RESUMEN
Larval dispersal is a critically important yet enigmatic process in marine ecology, evolution, and conservation. Determining the distance and direction that tiny larvae travel in the open ocean continues to be a challenge. Our current understanding of larval dispersal patterns at management-relevant scales is principally and separately informed by genetic parentage data and biological-oceanographic (biophysical) models. Parentage datasets provide clear evidence of individual larval dispersal events, but their findings are spatially and temporally limited. Biophysical models offer a more complete picture of dispersal patterns at regional scales but are of uncertain accuracy. Here, we develop statistical techniques that integrate these two important sources of information on larval dispersal. We then apply these methods to an extensive genetic parentage dataset to successfully validate a high-resolution biophysical model for the economically important reef fish species Plectropomus maculatus in the southern Great Barrier Reef. Our results demonstrate that biophysical models can provide accurate descriptions of larval dispersal at spatial and temporal scales that are relevant to management. They also show that genetic parentage datasets provide enough statistical power to exclude poor biophysical models. Biophysical models that included species-specific larval behaviour provided markedly better fits to the parentage data than assuming passive behaviour, but incorrect behavioural assumptions led to worse predictions than ignoring behaviour altogether. Our approach capitalises on the complementary strengths of genetic parentage datasets and high-resolution biophysical models to produce an accurate picture of larval dispersal patterns at regional scales. The results provide essential empirical support for the use of accurately parameterised biophysical larval dispersal models in marine spatial planning and management.
Asunto(s)
Distribución Animal/fisiología , Conservación de los Recursos Naturales/métodos , Arrecifes de Coral , Ecosistema , Modelos Biológicos , Animales , Peces/fisiología , Geografía , Larva/fisiología , Biología Marina/métodos , Océanos y Mares , Perciformes/fisiología , Dinámica Poblacional , Reproducibilidad de los ResultadosRESUMEN
Several factors lead to expectations that the scale of larval dispersal and population connectivity of marine animals differs with latitude. We examine this expectation for demersal shorefishes, including relevant mechanisms, assumptions and evidence. We explore latitudinal differences in (i) biological (e.g. species composition, spawning mode, pelagic larval duration, PLD), (ii) physical (e.g. water movement, habitat fragmentation), and (iii) biophysical factors (primarily temperature, which could strongly affect development, swimming ability or feeding). Latitudinal differences exist in taxonomic composition, habitat fragmentation, temperature and larval swimming, and each difference could influence larval dispersal. Nevertheless, clear evidence for latitudinal differences in larval dispersal at the level of broad faunas is lacking. For example, PLD is strongly influenced by taxon, habitat and geographical region, but no independent latitudinal trend is present in published PLD values. Any trends in larval dispersal may be obscured by a lack of appropriate information, or use of 'off the shelf' information that is biased with regard to the species assemblages in areas of concern. Biases may also be introduced from latitudinal differences in taxa or spawning modes as well as limited latitudinal sampling. We suggest research to make progress on the question of latitudinal trends in larval dispersal.
Asunto(s)
Distribución Animal , Peces/fisiología , Animales , Biodiversidad , Ecosistema , Peces/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Reproducción , Temperatura , Movimientos del AguaRESUMEN
Fish swimming capacity is a key life history trait critical to many aspects of their ecology. U-crit (critical) swimming speeds provide a robust, repeatable relative measure of swimming speed that can serve as a useful surrogate for other measures of swimming performance. Here we collate and make available one the most comprehensive datasets on U-crit swimming abilities of tropical marine fish larvae and pelagic juveniles, most of which are reef associated as adults. The dataset includes U-crit speed measurements for settlement stage fishes across a large range of species and families obtained mostly from field specimens collected in light traps and crest nets; and the development of swimming abilities throughout ontogeny for a range of species using reared larvae. In nearly all instances, the size of the individual was available, and in many cases, data include other morphological measurements (e.g. "propulsive area") useful for predicting swimming capacity. We hope these data prove useful for further studies of larval swimming performance and other broader syntheses.
Asunto(s)
Peces , Larva , Natación , Animales , Ecología , Clima TropicalRESUMEN
Lobotes, Datnioides and Hapalogenys are assigned to a newly defined Acanthuriformes on the basis of their pattern of tooth replacement (termed posterolateral tooth replacement), where new teeth form at the posterolateral ends of series. Posterolateral tooth replacement is shown to be a synamorphy of the order. The order is expanded to include Chaetodontidae, Pomacanthidae, Drepaneidae, Ephippidae, Leiognathidae, Antigonia, Scatophagidae and Capros, along with the more traditional members, Siganidae, Luvaridae, Zanclidae and Acanthuridae. Three-item analysis of 63 adult and larval morphological characters yields two optimal trees that differ only in the relative positions of Capros and Siganidae. The intersection tree of the two optimal trees is: (((Hapalogenys (Datnioides, Lobotidae)) (Pomacanthidae (Drepaneidae (Chaetodontidae (Ephippidae (Leiognathidae (Scatophagidae (Antigonia (Siganidae, Capros (Luvaridae (Zanclidae, Acanthuridae)))))))))))). This cladogram is compared with recent phylogenies based on analyses of sequence data, and few differences are found once the weakly-supported interior nodes of the latter are collapsed. Aside from expansion of the Acanthuriformes, the following classification changes are proposed in order to reflect the phylogenetic relationships: redefinition of the Lobotidae to include Lobotes, Datnioides and Hapalogenys; separate families for Antigonia and Capros (Antigoniidae and Caproidae, respectively); continued recognition of Drepaneidae (often considered a synonym of Ephippidae). The larvae of Capros aper are illustrated to show features overlooked in earlier descriptions.
Asunto(s)
Peces , Perciformes , Animales , Larva , FilogeniaRESUMEN
Climate change is leading to shifts in species geographical distributions, but populations are also probably adapting to environmental change at different rates across their range. Owing to a lack of natural and empirical data on the influence of phenotypic adaptation on range shifts of marine species, we provide a general conceptual model for understanding population responses to climate change that incorporates plasticity and adaptation to environmental change in marine ecosystems. We use this conceptual model to help inform where within the geographical range each mechanism will probably operate most strongly and explore the supporting evidence in species. We then expand the discussion from a single-species perspective to community-level responses and use the conceptual model to visualize and guide research into the important yet poorly understood processes of plasticity and adaptation. This article is part of the theme issue 'The role of plasticity in phenotypic adaptation to rapid environmental change'.
Asunto(s)
Adaptación Fisiológica , Organismos Acuáticos/fisiología , Ecosistema , Geografía , Modelos Biológicos , Océanos y MaresRESUMEN
Larval fishes are a useful metric of marine ecosystem state and change, as well as species-specific patterns in phenology. The high level of taxonomic expertise required to identify larval fishes to species level, and the considerable effort required to collect samples, make these data very valuable. Here we collate 3178 samples of larval fish assemblages, from 12 research projects from 1983-present, from temperate and subtropical Australian pelagic waters. This forms a benchmark for the larval fish assemblage for the region, and includes recent monitoring of larval fishes at coastal oceanographic reference stations. Comparing larval fishes among projects can be problematic due to differences in taxonomic resolution, and identifying all taxa to species is challenging, so this study reports a standard taxonomic resolution (of 218 taxa) for this region to help guide future research. This larval fish database serves as a data repository for surveys of larval fish assemblages in the region, and can contribute to analysis of climate-driven changes in the location and timing of the spawning of marine fishes.
Asunto(s)
Peces , Zooplancton , Animales , Australia , Bases de Datos Factuales , Ecosistema , Larva , Especificidad de la EspecieRESUMEN
A pelagic larval stage is found in nearly all demersal marine teleost fishes, and it is during this pelagic stage that the geographic scale of dispersal is determined. Marine biologists have long made a simplifying assumption that behaviour of larvae--with the possible exception of vertical distribution--has negligible influence on larval dispersal. Because advection by currents can take place over huge scales during a pelagic larval stage that typically lasts for several days to several weeks, this simplifying assumption leads to the conclusion that populations of marine demersal fishes operate over, and are connected over, similar huge scales. This conclusion has major implications for our perception of how marine fish populations operate and for our management of them. Recent (and some older) behavioural research-reviewed here-reveals that for a substantial portion of the pelagic larval stage of perciform fishes, the simplifying assumption is invalid. Near settlement, and for a considerable portion of the pelagic stage prior to that, larvae of many fish species are capable of swimming at speeds faster than mean ambient currents over long periods, travelling tens of kilometres. Only the smallest larvae of perciform fishes swim in an energetically costly viscous hydrodynamic environment (i.e., low Reynolds number). Vertical distribution is under strong behavioural control from the time of hatching, if not before, and can have a decisive, if indirect, influence on dispersal trajectories. Larvae of some species avoid currents by occupying the epibenthic boundary layer. Larvae are able to swim directionally in the pelagic environment, with some species apparently orientating relative to the sun and others to settlement sites. These abilities develop relatively early, and ontogenetic changes in orientation are seemingly common. Larvae of some species can use sound to navigate, and others can use odour to find settlement habitat, at least over small scales. Other senses may also be important to orientation. Larvae are highly aware of their environment and of potential predators, and some school during the pelagic larval stage. Larvae are selective about where they settle at both meso and micro scales, and settlement is strongly influenced by interactions with resident fishes. Most of these behaviours are flexible; for example, swimming speeds and depth may vary among locations, and speed may vary with swimming direction. In direct tests, these behaviours result in dispersal different from that predicted by currents alone. Work with both tropical and temperate species shows that these behaviours begin to be significant relatively early in larval development, but much more needs to be learned about the ontogeny of behaviour and sensory abilities in larvae of marine fishes. As a preliminary rule of thumb, behaviour must be taken into account in considerations of dispersal after the preflexion stage, and vertical distribution behaviour can influence dispersal from hatching. Larvae of perciform fishes are close to being planktonic at the start of the pelagic period and are clearly nektonic at its end, and for a substantial period prior to that. All these things differ among species. Larvae of clupeiform, gadiform and pleuronectiform fishes may be less capable behaviourally than perciform fishes, but this remains to be confirmed. Clearly, these behaviours, along with hydrography, must be included in modelling dispersal and retention and may provide explanations for recent demonstrations of self-recruitment in marine fish populations. Current work is directed at understanding the ontogeny of the gradual transition from planktonic to nektonic behaviour. Although it is clear that larvae of perciform fishes have the ability to strongly influence their dispersal trajectories, it is less clear whether or how these abilities are applied.
Asunto(s)
Peces/fisiología , Movimiento/fisiología , Animales , Conducta Animal/fisiología , Conducta Alimentaria/fisiología , Larva/clasificación , Larva/fisiología , Modelos Biológicos , Orientación/fisiología , Conducta Predatoria/fisiología , Natación/fisiologíaRESUMEN
The larval stages of most marine fishes spend days to weeks in the pelagic environment, where they must find food and avoid predators in order to survive. Some fish only spend part of their life history in the pelagic environment before returning to their adult habitat, for example, a coral reef. The sensory systems of larval fish develop rapidly during the first few days of their lives, and here we concentrate on the various sensory cues the fish have available to them for survival in the pelagic environment. We focus on the larvae of reef fishes because most is known about them. We also review the major threats caused by human activities that have been identified to have worldwide impact and evaluate how these threats may impact larval-fish survival and orientation abilities. Many human activities negatively affect larval-fish sensory systems or the cues the fish need to detect. Ultimately, this could lead to decreased numbers of larvae surviving to settlement, and, therefore, to decreased abundance of adult fishes. Although we focus on species wherein the larvae and adults occupy different habitats (pelagic and demersal, respectively), it is important to acknowledge that the potential anthropogenic effects we identify may also apply to larvae of species like tuna and herring, where both larvae and adults are pelagic.
Asunto(s)
Peces/fisiología , Orientación/fisiología , Animales , Cambio Climático , Actividades Humanas , Larva/fisiología , Sistema de la Línea Lateral/fisiología , Longevidad , Órganos de los Sentidos/fisiología , Contaminación Química del Agua/efectos adversosRESUMEN
Theory and some empirical evidence suggest that groups of animals orient better than isolated individuals. We present the first test of this hypothesis for pelagic marine larvae, at the stage of settlement, when orientation is critical to find a habitat. We compare the in situ behaviour of individuals and groups of 10-12 Chromis atripectoralis (reef fish of the family Pomacentridae), off Lizard Island, Great Barrier Reef. Larvae are observed by divers or with a drifting image recording device. With both methods, groups orient cardinally while isolated individuals do not display significant orientation. Groups also swim on a 15% straighter course (i.e. are better at keeping a bearing) and 7% faster than individuals. A body of observations collected in this study suggest that enhanced group orientation emerges from simple group dynamics rather than from the presence of more skilful leaders.
Asunto(s)
Conducta Animal/fisiología , Peces/fisiología , Larva/fisiología , Orientación/fisiología , Perciformes/fisiología , Animales , Arrecifes de Coral , Natación/fisiologíaRESUMEN
Nearly all demersal teleost marine fishes have pelagic larval stages lasting from several days to several weeks, during which time they are subject to dispersal. Fish larvae have considerable swimming abilities, and swim in an oriented manner in the sea. Thus, they can influence their dispersal and thereby, the connectivity of their populations. However, the sensory cues marine fish larvae use for orientation in the pelagic environment remain unclear. We review current understanding of these cues and how sensory abilities of larvae develop and are used to achieve orientation with particular emphasis on coral-reef fishes. The use of sound is best understood; it travels well underwater with little attenuation, and is current-independent but location-dependent, so species that primarily utilize sound for orientation will have location-dependent orientation. Larvae of many species and families can hear over a range of ~100-1000 Hz, and can distinguish among sounds. They can localize sources of sounds, but the means by which they do so is unclear. Larvae can hear during much of their pelagic larval phase, and ontogenetically, hearing sensitivity, and frequency range improve dramatically. Species differ in sensitivity to sound and in the rate of improvement in hearing during ontogeny. Due to large differences among-species within families, no significant differences in hearing sensitivity among families have been identified. Thus, distances over which larvae can detect a given sound vary among species and greatly increase ontogenetically. Olfactory cues are current-dependent and location-dependent, so species that primarily utilize olfactory cues will have location-dependent orientation, but must be able to swim upstream to locate sources of odor. Larvae can detect odors (e.g., predators, conspecifics), during most of their pelagic phase, and at least on small scales, can localize sources of odors in shallow water, although whether they can do this in pelagic environments is unknown. Little is known of the ontogeny of olfactory ability or the range over which larvae can localize sources of odors. Imprinting on an odor has been shown in one species of reef-fish. Celestial cues are current- and location-independent, so species that primarily utilize them will have location-independent orientation that can apply over broad scales. Use of sun compass or polarized light for orientation by fish larvae is implied by some behaviors, but has not been proven. Use of neither magnetic fields nor direction of waves for orientation has been shown in marine fish larvae. We highlight research priorities in this area.