Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Carcinog ; 59(3): 323-332, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31943365

RESUMEN

Approximately, 30 000 men die from prostate cancer (PCa) every year in the United States, mainly due to the metastasis. Thus, the key events associated with PCa metastasis are under rigorous investigation, with recent studies showing that preparation of pre-metastatic niches (PMN) in distant organs is an important step. However, the molecular basis for PMN preparation is still unclear. Hypoxia in primary tumors promotes aggressiveness; however, its precise role in metastasis is not clear. We recently reported that exosomes secreted by PCa cells under hypoxia promote stemness and invasiveness in naïve PCa cells; however, whether these extracellular vesicles also influence PMN remains unknown. In the present study, we isolated exosomes from human PCa PC3 cells under normoxic (21% O2 , exosomes secreted under normoxic condition [ExoNormoxic ]) and hypoxic (1% O2 , exosomes secreted under hypoxic condition [ExoHypoxic ]) conditions, and characterized their effect (10 µg exosomes, intraperitoneal (IP) treatment every 48 hours for 4 weeks) on key biomarkers associated with PMN in nude mice. Whole animal fluorescence imaging showed that ExoHypoxic treatment promotes matrix metalloproteinases (MMPs) activity in several putative metastatic sites. Histological studies confirmed that ExoHypoxic treatment enhanced the level of MMP2, MMP9, and extracellular matrix proteins (fibronectin and collagen) as well as increased the number of CD11b+ cells at selective PMN sites. Furthermore, proteomic profiling of exosomes by liquid chromatography/mass spectrometry identified cargo proteins in ExoNormoxic and ExoHypoxic as well as distinct canonical pathways targeted by them. These results suggest that exosomes secreted by PCa cells under hypoxia plausibly remodel distant PMN, and thus, could be a potential target to control metastatic PCa.


Asunto(s)
Exosomas/metabolismo , Metaloproteinasas de la Matriz/metabolismo , Neoplasias de la Próstata/metabolismo , Animales , Activación Enzimática , Exosomas/patología , Humanos , Masculino , Ratones Desnudos , Metástasis de la Neoplasia/patología , Células PC-3 , Próstata/citología , Próstata/metabolismo , Próstata/patología , Neoplasias de la Próstata/patología , Hipoxia Tumoral
2.
Sensors (Basel) ; 17(3)2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-28245589

RESUMEN

Radiopacity is a critical property of materials that are used for a range of radiological applications, including the development of phantom devices that emulate the radiodensity of native tissues and the production of protective equipment for personnel handling radioactive materials. Three-dimensional (3D) printing is a fabrication platform that is well suited to creating complex anatomical replicas or custom labware to accomplish these radiological purposes. We created and tested multiple ABS (Acrylonitrile butadiene styrene) filaments infused with varied concentrations of bismuth (1.2-2.7 g/cm³), a radiopaque metal that is compatible with plastic infusion, to address the poor gamma radiation attenuation of many mainstream 3D printing materials. X-ray computed tomography (CT) experiments of these filaments indicated that a density of 1.2 g/cm³ of bismuth-infused ABS emulates bone radiopacity during X-ray CT imaging on preclinical and clinical scanners. ABS-bismuth filaments along with ABS were 3D printed to create an embedded human nasocranial anatomical phantom that mimicked radiological properties of native bone and soft tissue. Increasing the bismuth content in the filaments to 2.7 g/cm³ created a stable material that could attenuate 50% of 99mTechnetium gamma emission when printed with a 2.0 mm wall thickness. A shielded test tube rack was printed to attenuate source radiation as a protective measure for lab personnel. We demonstrated the utility of novel filaments to serve multiple radiological purposes, including the creation of anthropomorphic phantoms and safety labware, by tuning the level of radiation attenuation through material customization.


Asunto(s)
Fantasmas de Imagen , Bismuto , Humanos , Impresión Tridimensional , Radiografía , Tomografía Computarizada por Rayos X
3.
Hepatology ; 61(1): 348-60, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24824608

RESUMEN

UNLABELLED: Drug-induced liver injury (DILI) is an important cause of acute liver failure, with limited therapeutic options. During DILI, oncotic necrosis with concomitant release and recognition of intracellular content amplifies liver inflammation and injury. Among these molecules, self-DNA has been widely shown to trigger inflammatory and autoimmune diseases; however, whether DNA released from damaged hepatocytes accumulates into necrotic liver and the impact of its recognition by the immune system remains elusive. Here we show that treatment with two different hepatotoxic compounds (acetaminophen and thioacetamide) caused DNA release into the hepatocyte cytoplasm, which occurred in parallel with cell death in vitro. Administration of these compounds in vivo caused massive DNA deposition within liver necrotic areas, together with an intravascular DNA coating. Using confocal intravital microscopy, we revealed that liver injury due to acetaminophen overdose led to a directional migration of neutrophils to DNA-rich areas, where they exhibit an active patrolling behavior. DNA removal by intravenous DNASE1 injection or ablation of Toll-like receptor 9 (TLR9)-mediated sensing significantly reduced systemic inflammation, liver neutrophil recruitment, and hepatotoxicity. Analysis of liver leukocytes by flow cytometry revealed that emigrated neutrophils up-regulated TLR9 expression during acetaminophen-mediated necrosis, and these cells sensed and reacted to extracellular DNA by activating the TLR9/NF-κB pathway. Likewise, adoptive transfer of wild-type neutrophils to TLR9(-/-) mice reversed the hepatoprotective phenotype otherwise observed in TLR9 absence. CONCLUSION: Hepatic DNA accumulation is a novel feature of DILI pathogenesis. Blockage of DNA recognition by the innate immune system may constitute a promising therapeutic venue.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/inmunología , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , ADN/metabolismo , Hepatocitos/efectos de los fármacos , Hígado/efectos de los fármacos , Acetaminofén/efectos adversos , Analgésicos no Narcóticos/efectos adversos , Animales , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Activación Neutrófila , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Receptor Toll-Like 9/metabolismo
4.
Am J Physiol Lung Cell Mol Physiol ; 306(10): L897-914, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24658139

RESUMEN

In vivo imaging is an important tool for preclinical studies of lung function and disease. The widespread availability of multimodal animal imaging systems and the rapid rate of diagnostic contrast agent development have empowered researchers to noninvasively study lung function and pulmonary disorders. Investigators can identify, track, and quantify biological processes over time. In this review, we highlight the fundamental principles of bioluminescence, fluorescence, planar X-ray, X-ray computed tomography, magnetic resonance imaging, and nuclear imaging modalities (such as positron emission tomography and single photon emission computed tomography) that have been successfully employed for the study of lung function and pulmonary disorders in a preclinical setting. The major principles, benefits, and applications of each imaging modality and technology are reviewed. Limitations and the future prospective of multimodal imaging in pulmonary physiology are also discussed. In vivo imaging bridges molecular biological studies, drug design and discovery, and the imaging field with modern medical practice, and, as such, will continue to be a mainstay in biomedical research.


Asunto(s)
Enfermedades Pulmonares/diagnóstico , Pulmón/patología , Animales , Humanos , Pulmón/diagnóstico por imagen , Enfermedades Pulmonares/diagnóstico por imagen , Enfermedades Pulmonares/patología , Imagen por Resonancia Magnética , Imagen Óptica , Tomografía de Emisión de Positrones , Tomografía Computarizada por Rayos X
5.
Sensors (Basel) ; 14(10): 18526-42, 2014 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-25299952

RESUMEN

Numerous obesity studies have coupled murine models with non-invasive methods to quantify body composition in longitudinal experiments, including X-ray computed tomography (CT) or quantitative nuclear magnetic resonance (QMR). Both microCT and QMR have been separately validated with invasive techniques of adipose tissue quantification, like post-mortem fat extraction and measurement. Here we report a head-to-head study of both protocols using oil phantoms and mouse populations to determine the parameters that best align CT data with that from QMR. First, an in vitro analysis of oil/water mixtures was used to calibrate and assess the overall accuracy of microCT vs. QMR data. Next, experiments were conducted with two cohorts of living mice (either homogenous or heterogeneous by sex, age and genetic backgrounds) to assess the microCT imaging technique for adipose tissue segmentation and quantification relative to QMR. Adipose mass values were obtained from microCT data with three different resolutions, after which the data were analyzed with different filter and segmentation settings. Strong linearity was noted between the adipose mass values obtained with microCT and QMR, with optimal parameters and scan conditions reported herein. Lean tissue (muscle, internal organs) was also segmented and quantified using the microCT method relative to the analogous QMR values. Overall, the rigorous calibration and validation of the microCT method for murine body composition, relative to QMR, ensures its validity for segmentation, quantification and visualization of both adipose and lean tissues.


Asunto(s)
Composición Corporal , Imagen por Resonancia Magnética , Obesidad/diagnóstico , Tomografía Computarizada por Rayos X , Absorciometría de Fotón , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Humanos , Ratones , Obesidad/metabolismo , Obesidad/fisiopatología
6.
Sensors (Basel) ; 13(6): 6957-80, 2013 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-23711461

RESUMEN

X-ray Computed Tomography (CT) is one of the most commonly utilized anatomical imaging modalities for both research and clinical purposes. CT combines high-resolution, three-dimensional data with relatively fast acquisition to provide a solid platform for non-invasive human or specimen imaging. The primary limitation of CT is its inability to distinguish many soft tissues based on native contrast. While bone has high contrast within a CT image due to its material density from calcium phosphate, soft tissue is less dense and many are homogenous in density. This presents a challenge in distinguishing one type of soft tissue from another. A couple exceptions include the lungs as well as fat, both of which have unique densities owing to the presence of air or bulk hydrocarbons, respectively. In order to facilitate X-ray CT imaging of other structures, a range of contrast agents have been developed to selectively identify and visualize the anatomical properties of individual tissues. Most agents incorporate atoms like iodine, gold, or barium because of their ability to absorb X-rays, and thus impart contrast to a given organ system. Here we review the strategies available to visualize lung, fat, brain, kidney, liver, spleen, vasculature, gastrointestinal tract, and liver tissues of living mice using either innate contrast, or commercial injectable or ingestible agents with selective perfusion. Further, we demonstrate how each of these approaches will facilitate the non-invasive, longitudinal, in vivo imaging of pre-clinical disease models at each anatomical site.


Asunto(s)
Medios de Contraste , Tomografía Computarizada por Rayos X , Tejido Adiposo/diagnóstico por imagen , Administración Oral , Animales , Encéfalo/diagnóstico por imagen , Medios de Contraste/química , Tracto Gastrointestinal/diagnóstico por imagen , Inyecciones Intravenosas , Riñón/diagnóstico por imagen , Hígado/diagnóstico por imagen , Pulmón/diagnóstico por imagen
7.
Biophys J ; 103(3): 601-609, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22947877

RESUMEN

This work describes a new, to our knowledge, strategy of efficient colonization and community development where bacteria substantially alter their physical environment. Many bacteria move in groups, in a mode described as swarming, to colonize surfaces and form biofilms to survive external stresses, including exposure to antibiotics. One such bacterium is Pseudomonas aeruginosa, which is an opportunistic pathogen responsible for both acute and persistent infections in susceptible individuals, as exampled by those for burn victims and people with cystic fibrosis. Pseudomonas aeruginosa often, but not always, forms branched tendril patterns during swarming; this phenomena occurs only when bacteria produce rhamnolipid, which is regulated by population-dependent signaling called quorum sensing. The experimental results of this work show that P. aeruginosa cells propagate as high density waves that move symmetrically as rings within swarms toward the extending tendrils. Biologically justified cell-based multiscale model simulations suggest a mechanism of wave propagation as well as a branched tendril formation at the edge of the population that depends upon competition between the changing viscosity of the bacterial liquid suspension and the liquid film boundary expansion caused by Marangoni forces. Therefore, P. aeruginosa efficiently colonizes surfaces by controlling the physical forces responsible for expansion of thin liquid film and by propagating toward the tendril tips. The model predictions of wave speed and swarm expansion rate as well as cell alignment in tendrils were confirmed experimentally. The study results suggest that P. aeruginosa responds to environmental cues on a very short timescale by actively exploiting local physical phenomena to develop communities and efficiently colonize new surfaces.


Asunto(s)
Modelos Biológicos , Pseudomonas aeruginosa/citología , Pseudomonas aeruginosa/crecimiento & desarrollo , Análisis Espacio-Temporal , Propiedades de Superficie
8.
Appl Environ Microbiol ; 77(23): 8310-7, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21984238

RESUMEN

Many bacteria spread over surfaces by "swarming" in groups. A problem for scientists who study swarming is the acquisition of statistically significant data that distinguish two observations or detail the temporal patterns and two-dimensional heterogeneities that occur. It is currently difficult to quantify differences between observed swarm phenotypes. Here, we present a method for acquisition of temporal surface motility data using time-lapse fluorescence and bioluminescence imaging. We specifically demonstrate three applications of our technique with the bacterium Pseudomonas aeruginosa. First, we quantify the temporal distribution of P. aeruginosa cells tagged with green fluorescent protein (GFP) and the surfactant rhamnolipid stained with the lipid dye Nile red. Second, we distinguish swarming of P. aeruginosa and Salmonella enterica serovar Typhimurium in a coswarming experiment. Lastly, we quantify differences in swarming and rhamnolipid production of several P. aeruginosa strains. While the best swarming strains produced the most rhamnolipid on surfaces, planktonic culture rhamnolipid production did not correlate with surface growth rhamnolipid production.


Asunto(s)
Glucolípidos/metabolismo , Locomoción , Pseudomonas aeruginosa/fisiología , Imagen de Lapso de Tiempo/métodos , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Luminiscencia , Pseudomonas aeruginosa/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/fisiología , Coloración y Etiquetado/métodos
9.
Mol Pharm ; 8(2): 583-90, 2011 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-21323375

RESUMEN

Cell death is a fundamental biological process that is present in numerous disease pathologies. Fluorescent probes that detect cell death have been developed for a myriad of research applications ranging from microscopy to in vivo imaging. Here we describe a synthetic near-infrared (NIR) conjugate of zinc(II)-dipicolylamine (Zn²+-DPA) for in vivo imaging of cell death. Chemically induced in vivo models of myopathy were established using an ionphore, ethanol, or ketamine as cytotoxins. The Zn²+-DPA fluorescent probe or corresponding control was subsequently injected, and whole animal fluorescence imaging demonstrated probe uptake at the site of muscle damage, which was confirmed by ex vivo and histological analyses. Further, a comparative study with a NIR fluorescent conjugate Annexin V showed less intense uptake at the site of muscle damage and high accumulation in the bladder. The results indicate that the fluorescent Zn²+-DPA conjugate is an effective probe for in vivo cell death detection and in some cases may be an appropriate alternative to fluorescent Annexin V conjugates.


Asunto(s)
Colorantes Fluorescentes , Rayos Infrarrojos , Imagen Molecular , Músculo Esquelético/patología , Compuestos Organometálicos , Picolinas , Espectroscopía Infrarroja Corta , Animales , Muerte Celular , Colorantes Fluorescentes/farmacocinética , Ratones , Ratones Desnudos , Compuestos Organometálicos/farmacocinética , Picolinas/farmacocinética , Zinc/química
10.
Materials (Basel) ; 14(7)2021 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-33917612

RESUMEN

Selective laser sintering (SLS) is a prominent 3D printing modality that typically uses a polyamide (PA) powder as the substrate. One commercially available SLS material is known as PA2200, which is comprised of nylon 12 and titanium dioxide (TiO2) and is widely used to generate 3D-printed parts. Here, we report a unique optical photoluminescence (PL) characteristic of native, white PA2200, in which it yields a persistent, phosphorescence-type emission. An analysis of luminescence imaging data with emission measurements demonstrated that the anatase phase of the titanium dioxide additive is the source of the persistent PL properties. This characteristic of PA2200 enables advanced optical imaging applications, as demonstrated by luminescence imaging of an anatomical rat skeleton and a novel Derenzo-type phantom on a commercial image station. In summary, the light emission properties of PA2200 induced by the presence of anatase titanium dioxide open the door to a vast new array of complex optical applications, including the generation of imaging phantoms for training, calibration, and quality control.

11.
J Am Chem Soc ; 132(1): 67-9, 2010 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-20014845

RESUMEN

In vivo optical imaging shows that a fluorescent imaging probe, comprised of a near-infrared fluorophore attached to an affinity group containing two zinc(II)-dipicolylamine (Zn-DPA) units, targets prostate and mammary tumors in two different xenograft animal models. The tumor selectivity is absent with control fluorophores whose structures do not have appended Zn-DPA targeting ligands. Ex vivo biodistribution and histological analyses indicate that the probe is targeting the necrotic regions of the tumors, which is consistent with in vitro microscopy showing selective targeting of the anionic membrane surfaces of dead and dying cells.


Asunto(s)
Aminas/química , Neoplasias de la Mama/patología , Rayos Infrarrojos , Imagen Molecular/métodos , Compuestos Organometálicos/metabolismo , Ácidos Picolínicos/química , Neoplasias de la Próstata/patología , Zinc/química , Absorción , Animales , Línea Celular Tumoral , Supervivencia Celular , Transformación Celular Neoplásica , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Masculino , Ratones , Compuestos Organometálicos/síntesis química , Compuestos Organometálicos/química , Ratas
12.
Bioconjug Chem ; 21(7): 1297-304, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20536173

RESUMEN

Two structurally related fluorescent imaging probes allow optical imaging of bacterial leg infection models in living athymic and immunocompetent mice. Structurally, the probes are comprised of a deep-red fluorescent squaraine rotaxane scaffold with two appended bis(zinc(II)-dicolylamine) (bis(Zn-DPA)) targeting ligands. The bis(Zn-DPA) ligands have high affinity for the anionic phospholipids and related biomolecules that reside within the bacterial envelope, and they are known to selectively target bacterial cells over the nearly uncharged membrane surfaces of healthy mammalian cells. Planar, whole-animal optical imaging studies showed that intravenous dosing of either probe (10 nmol) allowed imaging of localized infections of Gram-positive Staphylococcus aureus and Gram-negative Salmonella enterica serovar typhimurium. High selectivity for the infected target leg (T) over the contralateral nontarget leg (NT) was reflected by T/NT ratios up to six. The infection imaging signal was independent of mouse humoral immune status, and there was essentially no targeting at a site of sterile inflammation induced by injection of lambda-carrageenan. Furthermore, the fluorescent probe imaging signal colocalized with the bioluminescence signal from a genetically engineered strain of S. enterica serovar typhimurium. Although not highly sensitive (the localized infection must contain at least approximately 10(6) colony forming units for fluorescence visualization), the probes are remarkably selective for bacterial cells considering their low molecular weight (<1.5 kDa) and simple structural design. The more hydrophilic of the two probes produced a higher T/NT ratio in the early stages of the imaging experiment and washed out more rapidly from the blood clearance organs (liver, kidney). Therefore, it is best suited for longitudinal studies that require repeated dosing and imaging of the same animal. The results indicate that fluorescent probes based on squaraine rotaxanes should be broadly useful for in vivo animal imaging studies, and they further validate the ability of imaging probes with bis(Zn-DPA) ligands to selectively target bacterial infections in living animals.


Asunto(s)
Infecciones Bacterianas/microbiología , Colorantes Fluorescentes/farmacocinética , Rotaxanos/farmacocinética , Animales , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/química , Ratones , Ratones Endogámicos ICR , Microscopía Fluorescente , Estructura Molecular , Peso Molecular , Rotaxanos/síntesis química , Rotaxanos/química , Salmonella enterica/química , Staphylococcus aureus/química
13.
Brain Commun ; 2(2): fcaa154, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33241210

RESUMEN

Amyotrophic lateral sclerosis is characterized by the degeneration of upper and lower motor neurons, yet an increasing number of studies in both mouse models and patients with amyotrophic lateral sclerosis suggest that altered metabolic homeostasis is also a feature of disease. Pre-clinical and clinical studies have shown that modulation of energy balance can be beneficial in amyotrophic lateral sclerosis. However, the capacity to target specific metabolic pathways or mechanisms requires detailed understanding of metabolic dysregulation in amyotrophic lateral sclerosis. Here, using the superoxide dismutase 1, glycine to alanine substitution at amino acid 93 (SOD1G93A) mouse model of amyotrophic lateral sclerosis, we demonstrate that an increase in whole-body metabolism occurs at a time when glycolytic muscle exhibits an increased dependence on fatty acid oxidation. Using myotubes derived from muscle of amyotrophic lateral sclerosis patients, we also show that increased dependence on fatty acid oxidation is associated with increased whole-body energy expenditure. In the present study, increased fatty acid oxidation was associated with slower disease progression. However, within the patient cohort, there was considerable heterogeneity in whole-body metabolism and fuel oxidation profiles. Thus, future studies that decipher specific metabolic changes at an individual patient level are essential for the development of treatments that aim to target metabolic pathways in amyotrophic lateral sclerosis.

14.
Sci Rep ; 9(1): 1590, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30733587

RESUMEN

Phosphatidylserine externalization is an early molecular signature for apoptosis. In many retinal degenerative diseases, photoreceptor neurons die by apoptosis. Here, we report utility of the phosphatidylserine-binding conjugate of Bis(zinc(II)-dipicolylamine (Zn-DPA) with Texas-red (PSVue-550) in transiently labeling apoptotic photoreceptors in living pigmented or albino rats and mice with retinal degeneration. Applying PSVue-550 as eyedrop is non-toxic and eliminates need for intraocular injection. PSVue-550 fluorescence specifically and transiently labeling dying retinal photoreceptors is detectable in anesthetized animals using standard retinal or whole small animal imaging systems. Importantly, prior PSVue-550 eyedrop administration and imaging does not affect repeat testing. Altogether, our results establish PSVue-550 imaging as a completely non-invasive method that provides the opportunity to longitudinally monitor retinal photoreceptor cell death in preclinical studies.


Asunto(s)
Apoptosis , Imagen Molecular , Imagen Óptica , Células Fotorreceptoras de Vertebrados/metabolismo , Animales , Ratones , Ratones Noqueados , Microscopía Fluorescente , Células Fotorreceptoras/metabolismo , Ratas , Epitelio Pigmentado de la Retina/metabolismo
15.
J Am Assoc Lab Anim Sci ; 58(1): 65-70, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30526727

RESUMEN

Depilation (that is, hair removal) is a necessary prerequisite for many small animal surgeries and optical imaging experiments. Over-the-counter depilatory creams are widely used, owing to their efficacy, safety, and low rates of skin irritation and infection. However, the use of these creams is generally messy and time-consuming and generates considerable waste. Furthermore, the process itself varies markedly among laboratories. Here we present a 3D-printed device that simplifies the depilation procedure by integrating 3 key elements: 1) a multiple-port, self-scavenging anesthesia manifold, 2) curved animal holders with flow-through slats, and 3) a removable waste collection tray. Reflecting insights gained from an international survey about depilatory lab procedures that highlighted the lack of standardized protocols, this apparatus is designed to improve the neatness, throughput, and safety of mouse depilation, resulting in efficient and repeatable processes that bolster the welfare of both researchers and subjects.


Asunto(s)
Remoción del Cabello/veterinaria , Inmovilización/veterinaria , Impresión Tridimensional , Anestesia , Bienestar del Animal , Animales , Remoción del Cabello/métodos , Inmovilización/instrumentación , Ciencia de los Animales de Laboratorio , Ratones
16.
Chembiochem ; 9(2): 286-93, 2008 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-18076009

RESUMEN

Molecular probes with zinc(II)-(2,2'-dipicolylamine) coordination complexes associate with oxyanions in aqueous solution and target biomembranes that contain anionic phospholipids. This study examines a new series of coordination complexes with 2,6-bis(zinc(II)-dipicolylamine)phenoxide as the molecular recognition unit. Two lipophilic analogues are observed to partition into the membranes of zwitterionic and anionic vesicles and induce the transport of phospholipids and hydrophilic anions (carboxyfluorescein). These lipophilic zinc complexes are moderately toxic to mammalian cells. A more hydrophilic analogue does not exhibit mammalian cell toxicity (LD(50) >50 microg mL(-1)), but it is highly active against the Gram-positive bacteria Staphylococcus aureus (MIC of 1 microg mL(-1)). Furthermore, it is active against clinically important S. aureus strains that are resistant to various antibiotics, including vancomycin and oxacillin. The antibiotic action is attributed to its ability to depolarize the bacterial cell membrane. The intense bacterial staining that was exhibited by a fluorescent conjugate suggests that this family of zinc coordination complexes can be used as molecular probes for the detection and imaging of bacteria.


Asunto(s)
Antibacterianos/farmacología , Membrana Celular/química , Colorantes Fluorescentes/química , Microscopía Fluorescente/métodos , Compuestos Organometálicos/química , Staphylococcus aureus/efectos de los fármacos , Zinc/química , Cationes Bivalentes , Membrana Celular/metabolismo , Farmacorresistencia Bacteriana , Oxacilina/farmacología , Oxidación-Reducción , Fosfolípidos/química , Fosfolípidos/metabolismo , Soluciones/química , Coloración y Etiquetado , Vancomicina/farmacología , Agua/química
17.
Chem Commun (Camb) ; (20): 2331-3, 2008 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-18473060

RESUMEN

Fluorescent quantum dots coated with zinc(ii)-dipicolylamine coordination complexes can selectively stain a rough Escherichia coli mutant that lacks an O-antigen element and permit optical detection in a living mouse leg infection model.


Asunto(s)
Escherichia coli/química , Escherichia coli/genética , Mutación , Puntos Cuánticos , Animales , Biotina/química , Infecciones por Escherichia coli/microbiología , Colorantes Fluorescentes/química , Ligandos , Ratones , Ratones Desnudos , Microscopía Fluorescente , Compuestos Organometálicos/química , Picolinas/química , Estreptavidina/química
18.
Nat Cell Biol ; 20(3): 272-284, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29459781

RESUMEN

For cancer cells to survive during extracellular matrix (ECM) detachment, they must inhibit anoikis and rectify metabolic deficiencies that cause non-apoptotic cell death. Previous studies in ECM-detached cells have linked non-apoptotic cell death to reactive oxygen species (ROS) generation, although the mechanistic underpinnings of this link remain poorly defined. Here, we uncover a role for receptor-interacting protein kinase 1 (RIPK1) in the modulation of ROS and cell viability during ECM detachment. We find that RIPK1 activation during ECM detachment results in mitophagy induction through a mechanism dependent on the mitochondrial phosphatase PGAM5. As a consequence of mitophagy, ECM-detached cells experience diminished NADPH production in the mitochondria, and the subsequent elevation in ROS levels leads to non-apoptotic death. Furthermore, we find that antagonizing RIPK1/PGAM5 enhances tumour formation in vivo. Thus, RIPK1-mediated induction of mitophagy may be an efficacious target for therapeutics aimed at eliminating ECM-detached cancer cells.


Asunto(s)
Células Epiteliales/enzimología , Matriz Extracelular/metabolismo , Glándulas Mamarias Humanas/enzimología , Mitocondrias/enzimología , Mitofagia , Neoplasias/enzimología , Proteína Serina-Treonina Quinasas de Interacción con Receptores/metabolismo , Animales , Adhesión Celular , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Células Epiteliales/patología , Matriz Extracelular/patología , Femenino , Células HCT116 , Células HeLa , Humanos , Glándulas Mamarias Humanas/patología , Ratones Desnudos , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , NADP/metabolismo , Metástasis de la Neoplasia , Neoplasias/genética , Neoplasias/patología , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteína Serina-Treonina Quinasas de Interacción con Receptores/genética , Transducción de Señal , Carga Tumoral
19.
Supramol Chem ; 19(1-2): 29-37, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20376284

RESUMEN

It is 25 years since the first report of a synthetic ion channel transporter. Today, dozens of molecular and supramolecular designs have been developed to facilitate ion and small molecule transport across a bilayer membrane. Presented here is a concise summary of the advances made over the past four years. The transporters are grouped into three mechanistic classes: mobile carrier, monomeric channel, and self-assembled pore. Common building blocks are crown ethers, steroids, cyclodextrins, peptides, curcubiturils, and calixarenes. The eventual goal is to produce functional supramolecular devices such as sensors, enzyme assays, and lead candidates for pharmaceutical development.

20.
Drug Discov Today Dis Models ; 4(3): 91-97, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-20376332

RESUMEN

Over the last thirteen years, the field of optical imaging has expanded from in vitro fluorescence microscopy of cells to in vivo imaging of living animals. Recent advances in optical imaging of bacterial infection have been propelled by the invention of genetic methods that produce fluorescent and bioluminescent bacteria, and also the discovery of synthetic fluorescent probes that selectively target bacterial cell surfaces. Optical imaging is an effective method of conducting longitudinal studies of bacterial infection in small animals such as nude mice. It can be used to address questions in medical microbiology concerning migration and colonization and it is an attractive method for determining the efficacy of antibiotic therapies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA