinaria/tratamiento farmacológico , Animales , Materiales Biocompatibles/química , Geles/administración & dosificación , Geles/química , Inyecciones , Nanogeles , Técnicas de Cultivo de Órganos , Polietilenglicoles/química , Polietileneimina/química , Ratas , Ratas Sprague-Dawley , Porcinos , Resultado del Tratamiento , Uretra/patología , Incontinencia Urinaria/patología
11.
Sci Adv ; 10(7): eadk6714, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354246

RESUMEN

Achieving large-scale, cost-effective, and reproducible manufacturing of stem cells with the existing devices is challenging. Traditional single-use cell-bag bioreactors, limited by their rigid and single-point sensors, struggle with accuracy and scalability for high-quality cell manufacturing. Here, we introduce a smart bioreactor system that enables multi-spatial sensing for real-time, wireless culture monitoring. This scalable system includes a low-profile, label-free thin-film sensor array and electronics integrated with a flexible cell bag, allowing for simultaneous assessment of culture properties such as pH, dissolved oxygen, glucose, and temperature, to receive real-time feedback for up to 30 days. The experimental results show the accurate monitoring of time-dynamic and spatial variations of stem cells and myoblast cells with adjustable carriers from a plastic dish to a 2-liter cell bag. These advances open up the broad applicability of the smart sensing system for large-scale, lower-cost, reproducible, and high-quality engineered cell manufacturing for broad clinical use.


Asunto(s)
Electrónica , Dispositivos Electrónicos Vestibles , Técnicas de Cultivo de Célula , Reactores Biológicos , Células Madre
12.
Biosens Bioelectron ; 241: 115650, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37717424

RESUMEN

Atherosclerosis is a prominent cause of coronary artery disease and broader cardiovascular diseases, the leading cause of death worldwide. Angioplasty and stenting is a common treatment, but in-stent restenosis, where the artery re-narrows, is a frequent complication. Restenosis is detected through invasive procedures and is not currently monitored frequently for patients. Here, we report an implantable vascular bioelectronic device using a newly developed miniaturized strain sensor via microneedle printing methods. A capillary-based printing system achieves high-resolution patterning of a soft, capacitive strain sensor. Ink and printing parameters are evaluated to create a fully printed sensor, while sensor design and sensing mechanism are studied to enhance sensitivity and minimize sensor size. The sensor is integrated with a wireless vascular stent, offering a biocompatible, battery-free, wireless monitoring system compatible with conventional catheterization procedures. The vascular sensing system is demonstrated in an artery model for monitoring restenosis progression. Collectively, the artery implantable bioelectronic system shows the potential for wireless, real-time monitoring of various cardiovascular diseases and stent-integrated sensing/treatments.

13.
Exp Mol Med ; 55(6): 1099-1109, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37258584

RESUMEN

Peptides exhibit lower affinity and a shorter half-life in the body than antibodies. Conversely, peptides demonstrate higher efficiency in tissue penetration and cell internalization than antibodies. Regardless of the pros and cons of peptides, they have been used as tumor-homing ligands for delivering carriers (such as nanoparticles, extracellular vesicles, and cells) and cargoes (such as cytotoxic peptides and radioisotopes) to tumors. Additionally, tumor-homing peptides have been conjugated with cargoes such as small-molecule or chemotherapeutic drugs via linkers to synthesize peptide-drug conjugates. In addition, peptides selectively bind to cell surface receptors and proteins, such as immune checkpoints, receptor kinases, and hormone receptors, subsequently blocking their biological activity or serving as hormone analogs. Furthermore, peptides internalized into cells bind to intracellular proteins and interfere with protein-protein interactions. Thus, peptides demonstrate great application potential as multifunctional players in cancer therapy.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Péptidos/uso terapéutico , Péptidos/química , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Receptores de Superficie Celular , Hormonas
14.
Acta Biomater ; 171: 406-416, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37739252

RESUMEN

A visible light- and reactive oxygen species (ROS)-responsive pressure/strain sensor based on carbon dot (CD)-loaded conductive hydrogel was developed for detecting high-fat diet (HFD) and preventing the risk of non-alcoholic fatty liver disease. The designed nanoparticle consisted of a diselenide polymer dot (dsPD) loaded with a visible light-responsive CD to form dsPD@CD (DSCD). The influence of visible light irradiation and ROS on DSCD facilitated the electron transport, enhancing the conductivity of DSCD-embedded hydrogel (DSCD hydrogel) from 1.3 to 35.9 mS/m. Alternatively, the tensile modulus of the DSCD hydrogel enhanced to 223 % after light-induced ROS treatment, which simultaneously impacted the capacitive response (120 %). The hydrogel implantation into inguinal white adipose tissue of HFD mice showed 82 % higher conductivity and 83 % enhanced pressure sensing response to HFD-generated high ROS levels compared with the normal diet-fed mice. Additionally, the ROS scavenging activity of DSCD hydrogel was confirmed by the downregulation of ROS-responsive genes, such as Sod2, Nrf2, and catalase (Cat) in murine primary hepatocytes isolated from fatty liver-induced mice. In addition, in vivo animal studies also confirmed the suppression of hepatic lipogenesis, as shown by decreased Pparγ and Fasn expression and hypertrophy of adipocytes in HFD mice. The distinguishable real-time wireless resistance response observed with pressure sensing indicates the potential application of the device for monitoring the risk of non-alcoholic fatty liver disease. STATEMENT OF SIGNIFICANCE: A visible-light-induced ROS-responsive carbon dot-loaded conductive hydrogel was developed for the detection of HFD-induced alterations in ROS levels by evaluating the conductivity and electrochemical responses with applied pressure/strain. The implanted hydrogel facilitates the recovery of the inflated adipocytes induced by NAFLD, which reduces fat accumulation in the liver, preventing the risk of NAFLD. Real-time detection based on the resistance response during local compression of the hydrogel is possibly performed utilizing a wireless sensing device, demonstrating the ease of NAFLD monitoring.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Hidrogeles/farmacología , Hidrogeles/metabolismo , Hígado/metabolismo , Tejido Adiposo/metabolismo , Carbono , Ratones Endogámicos C57BL
15.
Bioconjug Chem ; 23(10): 2042-50, 2012 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-22998168

RESUMEN

Tissue engineering therapies require biocompatible and bioactive biomaterials that are capable of encouraging an angiogenic response for effective tissue regeneration. In this study, a SVVYGLR peptide, which functions as a potent angiogenic factor, was conjugated into injectable gelatin-poly(ethylene glycol)-tyramine (GPT) hydrogels in situ to enhance endothelial cell activities and neo-vascularization. SVVYGLRGGY (SV-Y) conjugated GPT (SV-GPT) hydrogels were formed in situ via enzyme-mediated reaction using horseradish peroxidase (HRP) and hydrogen peroxide (H(2)O(2)). The physico-chemical properties were characterized and could be controlled depending on the feed peptide and H(2)O(2) concentration. The concentration of conjugated peptide ranged from 0.37 to 0.81 µmol/mL, and the elastic moduli (G') of the hydrogels were 600-4900 Pa. In vitro cell studies using human umbilical vein endothelial cells (HUVECs) and in vivo subcutaneous injection studies were performed to confirm the effect of the SVVYGLR peptide on HUVEC activity and neo-vascularization. Obtained results demonstrated that the in situ conjugation of SVVYGLR sequences into phenol residues of GPT hydrogels enhanced the activity of HUVECs in vitro and stimulated the formation of new blood vessels in the hydrogel matrices in vivo. From the results, we suggest that in situ conjugation of SV-Y to GPT hydrogels via the enzymatic reaction may be an efficient tool to prepare injectable bioactive hydrogels that can enhance endothelial cell activities and promoting angiogenesis for tissue regeneration.


Asunto(s)
Gelatina/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Hidrogeles/química , Neovascularización Fisiológica/efectos de los fármacos , Oligopéptidos/farmacología , Polietilenglicoles/química , Tiramina/química , Secuencia de Aminoácidos , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Inyecciones , Fenómenos Mecánicos , Oligopéptidos/síntesis química , Oligopéptidos/química
16.
Biomacromolecules ; 13(3): 604-11, 2012 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-22263670

RESUMEN

In situ cross-linkable hybrid hydrogels composed of gelatin and 4-arm-polypropylene oxide-polyethylene oxide (Tetronic) was developed as an injectable scaffold for tissue regeneration. The gelatin was modified by hydroxyphenyl propionic acid (HPA) and the Tetronic was conjugated with tyramines (Tet-TA). The hydrogels were rapidly formed by mixing the polymer solutions containing horseradish peroxidase (HRP) and hydrogen peroxide (H(2)O(2)). The gelation time and mechanical properties of the hydrogels could be controlled by varying the HRP and H(2)O(2) concentrations. In vitro degradation study of the hybrid hydrogels was carried out using collagenase and the prolonged proteolytic degradation was obtained due to the presence of the Tetronic. Human dermal fibroblast (hDFB) was cultured in the hydrogel matrices to evaluate the cyto-compatibility. The encapsulated cells were shown to be highly viable and spread over the gel matrices, suggesting that the hybrid hydrogels have an excellent cyto-compatibility. The hydrogels were also subcutaneously injected in the back of mice and the results demonstrated that the hydrogels were rapidly formed at the injected site. From these results, we demonstrate that the in situ cross-linkable hydrogels formed by hybridization of gelatin and Tetronic via enzyme-mediated reactions hold great promise for use as injectable matrices for tissue regenerative medicine due to their tunable physico-chemical properties and excellent bioactivity.


Asunto(s)
Reactivos de Enlaces Cruzados/farmacología , Gelatina/química , Peroxidasa de Rábano Silvestre/metabolismo , Hidrogeles/síntesis química , Polietilenglicoles/química , Polímeros/química , Polipropilenos/química , Medicina Regenerativa , Animales , Células Cultivadas , Dermis/citología , Dermis/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Gelatina/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Inyecciones Subcutáneas , Espectroscopía de Resonancia Magnética , Ratones , Tiramina/química , Tiramina/metabolismo
17.
Regen Biomater ; 9: rbac069, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36226164

RESUMEN

The dual role of reactive oxygen and nitrogen species (RONS) in physiological and pathological processes in biological systems has been widely reported. It has been recently suggested that the regulation of RONS levels under physiological and pathological conditions is a potential therapy to promote health and treat diseases, respectively. Injectable hydrogels have been emerging as promising biomaterials for RONS-related biomedical applications owing to their excellent biocompatibility, three-dimensional and extracellular matrix-mimicking structures, tunable properties and easy functionalization. These hydrogels have been developed as advanced injectable platforms for locally generating or scavenging RONS, depending on the specific conditions of the target disease. In this review article, the design principles and mechanism by which RONS are generated/scavenged from hydrogels are outlined alongside a discussion of their in vitro and in vivo evaluations. Additionally, we highlight the advantages and recent developments of these injectable RONS-controlling hydrogels for regenerative medicines and tissue engineering applications.

18.
J Control Release ; 337: 676-685, 2021 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-34375689

RESUMEN

Despite their high efficacy and safety, long-acting contraceptive methods are underutilized among women in some settings because they usually require injection or implantation by healthcare personnel. Here, we report a self-administrable microneedle (MN) patch for the rapid administration of a sustained-release contraceptive hormone delivery system into the skin that increases the simplicity and reliability of the MN delivery. We developed an immediate microneedle detachment system using a porous patch backing that has sufficient strength during MN insertion into skin under compression, but enables immediate detachment (< 1 s) of the MNs due to fracture at the MN - backing interface upon patch removal under tension from the skin surface. After patch application, the removed patch produced no biohazardous sharps waste, and was designed to achieve long-acting contraception by formulating poly(lactic-co-glycolic acid) MNs to slowly release the contraceptive hormone levonorgestrel for up to 1 month. Our combined strategy using immediate MN detachment in the skin and sustained drug delivery from the MNs could facilitate greater access to long-acting contraception by providing a simple and convenient option for self-administered, long-acting contraception.


Asunto(s)
Anticonceptivos , Piel , Administración Cutánea , Sistemas de Liberación de Medicamentos , Femenino , Hormonas , Humanos , Agujas , Reproducibilidad de los Resultados
19.
Theranostics ; 11(3): 1326-1344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33391537

RESUMEN

CD44v6, a splice variant of the cell surface glycoprotein CD44, acts as a co-receptor for c-Met and is upregulated in tumors with high metastatic potential. Methods: We screened a phage-displayed peptide library for peptides that selectively bind to CD44v6-overexpressing cells and exploited them to block CD44v6 and deliver a pro-apoptotic peptide to tumors for cancer therapy. Results: CNLNTIDTC (NLN) and CNEWQLKSC (NEW) peptides bound preferentially to CD44v6-high cells than to CD44v6-low cells. The binding affinities of NLN and NEW to CD44v6 protein were 253 ± 79 and 85 ± 18 nM, respectively. Peptide binding to CD44v6-high cells was inhibited by the knockdown of CD44v6 gene expression and competition with an anti-CD44v6 antibody. A pull-down assay with biotin-labeled peptides enriched CD44v6 from cell lysates. NLN and NEW induced CD44v6 internalization and inhibited hepatocyte growth factor-induced c-Met internalization, c-Met and Erk phosphorylation, and cell migration and invasion. In mice harboring tumors, intravenously administered NLN and NEW homed to the tumors and inhibited metastasis to the lungs. When combined with crizotinib, a c-Met inhibitor, treatment with each peptide inhibited metastatic growth more efficiently than each peptide or crizotinib alone. In addition, KLAKLAKKLAKLAK pro-apoptotic peptide guided by NLN (NLN-KLA) or NEW (NEW-KLA) killed tumor cells and inhibited tumor growth and metastasis. No significant systemic side effects were observed after treatments. Conclusions: These results suggest that NLN and NEW are promising metastasis-inhibiting peptide therapeutics and targeting moieties for CD44v6-expressing metastases.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Receptores de Hialuranos/metabolismo , Metástasis de la Neoplasia/prevención & control , Péptidos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Animales , Línea Celular , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Crizotinib/farmacología , Femenino , Células HEK293 , Factor de Crecimiento de Hepatocito/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Proteínas Proto-Oncogénicas c-met/metabolismo , Regulación hacia Arriba/efectos de los fármacos
20.
J Mater Chem B ; 8(48): 11033-11043, 2020 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-33196075

RESUMEN

Injectable hydrogels can serve as therapeutic vehicles and implants for the treatment of various diseases as well as for tissue repair/regeneration. In particular, the horseradish peroxidase (HRP) and hydrogen peroxide (H2O2)-catalyzed hydrogelation system has attracted much attention, due to its ease of handling and controllable gel properties. In this study, we introduce calcium peroxide (CaO2) as a H2O2-generating reagent to gradually supply a radical source for the HRP-catalyzed crosslinking reaction. This novel therapy can create stiff hydrogels without compromising the cytocompatibility of the hydrogels due to the use of initially high concentrations of H2O2. The physico-chemical properties of the hydrogels can be controlled by varying the concentrations of HRP and CaO2. In addition, the controlled and sustained release of bioactive molecules, including H2O2, O2, and Ca2+ ions, from the hydrogels could stimulate the cellular behaviors (attachment, migration, and differentiation) of human mesenchymal stem cells. Moreover, the hydrogels exhibited killing efficacy against both Gram-negative and Gram-positive bacteria, dependent on the H2O2 and Ca2+ release amounts. These positive results suggest that hydrogels formed by HRP/CaO2 can be used as potential matrices for a wide range of biomedical applications, such as bone regeneration and infection treatment.


Asunto(s)
Antibacterianos/síntesis química , Hidrogeles/síntesis química , Células Madre Mesenquimatosas/efectos de los fármacos , Peróxidos/síntesis química , Antibacterianos/farmacología , Movimiento Celular/efectos de los fármacos , Movimiento Celular/fisiología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Humanos , Hidrogeles/farmacología , Células Madre Mesenquimatosas/fisiología , Peróxidos/farmacología , Streptococcus/efectos de los fármacos , Streptococcus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA