Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Genome Med ; 16(1): 63, 2024 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671457

RESUMEN

BACKGROUND: The clinical utility of genetic information for type 2 diabetes (T2D) prediction with polygenic scores (PGS) in ancestrally diverse, real-world US healthcare systems is unclear, especially for those at low clinical phenotypic risk for T2D. METHODS: We tested the association of PGS with T2D incidence in patients followed within a primary care practice network over 16 years in four hypothetical scenarios that varied by clinical data availability (N = 14,712): (1) age and sex; (2) age, sex, body mass index (BMI), systolic blood pressure, and family history of T2D; (3) all variables in (2) and random glucose; and (4) all variables in (3), HDL, total cholesterol, and triglycerides, combined in a clinical risk score (CRS). To determine whether genetic effects differed by baseline clinical risk, we tested for interaction with the CRS. RESULTS: PGS was associated with incident T2D in all models. Adjusting for age and sex only, the Hazard Ratio (HR) per PGS standard deviation (SD) was 1.76 (95% CI 1.68, 1.84) and the HR of top 5% of PGS vs interquartile range (IQR) was 2.80 (2.39, 3.28). Adjusting for the CRS, the HR per SD was 1.48 (1.40, 1.57) and HR of the top 5% of PGS vs IQR was 2.09 (1.72, 2.55). Genetic effects differed by baseline clinical risk ((PGS-CRS interaction p = 0.05; CRS below the median: HR 1.60 (1.43, 1.79); CRS above the median: HR 1.45 (1.35, 1.55)). CONCLUSIONS: Genetic information can help identify high-risk patients even among those perceived to be low risk in a clinical evaluation.


Asunto(s)
Diabetes Mellitus Tipo 2 , Herencia Multifactorial , Humanos , Diabetes Mellitus Tipo 2/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Incidencia , Médicos de Atención Primaria , Adulto , Factores de Riesgo , Predisposición Genética a la Enfermedad , Estudios Longitudinales , Atención Primaria de Salud , Estudios de Cohortes
2.
Diabetes Care ; 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39042486

RESUMEN

OBJECTIVE: Individuals with diabetes who carry genetic variants that lower hemoglobin A1c (HbA1c) independently of glycemia may have higher real, but undetected, hyperglycemia compared with those without these variants despite achieving similar HbA1c targets, potentially placing them at greater risk for diabetes-related complications. We sought to determine whether these genetic variants, aggregated in a polygenic score, and the large-effect African ancestry-specific missense variant in G6PD (rs1050828) that lower HbA1c were associated with higher retinopathy risk. RESEARCH DESIGN AND METHODS: Using data from 29,828 type 2 diabetes cases of genetically inferred African American/African British and European ancestries, we calculated ancestry-specific nonglycemic HbA1c polygenic scores (ngA1cPS) composed of 122 variants associated with HbA1c at genome-wide significance, but not with glucose. We tested the association of the ngA1cPS and the G6PD variant with retinopathy, adjusting for measured HbA1c and retinopathy risk factors. RESULTS: Participants in the bottom quintile of the ngA1cPS showed between 20% and 50% higher retinopathy prevalence, compared with those above this quintile, despite similar levels of measured HbA1c. The adjusted meta-analytic odds ratio for the bottom quintile was 1.31 (95% CI 1.0, 1.73; P = 0.05) in African ancestry and 1.31 (95% CI 1.15, 1.50; P = 6.5 × 10-5) in European ancestry. Among individuals of African ancestry with HbA1c below 7% units, retinopathy prevalence was higher in individuals below, compared with above, the 50th percentile of the ngA1cPS regardless of sex or G6PD carrier status. CONCLUSIONS: Genetic effects need to be considered to personalize HbA1c targets and improve outcomes of people with diabetes from diverse ancestries.

3.
Diabetes Care ; 47(6): 1032-1041, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38608262

RESUMEN

OBJECTIVE: To characterize high type 1 diabetes (T1D) genetic risk in a population where type 2 diabetes (T2D) predominates. RESEARCH DESIGN AND METHODS: Characteristics typically associated with T1D were assessed in 109,594 Million Veteran Program participants with adult-onset diabetes, 2011-2021, who had T1D genetic risk scores (GRS) defined as low (0 to <45%), medium (45 to <90%), high (90 to <95%), or highest (≥95%). RESULTS: T1D characteristics increased progressively with higher genetic risk (P < 0.001 for trend). A GRS ≥90% was more common with diabetes diagnoses before age 40 years, but 95% of those participants were diagnosed at age ≥40 years, and their characteristics resembled those of individuals with T2D in mean age (64.3 years) and BMI (32.3 kg/m2). Compared with the low-risk group, the highest-risk group was more likely to have diabetic ketoacidosis (low GRS 0.9% vs. highest GRS 3.7%), hypoglycemia prompting emergency visits (3.7% vs. 5.8%), outpatient plasma glucose <50 mg/dL (7.5% vs. 13.4%), a shorter median time to start insulin (3.5 vs. 1.4 years), use of a T1D diagnostic code (16.3% vs. 28.1%), low C-peptide levels if tested (1.8% vs. 32.4%), and glutamic acid decarboxylase antibodies (6.9% vs. 45.2%), all P < 0.001. CONCLUSIONS: Characteristics associated with T1D were increased with higher genetic risk, and especially with the top 10% of risk. However, the age and BMI of those participants resemble those of people with T2D, and a substantial proportion did not have diagnostic testing or use of T1D diagnostic codes. T1D genetic screening could be used to aid identification of adult-onset T1D in settings in which T2D predominates.


Asunto(s)
Diabetes Mellitus Tipo 1 , Veteranos , Humanos , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/epidemiología , Masculino , Persona de Mediana Edad , Veteranos/estadística & datos numéricos , Femenino , Adulto , Anciano , Predisposición Genética a la Enfermedad , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/epidemiología , Factores de Riesgo
4.
Nat Med ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38918629

RESUMEN

Diabetes complications occur at higher rates in individuals of African ancestry. Glucose-6-phosphate dehydrogenase deficiency (G6PDdef), common in some African populations, confers malaria resistance, and reduces hemoglobin A1c (HbA1c) levels by shortening erythrocyte lifespan. In a combined-ancestry genome-wide association study of diabetic retinopathy, we identified nine loci including a G6PDdef causal variant, rs1050828 -T (Val98Met), which was also associated with increased risk of other diabetes complications. The effect of rs1050828 -T on retinopathy was fully mediated by glucose levels. In the years preceding diabetes diagnosis and insulin prescription, glucose levels were significantly higher and HbA1c significantly lower in those with versus without G6PDdef. In the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial, participants with G6PDdef had significantly higher hazards of incident retinopathy and neuropathy. At the same HbA1c levels, G6PDdef participants in both ACCORD and the Million Veteran Program had significantly increased risk of retinopathy. We estimate that 12% and 9% of diabetic retinopathy and neuropathy cases, respectively, in participants of African ancestry are due to this exposure. Across continentally defined ancestral populations, the differences in frequency of rs1050828 -T and other G6PDdef alleles contribute to disparities in diabetes complications. Diabetes management guided by glucose or potentially genotype-adjusted HbA1c levels could lead to more timely diagnoses and appropriate intensification of therapy, decreasing the risk of diabetes complications in patients with G6PDdef alleles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA