Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Biol ; 21(4): e3002059, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37011094

RESUMEN

Predation plays a role in preventing the evolution of ever more complicated sexual displays, because such displays often increase an individual's predation risk. Sexual selection theory, however, omits a key feature of predation in modeling costs to sexually selected traits: Predation is density dependent. As a result of this density dependence, predator-prey dynamics should feed back into the evolution of sexual displays, which, in turn, feeds back into predator-prey dynamics. Here, we develop both population and quantitative genetic models of sexual selection that explicitly link the evolution of sexual displays with predator-prey dynamics. Our primary result is that predation can drive eco-evolutionary cycles in sexually selected traits. We also show that mechanistically modeling the cost to sexual displays as predation leads to novel outcomes such as the maintenance of polymorphism in sexual displays and alters ecological dynamics by muting prey cycles. These results suggest predation as a potential mechanism to maintain variation in sexual displays and underscore that short-term studies of sexual display evolution may not accurately predict long-run dynamics. Further, they demonstrate that a common verbal model (that predation limits sexual displays) with widespread empirical support can result in unappreciated, complex dynamics due to the density-dependent nature of predation.


Asunto(s)
Evolución Biológica , Conducta Predatoria , Animales , Dinámica Poblacional , Fenotipo , Polimorfismo Genético
2.
Am Nat ; 201(4): E56-E69, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36957998

RESUMEN

AbstractThe presence of same-sex sexual behavior across the animal kingdom is often viewed as unexpected. One explanation for its prevalence in some taxa is indiscriminate mating-a strategy wherein an individual does not attempt to determine the sex of its potential partner before attempting copulation. Indiscriminate mating has been argued to be the ancestral mode of sexual reproduction and can also be an optimal strategy given search costs of choosiness. Less attention has been paid to the fact that sex discrimination requires not just the attempt to differentiate between the sexes but also some discernible difference (a signal or cue) that can be detected. To address this, we extend models of mating behavior to consider the coevolution of sex discrimination and sexual signals. We find that under a wide range of parameters, including some with relatively minor costs, indiscriminate mating and the absence of sexual signals will be an evolutionary end point. Furthermore, the absence of both sex discrimination and sexual signals is always evolutionarily stable. These results suggest that an observable difference between the sexes likely arose as a by-product of the evolution of different sexes, allowing discrimination to evolve.


Asunto(s)
Preferencia en el Apareamiento Animal , Conducta Sexual Animal , Animales , Sexismo , Reproducción , Copulación , Sexo , Evolución Biológica
3.
PLoS Comput Biol ; 18(11): e1010666, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36318525

RESUMEN

The production of costly public goods (as distinct from metabolic byproducts) has largely been understood through the realization that spatial structure can minimize losses to non-producing "cheaters" by allowing for the positive assortment of producers. In well-mixed systems, where positive assortment is not possible, the stable production of public goods has been proposed to depend on lineages that become indispensable as the sole producers of those goods while their neighbors lose production capacity through genome streamlining (the Black Queen Hypothesis). Here, we develop consumer-resource models motivated by nitrogen-fixing, siderophore-producing bacteria that consider the role of colimitation in shaping eco-evolutionary dynamics. Our models demonstrate that in well-mixed environments, single "public goods" can only be ecologically and evolutionarily stable if they are partially privatized (i.e., if producers reserve a portion of the product pool for private use). Colimitation introduces the possibility of subsidy: strains producing a fully public good can exclude non-producing strains so long as the producing strain derives sufficient benefit from the production of a second partially private good. We derive a lower bound for the degree of privatization necessary for production to be advantageous, which depends on external resource concentrations. Highly privatized, low-investment goods, in environments where the good is limiting, are especially likely to be stably produced. Coexistence emerges more rarely in our mechanistic model of the external environment than in past phenomenological approaches. Broadly, we show that the viability of production depends critically on the environmental context (i.e., external resource concentrations), with production of shared resources favored in environments where a partially-privatized resource is scarce.


Asunto(s)
Evolución Biológica , Ecología
4.
Am Nat ; 200(4): 518-531, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36150205

RESUMEN

AbstractDespite widespread interest in the evolution and implications of monogamy across taxa, less attention-especially theoretical-has been paid toward understanding the evolution of divorce (ending a socially monogamous pairing to find a new partner). Here, we develop a model of the evolution of divorce by females in a heterogeneous environment, where females assess territory quality as a result of their breeding success. Divorce results in females leaving poor territories disproportionally more often than good territories, while death of a partner occurs independent of territory quality, giving an advantage to divorce. Increasing environmental heterogeneity, a decreasing benefit of pair experience, and moderate survival rates favor the evolution of higher divorce rates, even in the absence of variance in individual quality and knowledge of available territories. Imperfect information about territory quality constrains the evolution of divorce, typically favoring divorce strategies that remain faithful to one's partner whenever successful reproduction occurs. Our model shows how feedbacks between divorce, widowhood, and the availability of territories are intricately linked in determining the evolutionary advantage of divorce. We detail testable predictions about populations that should be expected to divorce at high rates.


Asunto(s)
Divorcio , Viudez , Femenino , Humanos , Matrimonio , Reproducción
5.
Proc Biol Sci ; 288(1964): 20212060, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34875192

RESUMEN

Many social groups are made up of complex social networks in which each individual associates with a distinct subset of its groupmates. If social groups become larger over time, competition often leads to a permanent group fission. During such fissions, complex social networks present a collective decision problem and a multidimensional optimization problem: it is advantageous for each individual to remain with their closest allies after a fission, but impossible for every individual to do so. Here, we develop computational algorithms designed to simulate group fissions in a network-theoretic framework. We focus on three fission algorithms (democracy, community and despotism) that fall on a spectrum from a democratic to a dictatorial collective decision. We parameterize our social networks with data from wild baboons (Papio cynocephalus) and compare our simulated fissions with actual baboon fission events. We find that the democracy and community algorithms (egalitarian decisions where each individual influences the outcome) better maintain social networks during simulated fissions than despotic decisions (driven primarily by a single individual). We also find that egalitarian decisions are better at predicting the observed individual-level outcomes of observed fissions, although the observed fissions often disturbed their social networks more than the simulated egalitarian fissions.


Asunto(s)
Toma de Decisiones , Red Social , Animales , Teoría de las Decisiones , Papio , Conducta Social
6.
J Anim Ecol ; 87(6): 1547-1559, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30055026

RESUMEN

Allee effects in group-living species are common, but little is known about the way in which Allee effects at the group-level scale up to influence population dynamics. Most notably, it remains unclear whether component Allee effects within groups (where some component of fitness in small groups decreases with decreasing group size) will translate into a population-level demographic Allee effect (where per capita fitness in small populations decreases with decreasing overall population size). The African wild dog (Lycaon pictus) is an obligate cooperative breeder that lives in packs and has a multitude of group-level component Allee effects. With the African wild dog as a case study, we use models to determine the effect that group structure has on the population dynamics of social animals and, specifically, whether Allee effects operating at the group level lead to a demographic Allee effect at the population level. We developed a suite of models to analyse the population dynamics of group-living species, as well as comparable "packless" models lacking group structure. By comparing these models, we can identify how Allee effects within groups influence population-level dynamics. Our results show that group structure buffers populations against a demographic Allee effect, because mechanisms affecting birth and mortality are more strongly influenced by group size than population size. We find that interactions between groups are vital in determining the relationship between density dependence within groups and density dependence at the population level. As sufficiently large groups provide protection against positive density dependence, even at low overall population sizes, our results have conservation implications for group-living species, as they suggest group size is a necessary population feature to consider in efforts to manage population size. Furthermore, we provide novel insight regarding the role that dispersal and pack size variation play in the buffering nature of social structure in groups subject to Allee effects.


Asunto(s)
Canidae , Animales , Demografía , Modelos Biológicos , Densidad de Población , Dinámica Poblacional
7.
Evolution ; 77(4): 1043-1055, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757067

RESUMEN

Sexual selection has a rich history of mathematical models that consider why preferences favor one trait phenotype over another (for population genetic models) or what specific trait value is preferred (for quantitative genetic models). Less common is exploration of the evolution of choosiness or preference strength: i.e., by how much a trait is preferred. We examine both population and quantitative genetic models of the evolution of preferences, specifically developing "baseline models" of the evolution of preference strength during the Fisher process. Using a population genetic approach, we find selection for stronger and stronger preferences when trait variation is maintained by mutation. However, this force is quite weak and likely to be swamped by drift in moderately-sized populations. In a quantitative genetic model, unimodal preferences will generally not evolve to be increasingly strong without bounds when male traits are under stabilizing viability selection, but evolve to extreme values when viability selection is directional. Our results highlight that different shapes of fitness and preference functions lead to qualitatively different trajectories for preference strength evolution ranging from no evolution to extreme evolution of preference strength.


Asunto(s)
Preferencia en el Apareamiento Animal , Selección Sexual , Masculino , Animales , Selección Genética , Genética de Población , Modelos Genéticos , Mutación , Evolución Biológica
8.
Evolution ; 76(8): 1689-1705, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35767747

RESUMEN

Whether and how selection can act on collectives rather than single entities has been a tumultuous issue in evolutionary biology for decades. Despite examples of multilevel selection, a simple framework is needed that makes explicit the constraints that lead to the emergence of a "group fitness function." We use evolutionary game theory to show that two constraints are sufficient for the emergence of a well-defined group fitness, which could even apply to multispecies groups. First, different parts of the group contribute to one another's growth via resources produced proportionally to the density of each resource producer (not the density of the population receiving benefits). Second, invading groups do not share these resources with resident groups. Jointly, these two constraints lead to the "entanglement" of invading individuals' outcomes such that individual fitness can no longer be defined and group fitness predicts evolutionary dynamics through the emergence of a higher level evolutionary individual. Group fitness is an emergent property, irreducible to the fitness of the group's parts and exhibiting downward causality on the parts. By formalizing group fitness as a model for evolutionary transitions in individuality, these results open up a broad class of models under the multilevel-selection framework.


Asunto(s)
Evolución Biológica , Teoría del Juego , Humanos , Selección Genética
9.
Nat Ecol Evol ; 5(1): 135-141, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33168992

RESUMEN

The widespread presence of same-sex sexual behaviour (SSB) has long been thought to pose an evolutionary conundrum, as participants in SSB suffer the cost of failing to reproduce after expending the time and energy to find a mate. The potential for SSB to occur as part of an optimal strategy has received less attention, although indiscriminate sexual behaviour may be the ancestral mode of sexual reproduction. Here, we build a simple model of sexual reproduction and create a theoretical framework for the evolution of indiscriminate sexual behaviour. We provide strong support for the hypothesis that SSB can be maintained by selection for indiscriminate sexual behaviour, by showing that indiscriminate mating is the optimal strategy under a wide range of conditions. Further, our model suggests that the conditions that most strongly favour indiscriminate mating were probably present at the origin of sexual behaviour. These findings have implications not only for the evolutionary origins of SSB, but also for the evolution of discriminate sexual behaviour across the animal kingdom.


Asunto(s)
Reproducción , Conducta Sexual Animal , Animales , Humanos , Conducta Sexual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA