Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Biomater Sci Eng ; 10(2): 975-986, 2024 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-38236143

RESUMEN

Diabetic skin wounds are difficult to heal quickly due to insufficient angiogenesis and prolonged inflammation, which is an urgent clinical problem. To address this clinical problem, it becomes imperative to develop a dressing that can promote revascularization and reduce inflammation during diabetic skin healing. Herein, a multifunctional collagen dressing (CTM) was constructed by loading large efficacy-potentiated exosome-mimicking nanovesicles (L-Meseomes) into a porous collagen sponge with transglutaminase (TGase). L-Meseomes were constructed in previous research with the function of promoting cell proliferation, migration, and angiogenesis and inhibiting inflammation. CTM has a three-dimensional porous network structure with good biocompatibility, swelling properties, and degradability and could release L-Meseome slowly. In vitro experiments showed that CTM could promote the proliferation of fibroblasts and the polarization of macrophages to the anti-inflammatory phenotype. For in vivo experiments, on the 21st day after surgery, the wound healing rates of the control and CTM were 83.026 ± 4.17% and 93.12 ± 2.16%, respectively; the epidermal maturation and dermal differentiation scores in CTM were approximately four times that of the control group, and the skin epidermal thickness of the CTM group was approximately 20 µm, which was closest to that of normal rats. CTM could significantly improve wound healing in diabetic rats by promoting anti-inflammation, angiogenesis, epidermal recovery, and dermal collagen deposition. In summary, the multifunctional collagen dressing CTM could significantly promote the healing of diabetic skin wounds, which provides a new strategy for diabetic wound healing in the clinic.


Asunto(s)
Diabetes Mellitus Experimental , Exosomas , Ratas , Animales , Porosidad , Colágeno/farmacología , Colágeno/uso terapéutico , Cicatrización de Heridas , Vendajes , Inflamación
2.
Int J Biol Macromol ; 253(Pt 6): 127213, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37793511

RESUMEN

Chronic wound, such as skin defect after burn, pressure ulcer, and diabetic foot ulcer is very difficult to cure. Its pathological process is often accompanied with local temperature rise, pH decrease, and other phenomena. Owing to their outstanding hydrophilic, biocompatibility, and responsive properties, hydrogels could accelerate the healing process. In this study, we chose chitosan oligosaccharide (COS) grafted with Pluronic F127 (F127-COS). Aldehyde hyaluronic acid (A-HA) oxidized by NaIO4. And added boric acid (BA) to prepare a thermosensitive and pH-responsive injectable self-healing F127-COS/A-HA/COS/BA (FCAB) hydrogel, loaded with drug deferoxamine (DFO) in order to have an accurate release and promote angiogenesis of diabetic foot ulcer. In vitro experiments had verified that the FCAB hydrogel system loaded with DFO (FCAB/D) could promote migration and angiogenesis of HUVEC. A diabetes rat back wound model further confirmed its role in promoting angiogenesis in wound repair process. The results showed that the FCAB/D hydrogel exhibited unique physicochemical properties, excellent biocompatibility, and significantly enhanced therapeutic effects for diabetic foot ulcer.


Asunto(s)
Quitosano , Diabetes Mellitus , Pie Diabético , Ratas , Animales , Hidrogeles/química , Pie Diabético/tratamiento farmacológico , Quitosano/química , Ácido Hialurónico/química , Aldehídos , Temperatura , Concentración de Iones de Hidrógeno , Oligosacáridos/farmacología
3.
ACS Biomater Sci Eng ; 9(2): 844-855, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36723920

RESUMEN

Cardiovascular disease has become one of the most globally prevalent diseases, and autologous or vascular graft transplantation has been the main treatment for the end stage of the disease. However, there are no commercialized small-diameter vascular graft (SDVG) products available. The design of SDVGs is promising in the future, and SDVG preparation using an in vitro bioreactor is a favorable method, but it faces the problem of long-term culture of >8 weeks. Herein, we used different oxygen (O2) concentrations and mechanical stimulation to induce greater secretion of extracellular matrix (ECM) from cells in vitro to rapidly prepare SDVGs. Culturing with 2% O2 significantly increased the production of the ECM components and growth factors of human dermal fibroblasts (hDFs). To accelerate the formation of ECM, hDFs were seeded on a polycaprolactone (PCL) scaffold and cultured in a flow culture bioreactor with 2% O2 for only 3 weeks. After orthotopic transplantation in rat abdominal aorta, the cultured SDVGs (PCL-decellularized ECM) showed excellent endothelialization and smooth muscle regeneration. The vascular grafts cultured with hypoxia and mechanical stimulation could accelerate the reconstruction speed and obtain an improved therapeutic effect and thereby provide a new research direction for improving the production and supply of SDVGs.


Asunto(s)
Prótesis Vascular , Matriz Extracelular , Ratas , Humanos , Animales , Reactores Biológicos , Hipoxia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA