RESUMEN
BACKGROUND: Information regarding the protection conferred by vaccination and previous infection against infection with the B.1.1.529 (omicron) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is limited. METHODS: We evaluated the protection conferred by mRNA vaccines and previous infection against infection with the omicron variant in two high-risk populations: residents and staff in the California state prison system. We used a retrospective cohort design to analyze the risk of infection during the omicron wave using data collected from December 24, 2021, through April 14, 2022. Weighted Cox models were used to compare the effectiveness (measured as 1 minus the hazard ratio) of vaccination and previous infection across combinations of vaccination history (stratified according to the number of mRNA doses received) and infection history (none or infection before or during the period of B.1.617.2 [delta]-variant predominance). A secondary analysis used a rolling matched-cohort design to evaluate the effectiveness of three vaccine doses as compared with two doses. RESULTS: Among 59,794 residents and 16,572 staff, the estimated effectiveness of previous infection against omicron infection among unvaccinated persons who had been infected before or during the period of delta predominance ranged from 16.3% (95% confidence interval [CI], 8.1 to 23.7) to 48.9% (95% CI, 41.6 to 55.3). Depending on previous infection status, the estimated effectiveness of vaccination (relative to being unvaccinated and without previous documented infection) ranged from 18.6% (95% CI, 7.7 to 28.1) to 83.2% (95% CI, 77.7 to 87.4) with two vaccine doses and from 40.9% (95% CI, 31.9 to 48.7) to 87.9% (95% CI, 76.0 to 93.9) with three vaccine doses. Incremental effectiveness estimates of a third (booster) dose (relative to two doses) ranged from 25.0% (95% CI, 16.6 to 32.5) to 57.9% (95% CI, 48.4 to 65.7) among persons who either had not had previous documented infection or had been infected before the period of delta predominance. CONCLUSIONS: Our findings in two high-risk populations suggest that mRNA vaccination and previous infection were effective against omicron infection, with lower estimates among those infected before the period of delta predominance. Three vaccine doses offered significantly more protection than two doses, including among previously infected persons.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Prisiones , Vacunación , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Prisiones/estadística & datos numéricos , Estudios Retrospectivos , SARS-CoV-2 , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/uso terapéutico , California/epidemiología , Prisioneros/estadística & datos numéricos , Policia/estadística & datos numéricos , Eficacia de las Vacunas/estadística & datos numéricos , Reinfección/epidemiología , Reinfección/prevención & control , Inmunización Secundaria/estadística & datos numéricosRESUMEN
BACKGROUND: Prisons and jails are high-risk settings for coronavirus disease 2019 (COVID-19). Vaccines may substantially reduce these risks, but evidence is needed on COVID-19 vaccine effectiveness for incarcerated people, who are confined in large, risky congregate settings. METHODS: We conducted a retrospective cohort study to estimate effectiveness of messenger RNA (mRNA) vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), against confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections among incarcerated people in California prisons from 22 December 2020 through 1 March 2021. The California Department of Corrections and Rehabilitation provided daily data for all prison residents including demographic, clinical, and carceral characteristics, as well as COVID-19 testing, vaccination, and outcomes. We estimated vaccine effectiveness using multivariable Cox models with time-varying covariates, adjusted for resident characteristics and infection rates across prisons. RESULTS: Among 60â 707 cohort members, 49% received at least 1 BNT162b2 or mRNA-1273 dose during the study period. Estimated vaccine effectiveness was 74% (95% confidence interval [CI], 64%-82%) from day 14 after first dose until receipt of second dose and 97% (95% CI, 88%-99%) from day 14 after second dose. Effectiveness was similar among the subset of residents who were medically vulnerable: 74% (95% CI, 62%-82%) and 92% (95% CI, 74%-98%) from 14 days after first and second doses, respectively. CONCLUSIONS: Consistent with results from randomized trials and observational studies in other populations, mRNA vaccines were highly effective in preventing SARS-CoV-2 infections among incarcerated people. Prioritizing incarcerated people for vaccination, redoubling efforts to boost vaccination, and continuing other ongoing mitigation practices are essential in preventing COVID-19 in this disproportionately affected population.
Asunto(s)
COVID-19 , Prisioneros , Vacuna BNT162 , COVID-19/epidemiología , COVID-19/prevención & control , Prueba de COVID-19 , Vacunas contra la COVID-19 , California/epidemiología , Humanos , Prisiones , Estudios Retrospectivos , SARS-CoV-2RESUMEN
BACKGROUND: Correctional institutions nationwide are seeking to mitigate COVID-19-related risks. OBJECTIVE: To quantify changes to California's prison population since the pandemic began and identify risk factors for COVID-19 infection. DESIGN: For California state prisons (March 1-October 10, 2020), we described residents' demographic characteristics, health status, COVID-19 risk scores, room occupancy, and labor participation. We used Cox proportional hazard models to estimate the association between rates of COVID-19 infection and room occupancy and out-of-room labor, respectively. PARTICIPANTS: Residents of California state prisons. MAIN MEASURES: Changes in the incarcerated population's size, composition, housing, and activities. For the risk factor analysis, the exposure variables were room type (cells vs. dormitories) and labor participation (any room occupant participating in the prior 2 weeks) and the outcome variable was incident COVID-19 case rates. KEY RESULTS: The incarcerated population decreased 19.1% (119,401 to 96,623) during the study period. On October 10, 2020, 11.5% of residents were aged ≥60, 18.3% had high COVID-19 risk scores, 31.0% participated in out-of-room labor, and 14.8% lived in rooms with ≥10 occupants. Nearly 40% of residents with high COVID-19 risk scores lived in dormitories. In 9 prisons with major outbreaks (6,928 rooms; 21,750 residents), dormitory residents had higher infection rates than cell residents (adjusted hazard ratio [AHR], 2.51 95% CI, 2.25-2.80) and residents of rooms with labor participation had higher rates than residents of other rooms (AHR, 1.56; 95% CI, 1.39-1.74). CONCLUSION: Despite reductions in room occupancy and mixing, California prisons still house many medically vulnerable residents in risky settings. Reducing risks further requires a combination of strategies, including rehousing, decarceration, and vaccination.
Asunto(s)
COVID-19 , Prisioneros , California/epidemiología , Humanos , Prisiones , Factores de Riesgo , SARS-CoV-2Asunto(s)
Vacunas contra la COVID-19 , Aceptación de la Atención de Salud/estadística & datos numéricos , Prisioneros/estadística & datos numéricos , Negativa a la Vacunación/estadística & datos numéricos , Vacuna nCoV-2019 mRNA-1273 , Adulto , Anciano , Vacuna BNT162 , California , Humanos , Persona de Mediana Edad , Aceptación de la Atención de Salud/etnología , Negativa a la Vacunación/etnología , Adulto JovenRESUMEN
Early investigation revealed that COVID-19 vaccines confer indirect protection to fully susceptible and unvaccinated persons, defined as a reduced risk of SARS-CoV-2 infection among social contacts of vaccinated individuals. However, indirect protection from infection-acquired immunity and its comparative strength and durability to vaccine-derived indirect protection in the current epidemiologic context of high levels of vaccination, prior infection, and novel variants are not well characterized. Here, we show that both infection-acquired and vaccine-derived immunity independently yield indirect protection to close social contacts with key differences in their strength and waning. Analyzing anonymized data from a system-wide SARS-CoV-2 surveillance program of 177,319 residents across 35 California state prisons from December 2021 to December 2022 in a case-control design, we find that vaccine-derived indirect protection against Omicron SARS-CoV-2 infection is strongest within three months post-vaccination [30% (95% confidence interval: 20-38%)] with subsequent modest protection, whereas infection-acquired immunity provides 38% (24-50%) indirect protection to roommates for 6 months after SARS-CoV-2 infection, with moderate indirect protection persisting for over one year. Variant-targeted vaccines (bivalent formulation including Omicron subvariants BA.4/BA.5) confer strong indirect protection for at least three months [40% (3-63%)]. These results have important implications for understanding the long-term transmission dynamics of SARS-CoV-2 and can guide vaccine policy and public health measures, especially in high-risk environments such as prisons.
RESUMEN
Importance: Prisons and jails are high-risk environments for COVID-19. Vaccination levels among workers in many such settings remain markedly lower than those of residents and members of surrounding communities. The situation is troubling because prison staff are a key vector for COVID-19 transmission. Objective: To assess patterns and timing of staff vaccination in California state prisons and identify individual-level and community-level factors associated with remaining unvaccinated. Design Setting and Participants: This cohort study used data from December 22, 2020, through June 30, 2021, to quantify the fractions of staff and incarcerated residents who remained unvaccinated among 23 472 custody and 7617 health care staff who worked in roles requiring direct contact with residents at 33 of the 35 prisons operated by the California Department of Corrections and Rehabilitation. Multivariable probit regressions assessed demographic, community, and peer factors associated with staff vaccination uptake. Main Outcomes and Measures: Remaining unvaccinated throughout the study period. Results: Of 23 472 custody staff, 3751 (16%) were women, and 1454 (6%) were Asian/Pacific Islander individuals, 1571 (7%) Black individuals, 9008 (38%) Hispanic individuals, and 6666 (28%) White individuals. Of 7617 health care staff, 5434 (71%) were women, and 2148 (28%) were Asian/Pacific Islander individuals, 1201 (16%) Black individuals, 1409 (18%) Hispanic individuals, and 1771 (23%) White individuals. A total of 6103 custody staff (26%) and 3961 health care staff (52%) received 1 or more doses of a COVID-19 vaccine during the first 2 months vaccines were offered, but vaccination rates stagnated thereafter. By June 30, 2021, 14 317 custody staff (61%) and 2819 health care staff (37%) remained unvaccinated. In adjusted analyses, remaining unvaccinated was positively associated with younger age (custody staff: age, 18-29 years vs ≥60 years, 75% [95% CI, 73%-76%] vs 45% [95% CI, 42%-48%]; health care staff: 52% [95% CI, 48%-56%] vs 29% [95% CI, 27%-32%]), prior COVID-19 infection (custody staff: 67% [95% CI, 66%-68%] vs 59% [95% CI, 59%-60%]; health care staff: 44% [95% CI, 42%-47%] vs 36% [95% CI, 36%-36%]), residing in a community with relatively low rates of vaccination (custody staff: 75th vs 25th percentile:, 63% [95% CI, 62%-63%] vs 60% [95% CI, 59%-60%]; health care staff: 40% [95% CI, 39%-41%] vs 34% [95% CI, 33%-35%]), and sharing shifts with coworkers who had relatively low rates of vaccination (custody staff: 75th vs 25th percentile, 64% [95% CI, 62%-66%] vs 59% [95% CI, 57%-61%]; health care staff: 38% [95% CI, 36%-41%] vs 35% [95% CI, 31%-39%]). Conclusions and Relevance: This cohort study of California state prison custody and health care staff found that vaccination uptake plateaued at levels that posed ongoing risks of further outbreaks in the prisons and continuing transmission from prisons to surrounding communities. Prison staff decisions to forgo vaccination appear to be multifactorial, and vaccine mandates may be necessary to achieve adequate levels of immunity in this high-risk setting.
Asunto(s)
COVID-19 , Prisiones , Adolescente , Adulto , COVID-19/epidemiología , Vacunas contra la COVID-19/uso terapéutico , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vacunación , Adulto JovenRESUMEN
B ackground: Prisons and jails are high-risk settings for Covid-19 transmission, morbidity, and mortality. We evaluate protection conferred by prior infection and vaccination against the SARS-CoV-2 Omicron variant within the California state prison system. M ethods: We employed a test-negative design to match resident and staff cases during the Omicron wave (December 24, 2021-April 14, 2022) to controls according to a case's test-week as well as demographic, clinical, and carceral characteristics. We estimated protection against infection using conditional logistic regression, with exposure status defined by vaccination, stratified by number of mRNA doses received, and prior infection, stratified by periods before or during Delta variant predominance. R esults: We matched 15,783 resident and 8,539 staff cases to 180,169 resident and 90,409 staff controls. Among cases, 29.7% and 2.2% were infected before or during the emergence of the Delta variant, respectively; 30.6% and 36.3% were vaccinated with two or three doses, respectively. Estimated protection from Omicron infection for two and three doses were 14.9% (95% Confidence Interval [CI], 12.3-19.7%) and 43.2% (42.2-47.4%) for those without known prior infections, 47.8% (95% CI, 46.6-52.8%) and 61.3% (95% CI, 60.7-64.8%) for those infected before the emergence of Delta, and 73.1% (95% CI, 69.8-80.1%) and 86.8% (95% CI, 82.1-92.7) for those infected during the period of Delta predominance. C onclusion: A third mRNA dose provided significant, additional protection over two doses, including among individuals with prior infection. Our findings suggest that vaccination should remain a priority-even in settings with high levels of transmission and prior infection.
RESUMEN
BACKGROUND: Correctional institutions nationwide are seeking to mitigate Covid-19-related risks. OBJECTIVE: To quantify changes to California's prison population since the pandemic began and identify risk factors for Covid-19 infection. DESIGN: We described residents' demographic characteristics, health status, Covid-19 risk scores, room occupancy, and labor participation. We used Cox proportional hazard models to estimate the association between rates of Covid-19 infection and room occupancy and out-of-room labor, respectively. SETTING: California state prisons (March 1-October 10, 2020). PARTICIPANTS: Residents of California state prisons. MEASUREMENTS: Changes in the incarcerated population's size, composition, housing, and activities. For the risk factor analysis, the exposure variables were room type (cells vs dormitories) and labor participation (any room occupant participating in the prior 2 weeks) and the outcome variable was incident Covid-19 case rates. RESULTS: The incarcerated population decreased 19.1% (119,401 to 96,623) during the study period.On October 10, 2020, 11.5% of residents were aged ≥60, 18.3% had high Covid-19 risk scores, 31.0% participated in out-of-room labor, and 14.8% lived in rooms with ≥10 occupants. Nearly 40% of residents with high Covid-19 risk scores lived in dormitories. In 9 prisons with major outbreaks (6,928 rooms; 21,750 residents), dormitory residents had higher infection rates than cell residents (adjusted hazard ratio [AHR], 2.51 95%CI, 2.25-2.80) and residents of rooms with labor participation had higher rates than residents of other rooms (AHR, 1.56; 95%CI, 1.39-1.74). LIMITATIONS: Inability to measure density of residents' living conditions or contact networks among residents and staff. CONCLUSION: Despite reductions in room occupancy and mixing, California prisons still house many medically vulnerable residents in risky settings. Reducing risks further requires a combination of strategies, including rehousing, decarceration, and vaccination. FUNDING SOURCES: Horowitz Family Foundation; National Institute on Drug Abuse; National Science Foundation Graduate Research Fellowship; Open Society Foundations.
RESUMEN
BACKGROUND: Residents of prisons have experienced disproportionate COVID-19-related health harms. To control outbreaks, many prisons in the USA restricted in-person activities, which are now resuming even as viral variants proliferate. This study aims to use mathematical modelling to assess the risks and harms of COVID-19 outbreaks in prisons under a range of policies, including resumption of activities. METHODS: We obtained daily resident-level data for all California state prisons from Jan 1, 2020, to May 15, 2021, describing prison layouts, housing status, sociodemographic and health characteristics, participation in activities, and COVID-19 testing, infection, and vaccination status. We developed a transmission-dynamic stochastic microsimulation parameterised by the California data and published literature. After an initial infection is introduced to a prison, the model evaluates the effect of various policy scenarios on infections and hospitalisations over 200 days. Scenarios vary by vaccine coverage, baseline immunity (0%, 25%, or 50%), resumption of activities, and use of non-pharmaceutical interventions (NPIs) that reduce transmission by 75%. We simulated five prison types that differ by residential layout and demographics, and estimated outcomes with and without repeated infection introductions over the 200 days. FINDINGS: If a viral variant is introduced into a prison that has resumed pre-2020 contact levels, has moderate vaccine coverage (ranging from 36% to 76% among residents, dependent on age, with 40% coverage for staff), and has no baseline immunity, 23-74% of residents are expected to be infected over 200 days. High vaccination coverage (90%) coupled with NPIs reduces cumulative infections to 2-54%. Even in prisons with low room occupancies (ie, no more than two occupants) and low levels of cumulative infections (ie, <10%), hospitalisation risks are substantial when these prisons house medically vulnerable populations. Risks of large outbreaks (>20% of residents infected) are substantially higher if infections are repeatedly introduced. INTERPRETATION: Balancing benefits of resuming activities against risks of outbreaks presents challenging trade-offs. After achieving high vaccine coverage, prisons with mostly one-to-two-person cells that have higher baseline immunity from previous outbreaks can resume in-person activities with low risk of a widespread new outbreak, provided they maintain widespread NPIs, continue testing, and take measures to protect the medically vulnerable. FUNDING: Horowitz Family Foundation, National Institute on Drug Abuse, Centers for Disease Control and Prevention, National Science Foundation, Open Society Foundation, Advanced Micro Devices.
Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Brotes de Enfermedades , Prisiones , SARS-CoV-2/aislamiento & purificación , Adolescente , Adulto , Anciano , COVID-19/prevención & control , COVID-19/transmisión , Vacunas contra la COVID-19/administración & dosificación , California/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Política Organizacional , Prisiones/organización & administración , Medición de Riesgo , Vacunación/estadística & datos numéricos , Adulto JovenRESUMEN
BACKGROUND: Prisons and jails are high-risk settings for COVID-19 transmission, morbidity, and mortality. COVID-19 vaccines may substantially reduce these risks, but evidence is needed of their effectiveness for incarcerated people, who are confined in large, risky congregate settings. METHODS: We conducted a retrospective cohort study to estimate effectiveness of mRNA vaccines, BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna), against confirmed SARS-CoV-2 infections among incarcerated people in California prisons from December 22, 2020 through March 1, 2021. The California Department of Corrections and Rehabilitation provided daily data for all prison residents including demographic, clinical, and carceral characteristics, as well as COVID-19 testing, vaccination status, and outcomes. We estimated vaccine effectiveness using multivariable Cox models with time-varying covariates that adjusted for resident characteristics and infection rates across prisons. FINDINGS: Among 60,707 residents in the cohort, 49% received at least one BNT162b2 or mRNA-1273 dose during the study period. Estimated vaccine effectiveness was 74% (95% confidence interval [CI], 64-82%) from day 14 after first dose until receipt of second dose and 97% (95% CI, 88-99%) from day 14 after second dose. Effectiveness was similar among the subset of residents who were medically vulnerable (74% [95% CI, 62-82%] and 92% [95% CI, 74-98%] from 14 days after first and second doses, respectively), as well as among the subset of residents who received the mRNA-1273 vaccine (71% [95% CI, 58-80%] and 96% [95% CI, 67-99%]). CONCLUSIONS: Consistent with results from randomized trials and observational studies in other populations, mRNA vaccines were highly effective in preventing SARS-CoV-2 infections among incarcerated people. Prioritizing incarcerated people for vaccination, redoubling efforts to boost vaccination and continuing other ongoing mitigation practices are essential in preventing COVID-19 in this disproportionately affected population. FUNDING: Horowitz Family Foundation, National Institute on Drug Abuse, Centers for Disease Control and Prevention, National Science Foundation, Open Society Foundation, Advanced Micro Devices.