RESUMEN
We report genome-wide data from 33 Ashkenazi Jews (AJ), dated to the 14th century, obtained following a salvage excavation at the medieval Jewish cemetery of Erfurt, Germany. The Erfurt individuals are genetically similar to modern AJ, but they show more variability in Eastern European-related ancestry than modern AJ. A third of the Erfurt individuals carried a mitochondrial lineage common in modern AJ and eight carried pathogenic variants known to affect AJ today. These observations, together with high levels of runs of homozygosity, suggest that the Erfurt community had already experienced the major reduction in size that affected modern AJ. The Erfurt bottleneck was more severe, implying substructure in medieval AJ. Overall, our results suggest that the AJ founder event and the acquisition of the main sources of ancestry pre-dated the 14th century and highlight late medieval genetic heterogeneity no longer present in modern AJ.
Asunto(s)
Judíos , Población Blanca , Humanos , Judíos/genética , Genética de Población , Genoma HumanoRESUMEN
The increasing proportion of variance in human complex traits explained by polygenic scores, along with progress in preimplantation genetic diagnosis, suggests the possibility of screening embryos for traits such as height or cognitive ability. However, the expected outcomes of embryo screening are unclear, which undermines discussion of associated ethical concerns. Here, we use theory, simulations, and real data to evaluate the potential gain of embryo screening, defined as the difference in trait value between the top-scoring embryo and the average embryo. The gain increases very slowly with the number of embryos but more rapidly with the variance explained by the score. Given current technology, the average gain due to screening would be ≈2.5 cm for height and ≈2.5 IQ points for cognitive ability. These mean values are accompanied by wide prediction intervals, and indeed, in large nuclear families, the majority of children top-scoring for height are not the tallest.
Asunto(s)
Embrión de Mamíferos/metabolismo , Pruebas Genéticas , Herencia Multifactorial/genética , Adulto , Familia , Estudio de Asociación del Genoma Completo , Humanos , FenotipoRESUMEN
To bring biomarkers closer to clinical application, they should be generalizable, reliable, and maintain performance within the constraints of routine clinical conditions. The functional striatal abnormalities (FSA), is among the most advanced neuroimaging biomarkers in schizophrenia, trained to discriminate diagnosis, with post-hoc analyses indicating prognostic properties. Here, we attempt to replicate its diagnostic capabilities measured by the area under the curve (AUC) in receiver operator characteristic curves discriminating individuals with psychosis (n = 101) from healthy controls (n = 51) in the Human Connectome Project for Early Psychosis. We also measured the test-retest (run 1 vs 2) and phase encoding direction (i.e., AP vs PA) reliability with intraclass correlation coefficients (ICC). Additionally, we measured effects of scan length on classification accuracy (i.e., AUCs) and reliability (i.e., ICCs). Finally, we tested the prognostic capability of the FSA by the correlation between baseline scores and symptom improvement over 12 weeks of antipsychotic treatment in a separate cohort (n = 97). Similar analyses were conducted for the Yeo networks intrinsic connectivity as a reference. The FSA had good/excellent diagnostic discrimination (AUC = 75.4%, 95% CI = 67.0-83.3%; in non-affective psychosis AUC = 80.5%, 95% CI = 72.1-88.0%, and in affective psychosis AUC = 58.7%, 95% CI = 44.2-72.0%). Test-retest reliability ranged between ICC = 0.48 (95% CI = 0.35-0.59) and ICC = 0.22 (95% CI = 0.06-0.36), which was comparable to that of networks intrinsic connectivity. Phase encoding direction reliability for the FSA was ICC = 0.51 (95% CI = 0.42-0.59), generally lower than for networks intrinsic connectivity. By increasing scan length from 2 to 10 min, diagnostic classification of the FSA increased from AUC = 71.7% (95% CI = 63.1-80.3%) to 75.4% (95% CI = 67.0-83.3%) and phase encoding direction reliability from ICC = 0.29 (95% CI = 0.14-0.43) to ICC = 0.51 (95% CI = 0.42-0.59). FSA scores did not correlate with symptom improvement. These results reassure that the FSA is a generalizable diagnostic - but not prognostic - biomarker. Given the replicable results of the FSA as a diagnostic biomarker trained on case-control datasets, next the development of prognostic biomarkers should be on treatment-response data.
Asunto(s)
Biomarcadores , Cuerpo Estriado , Imagen por Resonancia Magnética , Neuroimagen , Trastornos Psicóticos , Esquizofrenia , Humanos , Masculino , Femenino , Trastornos Psicóticos/fisiopatología , Adulto , Cuerpo Estriado/diagnóstico por imagen , Cuerpo Estriado/fisiopatología , Neuroimagen/métodos , Reproducibilidad de los Resultados , Imagen por Resonancia Magnética/métodos , Esquizofrenia/fisiopatología , Esquizofrenia/diagnóstico por imagen , Conectoma/métodos , Adulto Joven , AdolescenteRESUMEN
Genome-wide association studies (GWASs) of major depressive disorder (MDD) have recently achieved extremely large sample sizes and yielded substantial numbers of genome-wide significant loci. Because of the approach to ascertainment and assessment in many of these studies, some of these loci appear to be associated with dysphoria rather than with MDD, potentially decreasing the clinical relevance of the findings. An alternative approach to MDD GWAS is to focus on the most severe forms of MDD, with the hope that this will enrich for loci of larger effect, rendering their identification plausible, and providing potentially more clinically actionable findings. Here we review the genetics of severe depression by using clinical markers of severity including: age of onset, recurrence, degree of impairment, and treatment with ECT. There is evidence for increased family-based and Single Nucleotide Polymorphism (SNP)-based estimates of heritability in recurrent and early-onset illness as well as severe functional impariment. GWAS have been performed looking at severe forms of MDD and a few genome-wide loci have been identified. Several whole exome sequencing studies have also been performed, identifying associated rare variants. Although these findings have not yet been rigorously replicated, the elevated heritability seen in severe MDD phenotypes suggests the value of pursuing additional genome-wide interrogation of samples from this population. The challenge now is generating a cohort of adequate size with consistent phenotyping that will allow for careful and robust classifications and distinctions to be made. We are currently pursuing such a strategy in our 50-site worldwide Gen-ECT-ics consortium.
RESUMEN
Genome-wide association studies (GWAS) provide biological insights into disease onset and progression and have potential to produce clinically useful biomarkers. A growing body of GWAS focuses on quantitative and transdiagnostic phenotypic targets, such as symptom severity or biological markers, to enhance gene discovery and the translational utility of genetic findings. The current review discusses such phenotypic approaches in GWAS across major psychiatric disorders. We identify themes and recommendations that emerge from the literature to date, including issues of sample size, reliability, convergent validity, sources of phenotypic information, phenotypes based on biological and behavioral markers such as neuroimaging and chronotype, and longitudinal phenotypes. We also discuss insights from multi-trait methods such as genomic structural equation modelling. These provide insight into how hierarchical 'splitting' and 'lumping' approaches can be applied to both diagnostic and dimensional phenotypes to model clinical heterogeneity and comorbidity. Overall, dimensional and transdiagnostic phenotypes have enhanced gene discovery in many psychiatric conditions and promises to yield fruitful GWAS targets in the years to come.
RESUMEN
The majority of human connectome studies in the literature based on functional magnetic resonance imaging (fMRI) data use either an anterior-to-posterior (AP) or a posterior-to-anterior (PA) phase encoding direction (PED). However, whether and how PED would affect test-retest reliability of functional connectome is unclear. Here, in a sample of healthy subjects with two sessions of fMRI scans separated by 12 weeks (two runs per session, one with AP, the other with PA), we tested the influence of PED on global, nodal, and edge connectivity in the constructed brain networks. All data underwent the state-of-the-art Human Connectome Project (HCP) pipeline to correct for phase-encoding-related distortions before entering analysis. We found that at the global level, the PA scans showed significantly higher intraclass correlation coefficients (ICCs) for global connectivity compared with AP scans, which was particularly prominent when using the Seitzman-300 atlas (versus the CAB-NP-718 atlas). At the nodal level, regions most strongly affected by PED were consistently mapped to the cingulate cortex, temporal lobe, sensorimotor areas, and visual areas, with significantly higher ICCs during PA scans compared with AP scans, regardless of atlas. Better ICCs were also observed during PA scans at the edge level, in particular when global signal regression (GSR) was not performed. Further, we demonstrated that the observed reliability differences between PEDs may relate to a similar effect on the reliability of temporal signal-to-noise ratio (tSNR) in the same regions (that PA scans were associated with higher reliability of tSNR than AP scans). Averaging the connectivity outcome from the AP and PA scans could increase median ICCs, especially at the nodal and edge levels. Similar results at the global and nodal levels were replicated in an independent, public dataset from the HCP-Early Psychosis (HCP-EP) study with a similar design but a much shorter scan session interval. Our findings suggest that PED has significant effects on the reliability of connectomic estimates in fMRI studies. We urge that these effects need to be carefully considered in future neuroimaging designs, especially in longitudinal studies such as those related to neurodevelopment or clinical intervention.
Asunto(s)
Conectoma , Corteza Sensoriomotora , Humanos , Conectoma/métodos , Reproducibilidad de los Resultados , Descanso , Encéfalo/diagnóstico por imagen , Relación Señal-Ruido , Imagen por Resonancia Magnética/métodos , Factor de Crecimiento Transformador betaRESUMEN
[This corrects the article DOI: 10.1371/journal.pgen.1009015.].
RESUMEN
Evidence from both GWAS and clinical observation has suggested that certain psychiatric, metabolic, and autoimmune diseases are heterogeneous, comprising multiple subtypes with distinct genomic etiologies and Polygenic Risk Scores (PRS). However, the presence of subtypes within many phenotypes is frequently unknown. We present CLiP (Correlated Liability Predictors), a method to detect heterogeneity in single GWAS cohorts. CLiP calculates a weighted sum of correlations between SNPs contributing to a PRS on the case/control liability scale. We demonstrate mathematically and through simulation that among i.i.d. homogeneous cases generated by a liability threshold model, significant anti-correlations are expected between otherwise independent predictors due to ascertainment on the hidden liability score. In the presence of heterogeneity from distinct etiologies, confounding by covariates, or mislabeling, these correlation patterns are altered predictably. We further extend our method to two additional association study designs: CLiP-X for quantitative predictors in applications such as transcriptome-wide association, and CLiP-Y for quantitative phenotypes, where there is no clear distinction between cases and controls. Through simulations, we demonstrate that CLiP and its extensions reliably distinguish between homogeneous and heterogeneous cohorts when the PRS explains as low as 3% of variance on the liability scale and cohorts comprise 50, 000 - 100, 000 samples, an increasingly practical size for modern GWAS. We apply CLiP to heterogeneity detection in schizophrenia cohorts totaling > 50, 000 cases and controls collected by the Psychiatric Genomics Consortium. We observe significant heterogeneity in mega-analysis of the combined PGC data (p-value 8.54 × 0-4), as well as in individual cohorts meta-analyzed using Fisher's method (p-value 0.03), based on significantly associated variants. We also apply CLiP-Y to detect heterogeneity in neuroticism in over 10, 000 individuals from the UK Biobank and detect heterogeneity with a p-value of 1.68 × 10-9. Scores were not significantly reduced when partitioning by known subclusters ("Depression" and "Worry"), suggesting that these factors are not the primary source of observed heterogeneity.
Asunto(s)
Variación Genética/genética , Estudio de Asociación del Genoma Completo/métodos , Herencia Multifactorial/genética , Algoritmos , Trastorno Bipolar/genética , Estudios de Casos y Controles , Bases de Datos Genéticas , Trastorno Depresivo Mayor/genética , Femenino , Heterogeneidad Genética , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Modelos Teóricos , Polimorfismo de Nucleótido Simple/genética , Factores de Riesgo , Esquizofrenia/genéticaRESUMEN
Parasympathetic arousal is associated with states of heightened attention and well-being. Arousal may affect widespread cortical and subcortical systems across the brain, however, little is known about its influence on cognitive task processing and performance. In the current study, healthy adult participants (n â= â20) underwent multi-band echo-planar imaging (TR â= â0.72 âs) with simultaneous pulse oximetry recordings during performance of the Multi Source Interference Task (MSIT), the Oddball Task (OBT), and during rest. Processing speed on both tasks was robustly related to heart rate (HR). Participants with slower HR responded faster on both the MSIT (33% variance explained) and the OBT (25% variance explained). Within all participants, trial-to-trial fluctuations in processing speed were robustly related to the heartbeat-stimulus interval, a metric that is dependent both on the concurrent HR and the stimulus timing with respect to the heartbeat. Models examining the cardiac-BOLD response revealed that a distributed set of regions showed arousal-related activity that was distinct for different task conditions. Across these cortical regions, activity increased with slower HR. Arousal-related activity was distinct from task-evoked activity and it was robust to the inclusion of additional physiological nuisance regressors into the models. For the MSIT, such arousal-related activity occurred across visual and dorsal attention network regions. For the OBT, this activity occurred within fronto-parietal regions. For rest, arousal-related activity also occurred, but was confined to visual regions. The pulvinar nucleus of the thalamus showed arousal-related activity during all three task conditions. Widespread cortical activity, associated with increased parasympathetic arousal, may be propagated by thalamic circuits and contributes to improved attention. This activity is distinct from task-evoked activity, but affects cognitive performance and therefore should be incorporated into neurobiological models of cognition and clinical disorders.
Asunto(s)
Nivel de Alerta/fisiología , Corteza Cerebral/fisiología , Neuroimagen Funcional , Frecuencia Cardíaca/fisiología , Red Nerviosa/fisiología , Sistema Nervioso Parasimpático/fisiología , Desempeño Psicomotor/fisiología , Pulvinar/fisiología , Tiempo de Reacción/fisiología , Adulto , Atención/fisiología , Corteza Cerebral/diagnóstico por imagen , Imagen Eco-Planar , Humanos , Imagen por Resonancia Magnética , Red Nerviosa/diagnóstico por imagen , Oximetría , Pulvinar/diagnóstico por imagen , Adulto JovenRESUMEN
BACKGROUND: Cohort and cost-effectiveness studies suggest that measuring variation in genes that influence metabolism of common drugs could improve antidepressant treatment outcomes. Prior randomized trials have yielded inconsistent results. METHOD: Multicenter randomized double-blind (subject and rater), controlled trial of pharmacogenomic testing among outpatients with nonpsychotic major depressive disorder. Study participants (n = 304) were randomized 1:1 to assay-guided treatment (AGT; N = 151) or treatment-as-usual (TAU; N = 153). Participants and raters were blinded to study arm; unblinded clinicians received results of a pharmacogenomic test and adjusted treatment in light of the test report. Primary outcome was change over 8 weeks in Hamilton Depression Rating Scale (SIGH-D-17). RESULTS: For the primary comparison of interest, change in SIGH-D-17, no significant difference was detected between AGT and TAU at Week 8 (p = .53). Rates of study completion also did not differ between the arms (AGT 92.7%, TAU 92.2% (χ2 = 0.03, df = 1, p = .86). Exploratory analyses suggested significantly fewer individuals experienced worsening of depressive symptoms following AGT, and that treatment concordant with assay results was associated with greater likelihood of remission. CONCLUSION: Pharmacogenomic testing using a panel of pharmacokinetic and pharmacodynamic variants was not associated with significant improvement in the primary efficacy outcome when providers were unconstrained by the assay results. Further investigation is needed to understand the discordance with cost-effectiveness results and among randomized trials.
Asunto(s)
Trastorno Depresivo Mayor , Antidepresivos/uso terapéutico , Trastorno Depresivo Mayor/tratamiento farmacológico , Trastorno Depresivo Mayor/genética , Método Doble Ciego , Humanos , Farmacogenética , Pruebas de Farmacogenómica , Resultado del TratamientoRESUMEN
The Ashkenazi Jewish (AJ) population is important in genetics due to its high rate of Mendelian disorders. AJ appeared in Europe in the 10th century, and their ancestry is thought to comprise European (EU) and Middle-Eastern (ME) components. However, both the time and place of admixture are subject to debate. Here, we attempt to characterize the AJ admixture history using a careful application of new and existing methods on a large AJ sample. Our main approach was based on local ancestry inference, in which we first classified each AJ genomic segment as EU or ME, and then compared allele frequencies along the EU segments to those of different EU populations. The contribution of each EU source was also estimated using GLOBETROTTER and haplotype sharing. The time of admixture was inferred based on multiple statistics, including ME segment lengths, the total EU ancestry per chromosome, and the correlation of ancestries along the chromosome. The major source of EU ancestry in AJ was found to be Southern Europe (≈60-80% of EU ancestry), with the rest being likely Eastern European. The inferred admixture time was ≈30 generations ago, but multiple lines of evidence suggest that it represents an average over two or more events, pre- and post-dating the founder event experienced by AJ in late medieval times. The time of the pre-bottleneck admixture event, which was likely Southern European, was estimated to ≈25-50 generations ago.
Asunto(s)
Genética de Población , Judíos/genética , Población Blanca/genética , Europa (Continente) , Femenino , Haplotipos , Humanos , Desequilibrio de Ligamiento , Masculino , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Voltage-gated calcium channels have been implicated in schizophrenia aetiology; however, little is known about their involvement in antipsychotic treatment response. This study investigated variants within the calcium channel subunit genes for association with antipsychotic treatment response in a first episode schizophrenia cohort. Twelve regulatory variants within seven genes were shown to be significantly associated with treatment outcome. Most notably, the CACNA1B rs2229949 CC genotype was associated with improved negative symptomology, where the C allele was predicted to abolish a miRNA-binding site (has-mir-5002-3p), suggesting a possible mechanism of action through which this variant may have an effect. These results implicate the calcium channel subunits in antipsychotic treatment response and suggest that increased activation of these channels may be explored to enhance or predict antipsychotic treatment outcome.
Asunto(s)
Antipsicóticos/uso terapéutico , Población Negra/genética , Canales de Calcio/genética , Polimorfismo de Nucleótido Simple/genética , Esquizofrenia/genética , Alelos , Canales de Calcio Tipo N/genética , Estudios de Cohortes , Genotipo , Humanos , Resultado del TratamientoRESUMEN
Psychiatric genetics research is improving our understanding of the biological underpinnings of neurodiversity and mental illness. Using psychiatric genetics in ways that maximize benefits and minimize harms to individuals and society depends largely on how the ethical, legal, and social implications (ELSI) of psychiatric genetics are managed. The International Society of Psychiatric Genetics (ISPG) is the largest international organization dedicated to psychiatric genetics. Given its history, membership, and international reach, we believe the ISPG is well-equipped to contribute to the resolution of these ELSI challenges. As such, we recently created the ISPG Ethics Committee, an interdisciplinary group comprised of psychiatric genetics researchers, clinical geneticists, genetic counselors, mental health professionals, patients, patient advocates, bioethicists, and lawyers. This article highlights key ELSI challenges identified by the ISPG Ethics Committee to be of paramount importance for the ethical translation of psychiatric research into society in three contexts: research settings, clinical settings, and legal proceedings. For each of these arenas, we identify and discuss pressing psychiatric genetics ELSI dilemmas that merit attention and require action. The goal is to increase awareness about psychiatric genetics ELSI issues and encourage dialogue and action among stakeholders.
Asunto(s)
Investigación Genética/ética , Genómica/ética , Trastornos Mentales/genética , Comités de Ética/tendencias , HumanosRESUMEN
While increasingly large reference panels for genome-wide imputation have been recently made available, the degree to which imputation accuracy can be enhanced by population-specific reference panels remains an open question. Here, we sequenced at full-depth (≥ 30×), across two platforms (Illumina X Ten and Complete Genomics, Inc.), a moderately large (n = 738) cohort of samples drawn from the Ashkenazi Jewish population. We developed a series of quality control steps to optimize sensitivity, specificity, and comprehensiveness of variant calls in the reference panel, and then tested the accuracy of imputation against target cohorts drawn from the same population. Quality control (QC) thresholds for the Illumina X Ten platform were identified that permitted highly accurate calling of single nucleotide variants across 94% of the genome. QC procedures also identified numerous regions that are poorly mapped using current reference or alternate assemblies. After stringent QC, the population-specific reference panel produced more accurate and comprehensive imputation results relative to publicly available, large cosmopolitan reference panels, especially in the range of rare variants that may be most critical to further progress in mapping of complex phenotypes. The population-specific reference panel also permitted enhanced filtering of clinically irrelevant variants from personal genomes.
Asunto(s)
Variación Genética/genética , Judíos/genética , Estándares de Referencia , Secuenciación Completa del Genoma/normas , Genoma Humano/genética , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos/genética , HumanosRESUMEN
Cognitive flexibility is a critical component of executive function and is strongly influenced by genetic factors. We conducted a genome-wide association study of cognitive flexibility (as measured by perseverative errors on the Wisconsin Card Sorting Test) in two sets of African American (AA) and European American (EA) subjects (Yale-Penn-1: 1,411 AAs/949 EAs; Yale-Penn-2: 1,178 AAs/1,335 EAs). We examined the association of cognitive flexibility with genotyped or imputed SNPs across the genome. In AAs, two correlated common single nucleotide polymorphisms (SNPs) (rs7165213/rs35633795) in the downstream region of the noncoding gene LOC101927286 on chromosome 15 showed genome-wide significant (GWS) associations with cognitive flexibility (Yale-Penn-1: p = 6.0 × 10-9 /1.3 × 10-8 ; Yale-Penn-2: p = .029/.010; meta-analysis: p = 4.2 × 10-7 /1.0 × 10-7 ) in the same effect direction. In EAs, no GWS associations were observed. Enriched gene sets identified by Data-driven Expression-Prioritized Integration for Complex Traits (DEPICT) analysis of the top SNPs (pmeta-analysis < 10-5 ) included the signalosome and ubiquitin-specific peptidase 9, X-linked (USP9X) subnetwork in AAs, and abnormal frontal and occipital bone morphology in EAs. We also performed polygenic risk score (PRS) analysis to examine the genetic correlation of cognition-proxy phenotypes (general cognitive function, education attainment, childhood intelligence, and infant head circumference) and cognitive flexibility in EAs. The PRS derived from general cognitive function-associated SNPs was significantly associated with cognitive flexibility. Nongenetic factors (age, education, sex, and tobacco recency) also exerted significant effects on cognitive flexibility. Our study demonstrates that both genetic and nongenetic factors impact cognitive flexibility, and variants in genes involved in protein degradation and brain development may contribute to population variation in cognitive function.
Asunto(s)
Cognición/fisiología , Función Ejecutiva/fisiología , Adulto , Negro o Afroamericano/genética , Femenino , Predisposición Genética a la Enfermedad/genética , Estudio de Asociación del Genoma Completo/métodos , Humanos , Masculino , Persona de Mediana Edad , Herencia Multifactorial , Polimorfismo de Nucleótido Simple/genética , Población Blanca/genética , Test de Clasificación de Tarjetas de WisconsinRESUMEN
BACKGROUND & AIMS: Crohn's disease (CD) has the highest prevalence in Ashkenazi Jewish populations. We sought to identify rare, CD-associated frameshift variants of high functional and statistical effects. METHODS: We performed exome sequencing and array-based genotype analyses of 1477 Ashkenazi Jewish individuals with CD and 2614 Ashkenazi Jewish individuals without CD (controls). To validate our findings, we performed genotype analyses of an additional 1515 CD cases and 7052 controls for frameshift mutations in the colony-stimulating factor 2-receptor ß common subunit gene (CSF2RB). Intestinal tissues and blood samples were collected from patients with CD; lamina propria leukocytes were isolated and expression of CSF2RB and granulocyte-macrophage colony-stimulating factor-responsive cells were defined by adenomatous polyposis coli (APC) time-of-flight mass cytometry (CyTOF analysis). Variants of CSF2RB were transfected into HEK293 cells and the expression and functions of gene products were compared. RESULTS: In the discovery cohort, we associated CD with a frameshift mutation in CSF2RB (P = 8.52 × 10(-4)); the finding was validated in the replication cohort (combined P = 3.42 × 10(-6)). Incubation of intestinal lamina propria leukocytes with granulocyte-macrophage colony-stimulating factor resulted in high levels of phosphorylation of signal transducer and activator of transcription (STAT5) and lesser increases in phosphorylation of extracellular signal-regulated kinase and AK straining transforming (AKT). Cells co-transfected with full-length and mutant forms of CSF2RB had reduced pSTAT5 after stimulation with granulocyte-macrophage colony-stimulating factor, compared with cells transfected with control CSF2RB, indicating a dominant-negative effect of the mutant gene. Monocytes from patients with CD who were heterozygous for the frameshift mutation (6% of CD cases analyzed) had reduced responses to granulocyte-macrophage colony-stimulating factor and markedly decreased activity of aldehyde dehydrogenase; activity of this enzyme has been associated with immune tolerance. CONCLUSIONS: In a genetic analysis of Ashkenazi Jewish individuals, we associated CD with a frameshift mutation in CSF2RB. Intestinal monocytes from carriers of this mutation had reduced responses to granulocyte-macrophage colony-stimulating factor, providing an additional mechanism for alterations to the innate immune response in individuals with CD.
Asunto(s)
Enfermedad de Crohn/genética , Subunidad beta Común de los Receptores de Citocinas/genética , Mutación del Sistema de Lectura , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Judíos/genética , Estudios de Casos y Controles , Enfermedad de Crohn/etnología , Enfermedad de Crohn/patología , Femenino , Humanos , Intestinos/citología , Intestinos/patología , Masculino , Monocitos/metabolismo , Factores de Riesgo , Transducción de Señal/genéticaRESUMEN
Genome-wide association studies (GWAS) in schizophrenia have focused on additive allelic effects to identify disease risk loci. In order to examine potential recessive effects, we applied a novel approach to identify regions of excess homozygosity in an ethnically homogenous cohort: 904 schizophrenia cases and 1640 controls drawn from the Ashkenazi Jewish (AJ) population. Genome-wide examination of runs of homozygosity identified an excess in cases localized to the major histocompatibility complex (MHC). To refine this signal, we used the recently developed GERMLINE algorithm to identify chromosomal segments shared identical-by-descent (IBD) and compared homozygosity at such segments in cases and controls. We found a significant excess of homozygosity in schizophrenia cases compared with controls in the MHC (P-value = 0.003). An independent replication cohort of 548 schizophrenia cases from Japan and 542 matched healthy controls demonstrated similar effects. The strongest case-control recessive effects (P = 8.81 × 10(-8)) were localized to a 53-kb region near HLA-A, in a segment encompassing three poorly annotated genes, TRIM10, TRIM15 and TRIM40. At the same time, an adjacent segment in the Class I MHC demonstrated clear additive effects on schizophrenia risk, demonstrating the complexity of association in the MHC and the ability of our IBD approach to refine localization of broad signals derived from conventional GWAS. In sum, homozygosity in the classical MHC region appears to convey significant risk for schizophrenia, consistent with the ecological literature suggesting that homozygosity at the MHC locus may be associated with vulnerability to disease.
Asunto(s)
Antígenos HLA-A/genética , Esquizofrenia/genética , Pueblo Asiatico/genética , Estudios de Casos y Controles , Proteínas de Unión al ADN/genética , Estudio de Asociación del Genoma Completo , Genotipo , Antígenos de Histocompatibilidad/genética , Homocigoto , Humanos , Péptidos y Proteínas de Señalización Intracelular , Japón , Complejo Mayor de Histocompatibilidad , Proteínas de Motivos Tripartitos , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
The recent series of large genome-wide association studies in European and Japanese cohorts established that Parkinson disease (PD) has a substantial genetic component. To further investigate the genetic landscape of PD, we performed a genome-wide scan in the largest to date Ashkenazi Jewish cohort of 1130 Parkinson patients and 2611 pooled controls. Motivated by the reduced disease allele heterogeneity and a high degree of identical-by-descent (IBD) haplotype sharing in this founder population, we conducted a haplotype association study based on mapping of shared IBD segments. We observed significant haplotype association signals at three previously implicated Parkinson loci: LRRK2 (OR = 12.05, P = 1.23 × 10(-56)), MAPT (OR = 0.62, P = 1.78 × 10(-11)) and GBA (multiple distinct haplotypes, OR > 8.28, P = 1.13 × 10(-11) and OR = 2.50, P = 1.22 × 10(-9)). In addition, we identified a novel association signal on chr2q14.3 coming from a rare haplotype (OR = 22.58, P = 1.21 × 10(-10)) and replicated it in a secondary cohort of 306 Ashkenazi PD cases and 2583 controls. Our results highlight the power of our haplotype association method, particularly useful in studies of founder populations, and reaffirm the benefits of studying complex diseases in Ashkenazi Jewish cohorts.