Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Exp Bot ; 63(8): 3011-29, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22378944

RESUMEN

Parenchyma cells from tubers of Solanum tuberosum L. convert several externally supplied sugars to starch but the rates vary largely. Conversion of glucose 1-phosphate to starch is exceptionally efficient. In this communication, tuber slices were incubated with either of four solutions containing equimolar [U-¹4C]glucose 1-phosphate, [U-¹4C]sucrose, [U-¹4C]glucose 1-phosphate plus unlabelled equimolar sucrose or [U-¹4C]sucrose plus unlabelled equimolar glucose 1-phosphate. C¹4-incorporation into starch was monitored. In slices from freshly harvested tubers each unlabelled compound strongly enhanced ¹4C incorporation into starch indicating closely interacting paths of starch biosynthesis. However, enhancement disappeared when the tubers were stored. The two paths (and, consequently, the mutual enhancement effect) differ in temperature dependence. At lower temperatures, the glucose 1-phosphate-dependent path is functional, reaching maximal activity at approximately 20 °C but the flux of the sucrose-dependent route strongly increases above 20 °C. Results are confirmed by in vitro experiments using [U-¹4C]glucose 1-phosphate or adenosine-[U-¹4C]glucose and by quantitative zymograms of starch synthase or phosphorylase activity. In mutants almost completely lacking the plastidial phosphorylase isozyme(s), the glucose 1-phosphate-dependent path is largely impeded. Irrespective of the size of the granules, glucose 1-phosphate-dependent incorporation per granule surface area is essentially equal. Furthermore, within the granules no preference of distinct glucosyl acceptor sites was detectable. Thus, the path is integrated into the entire granule biosynthesis. In vitro C¹4C-incorporation into starch granules mediated by the recombinant plastidial phosphorylase isozyme clearly differed from the in situ results. Taken together, the data clearly demonstrate that two closely but flexibly interacting general paths of starch biosynthesis are functional in potato tuber cells.


Asunto(s)
Ciclo del Carbono , Solanum tuberosum/citología , Solanum tuberosum/metabolismo , Almidón/metabolismo , Ciclo del Carbono/efectos de los fármacos , Isótopos de Carbono , Mezclas Complejas , Glucanos/metabolismo , Glucofosfatos/farmacología , Isoenzimas/metabolismo , Tubérculos de la Planta/citología , Tubérculos de la Planta/efectos de los fármacos , Tubérculos de la Planta/fisiología , Tubérculos de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Plastidios/efectos de los fármacos , Plastidios/enzimología , Polisacáridos/metabolismo , Solanum tuberosum/genética , Solanum tuberosum/fisiología , Solubilidad/efectos de los fármacos , Almidón/ultraestructura , Almidón Fosforilasa/metabolismo , Almidón Sintasa/metabolismo , Sacarosa/farmacología , Temperatura
2.
Methods Mol Biol ; 1778: 321-327, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29761449

RESUMEN

Bridging metabolomics with plant phenotypic responses is challenging. Multivariate analyses account for the existing dependencies among metabolites, and regression models in particular capture such dependencies in search for association with a given trait. However, special care should be undertaken with metabolomics data. Here we propose a modeling workflow that considers all caveats imposed by such large data sets.


Asunto(s)
Metabolómica/métodos , Plantas/química , Plantas/metabolismo , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA