Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS One ; 16(12): e0260009, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34855792

RESUMEN

BACKGROUND: Air pollution is one of the major environmental challenges cities worldwide face today. Planning healthy environments for all future populations, whilst considering the ongoing demand for urbanisation and provisions needed to combat climate change, remains a difficult task. OBJECTIVE: To combine artificial intelligence (AI), atmospheric and social sciences to provide urban planning solutions that optimise local air quality by applying novel methods and taking into consideration population structures and traffic flows. METHODS: We will use high-resolution spatial data and linked electronic population cohort for Helsinki Metropolitan Area (Finland) to model (a) population dynamics and urban inequality related to air pollution; (b) detailed aerosol dynamics, aerosol and gas-phase chemistry together with detailed flow characteristics; (c) high-resolution traffic flow addressing dynamical changes at the city environment, such as accidents, construction work and unexpected congestion. Finally, we will fuse the information resulting from these models into an optimal city planning model balancing air quality, comfort, accessibility and travelling efficiency.


Asunto(s)
Contaminación del Aire , Planificación de Ciudades/métodos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Inteligencia Artificial , Bases de Datos Factuales , Finlandia , Humanos , Modelos Teóricos , Vehículos a Motor , Desarrollo Sostenible , Población Urbana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA