Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Appetite ; 200: 107540, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38852785

RESUMEN

Chronic pain and obesity frequently occur together. An ideal therapy would alleviate pain without weight gain, and most optimally, could promote weight loss. The neuropeptide neurotensin (Nts) has been separately implicated in reducing weight and pain but could it be a common actionable target for both pain and obesity? Here we review the current knowledge of Nts signaling via its receptors in modulating body weight and pain processing. Evaluating the mechanism by which Nts impacts ingestive behavior, body weight, and analgesia has potential to identify common physiologic mechanisms underlying weight and pain comorbidities, and whether Nts may be common actionable targets for both.

2.
Diabetologia ; 64(11): 2575-2588, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34430981

RESUMEN

AIMS/HYPOTHESIS: Hypothalamic inflammation and sympathetic nervous system hyperactivity are hallmark features of the metabolic syndrome and type 2 diabetes. Hypothalamic inflammation may aggravate metabolic and immunological pathologies due to extensive sympathetic activation of peripheral tissues. Loss of somatostatinergic (SST) neurons may contribute to enhanced hypothalamic inflammation. METHODS: The present data show that leptin receptor-deficient (db/db) mice exhibit reduced hypothalamic SST neurons, particularly in the periventricular nucleus. We model this finding, using adeno-associated virus delivery of diphtheria toxin subunit A (DTA) driven by an SST-cre system to deplete these neurons in Sstcre/gfp mice (SST-DTA). RESULTS: SST-DTA mice exhibit enhanced hypothalamic c-Fos expression and brain inflammation as demonstrated by microglial and astrocytic activation. Bone marrow from SST-DTA mice undergoes skewed haematopoiesis, generating excess granulocyte-monocyte progenitors and increased proinflammatory (C-C chemokine receptor type 2; CCR2hi) monocytes. SST-DTA mice exhibited a 'diabetic retinopathy-like' phenotype: reduced visual function by optokinetic response (0.4 vs 0.25 cycles/degree; SST-DTA vs control mice); delayed electroretinogram oscillatory potentials; and increased percentages of retinal monocytes. Finally, mesenteric visceral adipose tissue from SST-DTA mice was resistant to catecholamine-induced lipolysis, displaying 50% reduction in isoprenaline (isoproterenol)-induced lipolysis compared with control littermates. Importantly, hyperglycaemia was not observed in SST-DTA mice. CONCLUSIONS/INTERPRETATION: The isolated reduction in hypothalamic SST neurons was able to recapitulate several hallmark features of type 2 diabetes in disease-relevant tissues.


Asunto(s)
Tejido Adiposo/metabolismo , Médula Ósea/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Retina/metabolismo , Somatostatina/metabolismo , Animales , Encéfalo/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico , Toxina Diftérica/toxicidad , Electrorretinografía , Citometría de Flujo , Inmunohistoquímica , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena en Tiempo Real de la Polimerasa
3.
J Cell Biochem ; 120(3): 4398-4408, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30269370

RESUMEN

Leptin, a hormone primarily produced by adipocytes, contributes to the regulation of bone health by modulating bone density, growth and adiposity. Upon leptin binding, multiple sites of the long form of the leptin receptor (LepRb) are phosphorylated to trigger activation of downstream signaling pathways. To address the role of LepRb-signaling pathways in bone health, we compared the effects of three LepRb mutations on bone density, adiposity, and growth in male and female mice. The ∆65 mutation, which lacks the known tyrosine phosphorylation sites, caused obesity and the most dramatic bone phenotype marked by excessive bone adiposity, osteoporosis, and decreased growth, consistent with the phenotype of db/db and ob/ob mice that fully lack leptin receptor signaling. Mutation of LepRb Tyr 1138 , which results in an inability to recruit and phosphorylate signal transducer and activator of transcription 3, also caused obesity, but bone loss and adiposity were more dominant in male mice and no growth defect was observed. In contrast, mutation of LepRb Tyr 985 , which blocks SHP2/SOCS3 recruitment to LepRb and contributes to leptin hypersensitivity, promoted increased femur bone density only in male mice, while marrow adiposity and bone growth were not affected. Additional analyses of vertebral trabecular bone volume indicate that only the Tyr 1138 mutant mice exhibit bone loss in vertebrae. Together, our findings suggest that the phosphorylation status of specific sites of the LepRb contribute to the sex- and location-dependent bone responses to leptin. Unraveling the mechanisms by which leptin responses are sex- and location-dependent can contribute to the development of uniquely targeted osteoporosis therapies.


Asunto(s)
Adiposidad/fisiología , Densidad Ósea/fisiología , Leptina/metabolismo , Receptores de Leptina/metabolismo , Caracteres Sexuales , Transducción de Señal/fisiología , Adipocitos Blancos/metabolismo , Animales , Hueso Esponjoso/metabolismo , Femenino , Fémur/metabolismo , Leptina/genética , Masculino , Ratones , Ratones Mutantes , Mutación , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Receptores de Leptina/genética , Columna Vertebral/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo
4.
Biochim Biophys Acta Mol Basis Dis ; 1864(3): 900-916, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29288794

RESUMEN

The peptide neurotensin (Nts) was discovered within the brain over 40years ago and is implicated in regulating analgesia, body temperature, blood pressure, locomotor activity and feeding. Recent evidence suggests, however, that these disparate processes may be controlled via specific populations of Nts neurons and receptors. The neuronal mediators of Nts anorectic action are now beginning to be understood, and, as such, modulating specific Nts pathways might be useful in treating feeding and body weight disorders. This review considers mechanisms through which Nts normally regulates feeding and how disruptions in Nts signaling might contribute to the disordered feeding and body weight of schizophrenia, Parkinson's disease, anorexia nervosa, and obesity. Defining how Nts specifically mediates feeding vs. other aspects of physiology will inform the design of therapeutics that modify body weight without disrupting other important Nts-mediated physiology.


Asunto(s)
Regulación del Apetito , Encéfalo/metabolismo , Trastornos de Alimentación y de la Ingestión de Alimentos/genética , Neurotensina/fisiología , Obesidad/genética , Sobrepeso/genética , Animales , Regulación del Apetito/genética , Peso Corporal/genética , Conducta Alimentaria/fisiología , Trastornos de Alimentación y de la Ingestión de Alimentos/metabolismo , Humanos , Neurotensina/genética , Neurotensina/metabolismo , Obesidad/metabolismo , Sobrepeso/metabolismo
5.
J Neurosci ; 34(34): 11405-15, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25143620

RESUMEN

The adipocyte-derived hormone leptin modulates neural systems appropriately for the status of body energy stores. Leptin inhibits lateral hypothalamic area (LHA) orexin (OX; also known as hypocretin)-producing neurons, which control feeding, activity, and energy expenditure, among other parameters. Our previous results suggest that GABAergic LHA leptin receptor (LepRb)-containing and neurotensin (Nts)-containing (LepRb(Nts)) neurons lie in close apposition with OX neurons and control Ox mRNA expression. Here, we show that, similar to leptin, activation of LHA Nts neurons by the excitatory hM3Dq DREADD (designer receptor exclusively activated by designer drugs) hyperpolarizes membrane potential and suppresses action potential firing in OX neurons in mouse hypothalamic slices. Furthermore, ablation of LepRb from Nts neurons abrogated the leptin-mediated inhibition, demonstrating that LepRb(Nts) neurons mediate the inhibition of OX neurons by leptin. Leptin did not significantly enhance GABAA-mediated inhibitory synaptic transmission, and GABA receptor antagonists did not block leptin-mediated inhibition of OX neuron activity. Rather, leptin diminished the frequency of spontaneous EPSCs onto OX neurons. Furthermore, leptin indirectly activated an ATP-sensitive potassium (K(ATP)) channel in OX neurons, which was required for the hyperpolarization of OX neurons by leptin. Although Nts did not alter OX activity, galanin, which is coexpressed in LepRb(Nts) neurons, inhibited OX neurons, whereas the galanin receptor antagonist M40 (galanin-(1-12)-Pro3-(Ala-Leu)2-Ala amide) prevented the leptin-induced hyperpolarization of OX cells. These findings demonstrate that leptin indirectly inhibits OX neurons by acting on LHA LepRb(Nts) neurons to mediate two distinct GABA-independent mechanisms of inhibition: the presynaptic inhibition of excitatory neurotransmission and the opening of K(ATP) channels.


Asunto(s)
Área Hipotalámica Lateral/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Leptina/farmacología , Inhibición Neural/efectos de los fármacos , Neuronas/efectos de los fármacos , Neuropéptidos/metabolismo , Neurotensina/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Potenciales de Acción/efectos de los fármacos , Animales , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Femenino , Antagonistas del GABA/farmacología , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Ratones , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiología , Inhibición Neural/fisiología , Neuropéptidos/genética , Neurotensina/genética , Orexinas , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Leptina/deficiencia
6.
Gastroenterology ; 146(2): 497-507.e1, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24211490

RESUMEN

BACKGROUND & AIMS: In the enteric nervous system, neurotransmitters initiate changes in calcium (Ca(2+) responses) in glia, but it is not clear how this process affects intestinal function. We investigated whether Ca(2+)-mediated responses in enteric glia are required to maintain gastrointestinal function. METHODS: We used in situ Ca(2+) imaging to monitor glial Ca(2+) responses, which were manipulated with pharmacologic agents or via glia-specific disruption of the gene encoding connexin-43 (Cx43) (hGFAP::CreER(T2+/-)/Cx43(f/f) mice). Gastrointestinal function was assessed based on pellet output, total gut transit, colonic bead expulsion, and muscle tension recordings. Proteins were localized and quantified by immunohistochemistry, immunoblot, and reverse transcription polymerase chain reaction analyses. RESULTS: Ca(2+) responses in enteric glia of mice were mediated by Cx43 hemichannels. Cx43 immunoreactivity was confined to enteric glia within the myenteric plexus of the mouse colon; the Cx43 inhibitors carbenoxolone and 43Gap26 inhibited the ability of enteric glia to propagate Ca(2+) responses. In vivo attenuation of Ca(2+) responses in the enteric glial network slowed gut transit overall and delayed colonic transit--these changes are also observed during normal aging. Altered motility with increasing age was associated with reduced glial Ca(2+)-mediated responses and changes in glial expression of Cx43 messenger RNA and protein. CONCLUSIONS: Ca(2+)-mediated responses in enteric glia regulate gastrointestinal function in mice. Altered intercellular signaling between enteric glia and neurons might contribute to motility disorders.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Colon/fisiología , Conexina 43/metabolismo , Sistema Nervioso Entérico/fisiología , Tránsito Gastrointestinal/fisiología , Neuroglía/metabolismo , Animales , Biomarcadores/metabolismo , Western Blotting , Conexina 43/antagonistas & inhibidores , Conexina 43/deficiencia , Conexina 43/genética , Femenino , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
J Neurosci ; 33(18): 7618-26, 2013 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-23637156

RESUMEN

The lateral hypothalamus (LH) sends a dense glutamatergic and peptidergic projection to dopamine neurons in the ventral tegmental area (VTA), a cell group known to promote reinforcement and aspects of reward. The role of the LH to VTA projection in reward-seeking behavior can be informed by using optogenetic techniques to dissociate the actions of LH neurons from those of other descending forebrain inputs to the VTA. In the present study, we identify the effect of neurotensin (NT), one of the most abundant peptides in the LH to VTA projection, on excitatory synaptic transmission in the VTA and reward-seeking behavior. Mice displayed robust intracranial self-stimulation of LH to VTA fibers, an operant behavior mediated by NT 1 receptors (Nts1) and NMDA receptors. Whole-cell patch-clamp recordings of VTA dopamine neurons demonstrated that NT (10 nm) potentiated NMDA-mediated EPSCs via Nts1. Results suggest that NT release from the LH into the VTA activates Nts1, thereby potentiating NMDA-mediated EPSCs and promoting reward. The striking behavioral and electrophysiological effects of NT and glutamate highlight the LH to VTA pathway as an important component of reward.


Asunto(s)
Condicionamiento Operante/fisiología , Ácido Glutámico/metabolismo , Hipotálamo/fisiología , Neurotensina/metabolismo , Recompensa , Área Tegmental Ventral/fisiología , Animales , Proteínas Bacterianas/genética , Channelrhodopsins , Condicionamiento Operante/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Hipotálamo/efectos de los fármacos , Técnicas In Vitro , Luz , Proteínas Luminiscentes/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación/genética , Vías Nerviosas/fisiología , Neurotensina/farmacología , Pirazoles/farmacología , Quinolinas/farmacología , Quinoxalinas/farmacología , Receptores de Neurotensina/antagonistas & inhibidores , Receptores de Neurotensina/deficiencia , Autoestimulación , Transducción de Señal/efectos de los fármacos , Tirosina 3-Monooxigenasa/metabolismo , Valina/análogos & derivados , Valina/farmacología , Área Tegmental Ventral/efectos de los fármacos
8.
Cell Rep ; 42(7): 112815, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37459234

RESUMEN

The hypothalamus plays a crucial role in the modulation of social behavior by encoding internal states. The hypothalamic hypocretin/orexin neurons, initially identified as regulators of sleep and appetite, are important for emotional and motivated behaviors. However, their role in social behavior remains unclear. Using fiber photometry and behavioral analysis, we show here that hypocretin neurons differentially encode social discrimination based on the nature of social encounters. The optogenetic inhibition of hypocretin neuron activity or blocking of hcrt-1 receptors reduces the amount of time mice are engaged in social interaction in males but not in females. Reduced hcrt-1 receptor signaling during social interaction is associated with altered activity in the insular cortex and ventral tegmental area in males. Our data implicating hypocretin neurons as sexually dimorphic regulators within social networks have significant implications for the treatment of neuropsychiatric diseases with social dysfunction, particularly considering varying prevalence among sexes.


Asunto(s)
Neuropéptidos , Masculino , Femenino , Ratones , Animales , Orexinas , Neuropéptidos/farmacología , Interacción Social , Neuronas/fisiología , Discriminación Social
9.
J Neurosci ; 31(31): 11376-86, 2011 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-21813697

RESUMEN

In response to illness, animals subvert normal homeostasis and divert their energy utilization to fight infection. An important and unexplored feature of this response is the suppression of physical activity and foraging behavior in the setting of negative energy balance. Inflammatory signaling in the hypothalamus mediates the febrile and anorectic responses to disease, but the mechanism by which locomotor activity (LMA) is suppressed has not been described. Lateral hypothalamic orexin (Ox) neurons link energy status with LMA, and deficiencies in Ox signaling lead to hypoactivity and hypophagia. In the present work, we examine the effect of endotoxin-induced inflammation on Ox neuron biology and LMA in rats. Our results demonstrate a vital role for diminished Ox signaling in mediating inflammation-induced lethargy. This work defines a specific population of inflammation-sensitive, arousal-associated Ox neurons and identifies a proximal neural target for inflammatory signaling to Ox neurons, while eliminating several others.


Asunto(s)
Inflamación/complicaciones , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Letargia/tratamiento farmacológico , Letargia/etiología , Neuronas/metabolismo , Neuropéptidos/metabolismo , Análisis de Varianza , Animales , Adaptación a la Oscuridad/efectos de los fármacos , Modelos Animales de Enfermedad , Vías de Administración de Medicamentos , Ensayo de Inmunoadsorción Enzimática/métodos , Privación de Alimentos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas I-kappa B/genética , Proteínas I-kappa B/metabolismo , Inflamación/inducido químicamente , Inyecciones Intraventriculares/métodos , Interleucina-1beta/farmacología , Interleucina-6/sangre , Péptidos y Proteínas de Señalización Intracelular/farmacología , Ventrículos Laterales/efectos de los fármacos , Ventrículos Laterales/fisiología , Letargia/patología , Masculino , Hormonas Estimuladoras de los Melanocitos/farmacología , Ratones , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Inhibidor NF-kappaB alfa , Trasplante de Neoplasias/métodos , Neuronas/efectos de los fármacos , Neuropéptidos/farmacología , Neurotensina/genética , Orexinas , Fotoperiodo , Polisacáridos/efectos adversos , Proteínas Proto-Oncogénicas c-fos/metabolismo , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas F344 , Ratas Sprague-Dawley , Receptores de Corticotropina/antagonistas & inhibidores , Receptores de Interleucina-11/genética , Receptores de Interleucina-11/metabolismo , Receptores OSM-LIF/genética , Receptores OSM-LIF/metabolismo
10.
Physiol Behav ; 247: 113707, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35063424

RESUMEN

The lateral hypothalamic area (LHA) is essential for ingestive behavior but has primarily been studied in modulating feeding, with comparatively scant attention on drinking. This is partly because most LHA neurons simultaneously promote feeding and drinking, suggesting that ingestive behaviors track together. A notable exception are LHA neurons expressing neurotensin (LHANts neurons): activating these neurons promotes water intake but modestly restrains feeding. Here we investigated the connectivity of LHANts neurons, their necessity and sufficiency for drinking and feeding, and how timing and resource availability influence their modulation of these behaviors. LHANts neurons project broadly throughout the brain, including to the lateral preoptic area (LPO), a brain region implicated in modulating drinking behavior. LHANts neurons also receive inputs from brain regions implicated in sensing hydration and energy status. While activation of LHANts neurons is not required to maintain homeostatic water or food intake, it selectively promotes drinking during the light cycle, when ingestive drive is low. Activating LHANts neurons during this period also increases willingness to work for water or palatable fluids, regardless of their caloric content. By contrast, LHANts neuronal activation during the dark cycle does not promote drinking, but suppresses feeding during this time. Finally, we demonstrate that the activation of the LHANts â†’ LPO projection is sufficient to mediate drinking behavior, but does not suppress feeding as observed after generally activating all LHANts neurons. Overall, our work suggests how and when LHANts neurons oppositely modulate ingestive behaviors.


Asunto(s)
Área Hipotalámica Lateral , Neurotensina , Alimentos , Área Hipotalámica Lateral/metabolismo , Neuronas/metabolismo , Neurotensina/metabolismo , Agua
11.
Front Neurosci ; 16: 874316, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36213756

RESUMEN

Central neurotensin signaling via neurotensin receptor-1 (NtsR1) modulates various aspects of physiology, including suppressing feeding and promoting locomotor activity that can support weight loss. However, it remains unclear when and where NtsR1 expression contributes to control of body weight vs. other effects. We previously showed that activating ventral tegmental area (VTA) dopamine (DA) neurons that express NtsR1 promotes weight loss. We therefore hypothesized that deleting NtsR1 from DA neurons would promote weight gain by increasing food intake and decreasing physical activity. In contrast, developmental deletion of NtsR1 from DA neurons (by crossing DATCre mice with NtsR1flox/flox mice) had no impact on the feeding or body weight of mice fed a chow diet, though it augmented locomotor activity. Developmental deletion of NtsR1 from DA neurons protected mice from diet-induced obesity, but not via altering feeding, physical activity, or energy expenditure. Given that NtsR1 may exert distinct roles within development vs. adulthood, we then examined the impact of adult-onset deletion of NtsR1 from VTA DA neurons. We injected adult NtsR1flox/flox mice in the VTA with adeno associated virus to Cre-dependently delete NtsR1 in the VTA (VTAR1Null mice) and compared them to mice with intact NtsR1 (Controls). Again, in contrast to our hypothesis, VTAR1Null mice gained less weight than Controls while on normal chow or high fat diets. Moreover, VTAR1Null mice exhibited blunted feeding after fasting, suggesting a role for NtsR1 in adult VTA DA neurons in coordinating energy need and intake. Altogether, these data suggest that intact expression of NtsR1 in DA neurons is necessary for appropriate regulation of body weight, but a lack of NtsR1 in the developing vs. adult DA system protects from weight gain via different mechanisms. These findings emphasize the need for temporal and site-specific resolution to fully understand the role of NtsR1 within the brain.

12.
J Neurosci ; 30(34): 11278-87, 2010 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-20739548

RESUMEN

Leptin, the adipose-derived hormonal signal of body energy stores, acts via the leptin receptor (LepRb) on neurons in multiple brain regions. We previously identified LepRb neurons in the lateral hypothalamic area (LHA), which are distinct from neighboring leptin-regulated melanin-concentrating hormone (MCH)- or orexin (OX)-expressing cells. Neither the direct synaptic targets of LHA LepRb neurons nor their potential role in the regulation of other LHA neurons has been determined, however. We thus generated several adenoviral and transgenic systems in which cre recombinase promotes the expression of the tracer, WGA (wheat germ agglutinin), and used these in combination with LepRb(cre) mice to determine the neuronal targets of LHA LepRb neurons. This analysis revealed that, although some LHA LepRb neurons project to dopamine neurons in the ventral tegmental area, LHA LepRb neurons also densely innervate the LHA where they directly synapse with OX, but not MCH, neurons. Indeed, few other LepRb neurons in the brain project to the OX-containing region of the mouse LHA, and direct leptin action via LHA LepRb neurons regulates gene expression in OX neurons. These findings thus reveal a major role for LHA leptin action in the modulation of OX neurons, suggesting the importance of LHA LepRb neurons in the regulation of OX signaling that is crucial to leptin action and metabolic control.


Asunto(s)
Área Hipotalámica Lateral/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Receptores de Leptina/fisiología , Animales , Femenino , Leptina/biosíntesis , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Ratones Transgénicos , Neuronas/fisiología , Neuropéptidos/biosíntesis , Orexinas , Receptores de Leptina/biosíntesis
13.
J Neurosci ; 30(16): 5713-23, 2010 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-20410123

RESUMEN

Leptin acts via its receptor (LepRb) to regulate neural circuits in concert with body energy stores. In addition to acting on a number of hypothalamic structures, leptin modulates the mesolimbic dopamine (DA) system. To determine the sites at which LepRb neurons might directly influence the mesolimbic DA system, we examined the distribution of LepRb neurons and their projections within mesolimbic brain regions. Although the ventral tegmental area (VTA) contains DA LepRb neurons, LepRb neurons are absent from the amygdala and striatum. Also, LepRb-EGFPf mice (which label projections from LepRb neurons throughout the brain) reveal that few LepRb neurons project to the nucleus accumbens (NAc). In contrast, the central amygdala (CeA) and its rostral extension receive copious projections from LepRb neurons. Indeed, LepRb-specific anterograde tracing demonstrates (and retrograde tracing confirms) that VTA LepRb neurons project to the extended CeA (extCeA) but not the NAc. Consistently, leptin promotes cAMP response element-binding protein phosphorylation in the extCeA, but not NAc, of leptin-deficient animals. Furthermore, transgenic mice expressing the trans-synaptic tracer wheat germ agglutinin in LepRb neurons reveal the innervation of CeA cocaine- and amphetamine-regulated transcript (CART) neurons by LepRb neurons, and leptin suppresses the increased CeA CART expression of leptin-deficient animals. Thus, LepRb VTA neurons represent a subclass of VTA DA neurons that specifically innervates and controls the extCeA; we hypothesize that these neurons primarily modulate CeA-directed behaviors.


Asunto(s)
Anfetamina , Amígdala del Cerebelo/fisiología , Cocaína , Neuronas/fisiología , Receptores de Leptina/fisiología , Área Tegmental Ventral/fisiología , Anfetamina/análisis , Amígdala del Cerebelo/química , Animales , Cocaína/análisis , Ratones , Ratones Obesos , Ratones Transgénicos , Vías Nerviosas/química , Vías Nerviosas/fisiología , Neuronas/química , Neuronas/clasificación , Receptores de Leptina/análisis , Transcripción Genética/fisiología , Área Tegmental Ventral/química
14.
Cells Tissues Organs ; 194(2-4): 268-73, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21555864

RESUMEN

The collagen 2.3 and 3.6 promoters have been used to drive Cre expression for generation of conditional transgenic mutant mice. Within the bone, Col3.6 is expressed by mesenchymal precursor cells and their downstream progeny, while Col2.3 is more osteoblast specific. Our generation of transgenic mice with Col2.3-Cre- and Col3.6-Cre-driven deletion of the long-form leptin receptor (ObRb) necessitated a thorough analysis of the nonspecific expression of these promoters in the central nervous system. Both Col2.3 and Col3.6 were capable of forcing loxP recombination in the brain as demonstrated by EGFP expression in ROSA reporter mice. Expression of Col2.3 was limited to the central base of the brain near the third ventricle. In contrast, robust expression of Col3.6 was noted throughout the brain, centering near the distal third ventricle, third ventricle, and aqueduct. We subsequently analyzed the colocalization of leptin-responsive P-Stat3 neurons with Col3.6-expressing neurons. Approximately 5-10% colocalization was noted in leptin-responsive brain areas such as the arcuate nucleus, dorsal medial hypothalamus, ventral premammillary nucleus, and lateral hypothalamus. Injection of 3.6(Cre+F/F) ObRb knockout mice with leptin confirmed the presence of an intact P-Stat3 response that was dampened in the lateral hypothalamus (p < 0.050). This test was done to explore the contribution of neural leptin signaling to the bone phenotype of the 3.6(Cre+F/F) mice. Our analysis indicates that neural ObRb deletion, while present, is likely not the sole driver of femoral changes through traditional sympathetic circuits.


Asunto(s)
Encéfalo/metabolismo , Colágeno Tipo II/genética , Colágeno Tipo VI/genética , Regulación de la Expresión Génica , Leptina/metabolismo , Regiones Promotoras Genéticas/genética , Transducción de Señal , Envejecimiento/efectos de los fármacos , Envejecimiento/metabolismo , Animales , Encéfalo/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/metabolismo , Integrasas/metabolismo , Leptina/administración & dosificación , Leptina/farmacología , Ratones , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Transporte de Proteínas/efectos de los fármacos , Recombinación Genética/efectos de los fármacos , Recombinación Genética/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos
15.
Endocrinology ; 162(5)2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33599716

RESUMEN

The small peptide neurotensin (Nts) is implicated in myriad processes including analgesia, thermoregulation, reward, arousal, blood pressure, and modulation of feeding and body weight. Alterations in Nts have recently been described in individuals with obesity or eating disorders, suggesting that disrupted Nts signaling may contribute to body weight disturbance. Curiously, Nts mediates seemingly opposing regulation of body weight via different tissues. Peripherally acting Nts promotes fat absorption and weight gain, whereas central Nts signaling suppresses feeding and weight gain. Thus, because Nts is pleiotropic, a location-based approach must be used to understand its contributions to disordered body weight and whether the Nts system might be leveraged to improve metabolic health. Here we review the role of Nts signaling in the brain to understand the sites, receptors, and mechanisms by which Nts can promote behaviors that modify body weight. New techniques permitting site-specific modulation of Nts and Nts receptor-expressing cells suggest that, even in the brain, not all Nts circuitry exerts the same function. Intriguingly, there may be dedicated brain regions and circuits via which Nts specifically suppresses feeding behavior and weight gain vs other Nts-attributed physiology. Defining the central mechanisms by which Nts signaling modifies body weight may suggest strategies to correct disrupted energy balance, as needed to address overweight, obesity, and eating disorders.


Asunto(s)
Peso Corporal , Encéfalo/metabolismo , Neurotensina/metabolismo , Obesidad/metabolismo , Obesidad/psicología , Animales , Conducta Alimentaria , Humanos , Neurotensina/genética , Obesidad/genética , Obesidad/fisiopatología , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo
16.
Endocrinology ; 162(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34190328

RESUMEN

Neurotensin (NT) is an anorexic gut hormone and neuropeptide that increases in circulation following bariatric surgery in humans and rodents. We sought to determine the contribution of NT to the metabolic efficacy of vertical sleeve gastrectomy (VSG). To explore a potential mechanistic role of NT in VSG, we performed sham or VSG surgeries in diet-induced obese NT receptor 1 (NTSR1) wild-type and knockout (ko) mice and compared their weight and fat mass loss, glucose tolerance, food intake, and food preference after surgery. NTSR1 ko mice had reduced initial anorexia and body fat loss. Additionally, NTSR1 ko mice had an attenuated reduction in fat preference following VSG. Results from this study suggest that NTSR1 signaling contributes to the potent effect of VSG to initially reduce food intake following VSG surgeries and potentially also on the effects on macronutrient selection induced by VSG. However, maintenance of long-term weight loss after VSG requires signals in addition to NT.


Asunto(s)
Anorexia/etiología , Trastorno de la Ingesta Alimentaria Evitativa/Restrictiva , Gastrectomía/efectos adversos , Complicaciones Posoperatorias/genética , Receptores de Neurotensina/genética , Animales , Anorexia/genética , Grasas de la Dieta , Gastrectomía/métodos , Masculino , Ratones , Ratones Noqueados , Trastornos Fóbicos/etiología , Trastornos Fóbicos/genética , Complicaciones Posoperatorias/psicología
17.
Elife ; 102021 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-34042586

RESUMEN

Understanding how neuronal circuits control nociceptive processing will advance the search for novel analgesics. We use functional imaging to demonstrate that lateral hypothalamic parvalbumin-positive (LHPV) glutamatergic neurons respond to acute thermal stimuli and a persistent inflammatory irritant. Moreover, their chemogenetic modulation alters both pain-related behavioral adaptations and the unpleasantness of a noxious stimulus. In two models of persistent pain, optogenetic activation of LHPV neurons or their ventrolateral periaqueductal gray area (vlPAG) axonal projections attenuates nociception, and neuroanatomical tracing reveals that LHPV neurons preferentially target glutamatergic over GABAergic neurons in the vlPAG. By contrast, LHPV projections to the lateral habenula regulate aversion but not nociception. Finally, we find that LHPV activation evokes additive to synergistic antinociceptive interactions with morphine and restores morphine antinociception following the development of morphine tolerance. Our findings identify LHPV neurons as a lateral hypothalamic cell type involved in nociception and demonstrate their potential as a target for analgesia.


Asunto(s)
Conducta Animal , Área Hipotalámica Lateral/fisiopatología , Nocicepción , Dolor/fisiopatología , Dolor/psicología , Analgésicos Opioides/uso terapéutico , Animales , Animales Modificados Genéticamente , Conducta Animal/efectos de los fármacos , Señalización del Calcio , Modelos Animales de Enfermedad , Tolerancia a Medicamentos , Femenino , Neuronas GABAérgicas/metabolismo , Ácido Glutámico/metabolismo , Área Hipotalámica Lateral/efectos de los fármacos , Área Hipotalámica Lateral/metabolismo , Masculino , Ratones Endogámicos C57BL , Microscopía Fluorescente , Morfina/farmacología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología , Técnicas de Trazados de Vías Neuroanatómicas , Nocicepción/efectos de los fármacos , Optogenética , Dolor/metabolismo , Dolor/prevención & control , Parvalbúminas/genética , Parvalbúminas/metabolismo
18.
Neuropharmacology ; 195: 108639, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34116109

RESUMEN

Dopamine (DA) neurons in the ventral tegmental area (VTA) modulate physical activity and feeding behaviors that are disrupted in obesity. Yet, the heterogeneity of VTA DA neurons has hindered determination of which ones might be leveraged to support weight loss. We hypothesized that increased activity in the subset of VTA DA neurons expressing neurotensin receptor-1 (NtsR1) might promote weight loss behaviors. To test this, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to activate VTA NtsR1 neurons in normal weight and diet-induced obese mice. Acute activation of VTA NtsR1 neurons (24hr) significantly decreased body weight in normal weight and obese mice by reducing food intake and increasing physical activity. Moreover, daily activation of VTA NtsR1 neurons in obese mice sustained weight loss over 7 days. Activating VTA NtsR1 neurons also suppressed how much mice worked to obtain sucrose rewards, even when there was high motivation to consume. However, VTA NtsR1 neural activation was not reinforcing, nor did it invoke liabilities associated with whole-body NtsR1 agonism such as anxiety, vasodepressor response or hypothermia. Activating VTA NtsR1 neurons therefore promotes dual behaviors that support weight loss without causing adverse effects, and is worth further exploration for managing obesity.


Asunto(s)
Neuronas Dopaminérgicas/metabolismo , Receptores de Neurotensina/metabolismo , Área Tegmental Ventral/metabolismo , Pérdida de Peso/fisiología , Animales , Clozapina/análogos & derivados , Clozapina/farmacología , Neuronas Dopaminérgicas/efectos de los fármacos , Ratones , Obesidad/metabolismo , Recompensa , Área Tegmental Ventral/efectos de los fármacos , Pérdida de Peso/efectos de los fármacos
19.
J Neurochem ; 114(3): 666-74, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20412389

RESUMEN

Adipocytes produce the hormone, leptin, in proportion to fat mass to signal the status of body energy stores to the central nervous system, thereby modulating food intake and energy homeostasis. In addition to controlling satiety, leptin suppresses the reward value of food, which is controlled by the mesolimbic dopamine (DA) system. Previous results from leptin-deficient ob/ob animals suggest that chronic leptin deficiency decreases DA content in the mesolimbic DA system, thereby decreasing the response to amphetamine (AMPH). The extent to which these alterations in the mesolimbic DA system of ob/ob animals may mirror the leptin response of normal animals has remained unclear, however. We therefore examined the potential short-term modulation of the mesolimbic DA system by leptin in normal animals. We show that 4 h of systemic leptin treatment enhances AMPH-stimulated DA efflux in the nucleus accumbens (NAc) of Sprague-Dawley rats. While acute leptin treatment increased NAc tyrosine hydroxylase activity, total tyrosine hydroxylase and DA content were unchanged at this early time point. Leptin also increased NAc DA transporter activity in the absence of changes in cell surface or total DA transporter. Thus, leptin modulates the mesolimbic DA system via multiple acute mechanisms, and increases AMPH-mediated DA efflux in normal animals.


Asunto(s)
Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina/biosíntesis , Leptina/fisiología , Neuronas/metabolismo , Núcleo Accumbens/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Anfetamina/agonistas , Animales , Apetito/fisiología , Regulación del Apetito/fisiología , Inhibidores de Captación de Dopamina/agonistas , Masculino , Núcleo Accumbens/enzimología , Ratas , Ratas Sprague-Dawley , Recompensa
20.
Physiol Behav ; 223: 112986, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492498

RESUMEN

Understanding how the brain coordinates energy status with the motivation to eat is crucial to identify strategies to improve disordered body weight. The ventral tegmental area (VTA), known as the core of the mesolimbic system, is of particular interest in this regard because it controls the motivation to consume palatable, calorie-dense foods and to engage in volitional activity. The VTA is largely composed of dopamine (DA) neurons, but modulating these DA neurons has been alternately linked with promoting and suppressing feeding, suggesting heterogeneity in their function. Subsets of VTA DA neurons have recently been described based on their anatomical distribution, electrophysiological features, connectivity and molecular expression, but to date there are no signatures to categorize how DA neurons control feeding. Assessing the neuropeptide receptors expressed by VTA DA neurons may be useful in this regard, as many neuropeptides mediate anorexic or orexigenic responses. In particular, the lateral hypothalamic area (LHA) releases a wide variety of feeding-modulating neuropeptides to the VTA. Since VTA neurons intercept LHA neuropeptides known to either evoke or suppress feeding, expression of the cognate neuropeptide receptors within the VTA may point to VTA DA neuronal mechanisms to promote or suppress feeding, respectively. Here we review the role of the VTA in energy balance and the LHA neuropeptide signaling systems that act in the VTA, whose receptors might be used to classify how VTA DA neurons contribute to energy balance.


Asunto(s)
Área Hipotalámica Lateral , Neuropéptidos , Neuronas Dopaminérgicas , Metabolismo Energético , Área Hipotalámica Lateral/metabolismo , Neuropéptidos/metabolismo , Área Tegmental Ventral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA