Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Food Microbiol ; 121: 104493, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38637066

RESUMEN

Foodborne pathogens, particularly antimicrobial-resistant (AMR) bacteria, remain a significant threat to global health. Given the limitations of conventional culture-based approaches, which are limited in scope and time-consuming, metagenomic sequencing of food products emerges as a promising solution. This method provides a fast and comprehensive way to detect the presence of pathogenic microbes and antimicrobial resistance genes (ARGs). Notably, nanopore long-read sequencing provides more accurate bacterial taxonomic classification in comparison to short-read sequencing. Here, we revealed the impact of food types and attributes (origin, retail place, and food processing methods) on microbial communities and the AMR profile using nanopore metagenomic sequencing. We analyzed a total of 260 food products, including raw meat, sashimi, and ready-to-eat (RTE) vegetables. Clostridium botulinum, Acinetobacter baumannii, and Vibrio parahaemolyticus were identified as the top three foodborne pathogens in raw meat and sashimi. Importantly, even with low pathogen abundance, higher percentages of samples containing carbapenem and cephalosporin resistance genes were identified in chicken and RTE vegetables, respectively. In parallel, our results demonstrated that fresh, peeled, and minced foods exhibited higher levels of pathogenic bacteria. In conclusion, this comprehensive study offers invaluable data that can contribute to food safety assessments and serve as a basis for quality indicators.


Asunto(s)
Antiinfecciosos , Secuenciación de Nanoporos , Microbiología de Alimentos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Bacterias/genética , Metagenómica
2.
Clin Infect Dis ; 75(1): e76-e81, 2022 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-35234870

RESUMEN

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can infect human and other mammals, including hamsters. Syrian (Mesocricetus auratus) and dwarf (Phodopus sp.) hamsters are susceptible to SARS-CoV-2 infection in the laboratory setting. However, pet shop-related Coronavirus Disease 2019 (COVID-19) outbreaks have not been reported. METHODS: We conducted an investigation of a pet shop-related COVID-19 outbreak due to Delta variant AY.127 involving at least 3 patients in Hong Kong. We tested samples collected from the patients, environment, and hamsters linked to this outbreak and performed whole genome sequencing analysis of the reverse transcription polymerase chain reaction (RT-PCR)-positive samples. RESULTS: The patients included a pet shop keeper (Patient 1), a female customer of the pet shop (Patient 2), and the husband of Patient 2 (Patient 3). Investigation showed that 17.2% (5/29) and 25.5% (13/51) environmental specimens collected from the pet shop and its related warehouse, respectively, tested positive for SARS-CoV-2 RNA by RT-PCR. Among euthanized hamsters randomly collected from the storehouse, 3% (3/100) tested positive for SARS-CoV-2 RNA by RT-PCR and seropositive for anti-SARS-CoV-2 antibody by enzyme immunoassay. Whole genome analysis showed that although all genomes from the outbreak belonged to the Delta variant AY.127, there were at least 3 nucleotide differences among the genomes from different patients and the hamster cages. Genomic analysis suggests that multiple strains have emerged within the hamster population, and these different strains have likely transmitted to human either via direct contact or via the environment. CONCLUSIONS: Our study demonstrated probable hamster-to-human transmission of SARS-CoV-2. As pet trading is common around the world, this can represent a route of international spread of this pandemic virus.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Cricetinae , Brotes de Enfermedades , Femenino , Hong Kong/epidemiología , Humanos , Mamíferos , ARN Viral/genética , SARS-CoV-2/genética
3.
J Clin Microbiol ; 60(1): e0176921, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34788113

RESUMEN

Bacterial pathogens that cannot be identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) are occasionally encountered in clinical laboratories. The 16S rRNA gene is often used for sequence-based analysis to identify these bacterial species. Nevertheless, traditional Sanger sequencing is laborious, time-consuming, and low throughput. Here, we compared two commercially available 16S rRNA gene sequencing tests that are based on Illumina and Nanopore sequencing technologies, respectively, in their ability to identify the species of 172 clinical isolates that failed to be identified by MALDI-TOF MS. Sequencing data were analyzed by the respective built-in programs (MiSeq Reporter software of Illumina and Epi2me of Nanopore) and BLAST+ (v2.11.0). Their agreement with Sanger sequencing on species-level identification was determined. Discrepancies were resolved by whole-genome sequencing. The diagnostic accuracy of each workflow was determined using the composite sequencing result as the reference standard. Despite the high base-calling accuracy of Illumina sequencing, we demonstrated that the Nanopore workflow had a higher taxonomic resolution at the species level. Using built-in analysis algorithms, the concordance of Sanger 16S with the Illumina and Nanopore workflows was 33.14% and 87.79%, respectively. The agreement was 65.70% and 83.14%, respectively, when BLAST+ was used for analysis. Compared with the reference standard, the diagnostic accuracy of Nanopore 16S was 96.36%, which was identical to that of Sanger 16S and better than that of Illumina 16S (69.07%). The turnaround time of the Illumina workflow and the Nanopore workflow was 78 h and 8.25 h, respectively. The per-sample cost of the Illumina and Nanopore workflows was US$28.5 and US$17.7, respectively.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Genes de ARNr , Humanos , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Flujo de Trabajo
4.
Clin Infect Dis ; 73(6): e1356-e1364, 2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-33851214

RESUMEN

BACKGROUND: Nosocomial outbreaks with superspreading of coronavirus disease 2019 due to a possible airborne transmission have not been reported. METHODS: Epidemiological analysis, environmental samplings, and whole-genome sequencing (WGS) were performed for a hospital outbreak. RESULTS: A superspreading event that involved 12 patients and 9 healthcare workers (HCWs) occurred within 9 days in 3 of 6 cubicles at an old-fashioned general ward with no air exhaust built within the cubicles. The environmental contamination by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA was significantly higher in air grilles (>2 m from patients' heads and not within reach) than on high-touch clinical surfaces (36.4%, 8 of 22 vs 3.4%, 1 of 29, P = .003). Six (66.7%) of 9 contaminated air exhaust grilles were located outside patient cubicles. The clinical attack rate of patients was significantly higher than of HCWs (15.4%, 12 of 78 exposed patients vs 4.6%, 9 of 195 exposed HCWs, P = .005). Moreover, the clinical attack rate of ward-based HCWs was significantly higher than of nonward-based HCWs (8.1%, 7 of 68 vs 1.8%, 2 of 109, P = .045). The episodes (mean ±â€…standard deviation) of patient-care duty assignment in the cubicles was significantly higher among infected ward-based HCWs than among noninfected ward-based HCWs (6.0 ±â€…2.4 vs 3.0 ±â€…2.9, P = .012) during the outbreak period. The outbreak strains belong to SARS-CoV-2 lineage B.1.36.27 (GISAID clade GH) with the unique S-T470N mutation on WGS. CONCLUSIONS: This nosocomial point source superspreading event due to possible airborne transmission demonstrates the need for stringent SARS-CoV-2 screening at admission to healthcare facilities and better architectural design of ventilation systems to prevent such outbreaks. Portable high-efficiency particulate filters were installed in each cubicle to improve ventilation before resumption of clinical service.


Asunto(s)
COVID-19 , Infección Hospitalaria , Infección Hospitalaria/epidemiología , Brotes de Enfermedades , Personal de Salud , Hospitales , Humanos , SARS-CoV-2
5.
Microbiol Spectr ; 12(4): e0213323, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38466098

RESUMEN

The incidence of isoniazid (INH) resistant Mycobacterium tuberculosis is increasing globally. This study aimed to identify the molecular mechanisms behind the development of INH resistance in M. tuberculosis strains collected from the same patients during the standard course of treatment. Three M. tuberculosis strains were collected from a patient before and during antituberculosis (anti-TB) therapy. The strains were characterized using phenotypic drug susceptibility tests, Mycobacterial Interspersed Repeated Unit-Variable-Number Tandem Repeats (MIRU-VNTR), and whole-genome sequencing (WGS) to identify mutations associated with INH resistance. To validate the role of the novel mutations in INH resistance, the mutated katG genes were electroporated into a KatG-deleted M. tuberculosis strain (GA03). Three-dimensional structures of mutated KatG were modeled to predict their impact on INH binding. The pre-treatment strain was susceptible to INH. However, two INH-resistant strains were isolated from the patient after anti-TB therapy. MIRU-VNTR and WGS revealed that the three strains were clonally identical. A missense mutation (P232L) and a nonsense mutation (Q461Stop) were identified in the katG of the two post-treatment strains, respectively. Transformation experiments showed that katG of the pre-treatment strain restored INH susceptibility in GA03, whereas the mutated katG genes from the post-treatment strains rendered negative catalase activity and INH resistance. The protein model indicated that P232L reduced INH-KatG binding affinity while Q461Stop truncated gene transcription. Our results showed that the two katG mutations, P232L and Q461Stop, accounted for the co-emergence of INH-resistant clones during anti-TB therapy. The inclusion of these mutations in the design of molecular assays could increase the diagnostic performance.IMPORTANCEThe evolution of drug-resistant strains of Mycobacterium tuberculosis within the lung lesions of a patient has a detrimental impact on treatment outcomes. This is particularly concerning for isoniazid (INH), which is the most potent first-line antimycobacterial drug. However, the precise genetic factors responsible for drug resistance in patients have not been fully elucidated, with approximately 15% of INH-resistant strains harboring unknown genetic factors. This raises concerns about the emergence of drug-resistant clones within patients, further contributing to the global epidemic of resistance. In this study, we revealed the presence of two novel katG mutations, which emerged independently due to the stress exerted by antituberculosis (anti-TB) treatment on a parental strain. Importantly, we experimentally demonstrated the functional significance of both mutations in conferring resistance to INH. Overall, this research sheds light on the genetic mechanisms underlying the evolution of INH resistance within patients and provides valuable insights for improving diagnostic performance by targeting specific mutations.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis Resistente a Múltiples Medicamentos , Humanos , Isoniazida/farmacología , Isoniazida/uso terapéutico , Mycobacterium tuberculosis/metabolismo , Antituberculosos/farmacología , Antituberculosos/uso terapéutico , Catalasa/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Tuberculosis Resistente a Múltiples Medicamentos/microbiología , Mutación , Pruebas de Sensibilidad Microbiana
6.
Viruses ; 16(6)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38932272

RESUMEN

OBJECTIVE: This study aimed to characterize the changing landscape of circulating SARS-CoV-2 lineages in the local community of Hong Kong throughout 2022. We examined how adjustments to quarantine arrangements influenced the transmission pattern of Omicron variants in a city with relatively rigorous social distancing measures at that time. METHODS: In 2022, a total of 4684 local SARS-CoV-2 genomes were sequenced using the Oxford Nanopore GridION sequencer. SARS-CoV-2 consensus genomes were generated by MAFFT, and the maximum likelihood phylogeny of these genomes was determined using IQ-TREE. The dynamic changes in lineages were depicted in a time tree created by Nextstrain. Statistical analysis was conducted to assess the correlation between changes in the number of lineages and adjustments to quarantine arrangements. RESULTS: By the end of 2022, a total of 83 SARS-CoV-2 lineages were identified in the community. The increase in the number of new lineages was significantly associated with the relaxation of quarantine arrangements (One-way ANOVA, F(5, 47) = 18.233, p < 0.001)). Over time, Omicron BA.5 sub-lineages replaced BA.2.2 and became the predominant Omicron variants in Hong Kong. The influx of new lineages reshaped the dynamics of Omicron variants in the community without fluctuating the death rate and hospitalization rate (One-way ANOVA, F(5, 47) = 2.037, p = 0.091). CONCLUSION: This study revealed that even with an extended mandatory quarantine period for incoming travelers, it may not be feasible to completely prevent the introduction and subsequent community spread of highly contagious Omicron variants. Ongoing molecular surveillance of COVID-19 remains essential to monitor the emergence of new recombinant variants.


Asunto(s)
COVID-19 , Genoma Viral , Filogenia , Cuarentena , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/virología , COVID-19/prevención & control , Hong Kong/epidemiología , SARS-CoV-2/genética , SARS-CoV-2/clasificación , Distanciamiento Físico , Masculino , Femenino , Adulto , Persona de Mediana Edad , Adolescente , Niño , Anciano , Adulto Joven
7.
Front Microbiol ; 14: 1164632, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37125165

RESUMEN

Introduction: Microbes in the built environment have been implicated as a source of infectious diseases. Bacterial culture is the standard method for assessing the risk of exposure to pathogens in urban environments, but this method only accounts for <1% of the diversity of bacteria. Recently, full-length 16S rRNA gene analysis using nanopore sequencing has been applied for microbial evaluations, resulting in a rise in the development of long-read taxonomic tools for species-level classification. Regarding their comparative performance, there is, however, a lack of information. Methods: Here, we aim to analyze the concordance of the microbial community in the urban environment inferred by multiple taxonomic classifiers, including ARGpore2, Emu, Kraken2/Bracken and NanoCLUST, using our 16S-nanopore dataset generated by MegaBLAST, as well as assess their abilities to identify culturable species based on the conventional culture results. Results: According to our results, NanoCLUST was preferred for 16S microbial profiling because it had a high concordance of dominant species and a similar microbial profile to MegaBLAST, whereas Kraken2/Bracken, which had similar clustering results as NanoCLUST, was also desirable. Second, for culturable species identification, Emu with the highest accuracy (81.2%) and F1 score (29%) for the detection of culturable species was suggested. Discussion: In addition to generating datasets in complex communities for future benchmarking studies, our comprehensive evaluation of the taxonomic classifiers offers recommendations for ongoing microbial community research, particularly for complex communities using nanopore 16S rRNA sequencing.

8.
Emerg Microbes Infect ; 12(1): 2204155, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37070526

RESUMEN

Between January 2015 and October 2022, 38 patients with culture-confirmed melioidosis were identified in the Kowloon West (KW) Region, Hong Kong. Notably, 30 of them were clustered in the Sham Shui Po (SSP) district, which covers an estimated area of 2.5 km2. Between August and October 2022, 18 patients were identified in this district after heavy rainfall and typhoons. The sudden upsurge in cases prompted an environmental investigation, which involved collecting 20 air samples and 72 soil samples from residential areas near the patients. A viable isolate of Burkholderia pseudomallei was obtained from an air sample collected at a building site five days after a typhoon. B. pseudomallei DNA was also detected in 21 soil samples collected from the building site and adjacent gardening areas using full-length 16S rRNA gene sequencing, suggesting that B. psuedomallei is widely distributed in the soil environment surrounding the district. Core genome-multilocus sequence typing showed that the air sample isolate was phylogenetically clustered with the outbreak isolates in KW Region. Multispectral satellite imagery revealed a continuous reduction in vegetation region in SSP district by 162,255 m2 from 2016 to 2022, supporting the hypothesis of inhalation of aerosols from the contaminated soil as the transmission route of melioidosis during extreme weather events. This is because the bacteria in unvegetated soil are more easily spread by winds. In consistent with inhalational melioidosis, 24 (63.2%) patients had pneumonia. Clinicians should be aware of melioidosis during typhoon season and initiate appropriate investigation and treatment for patients with compatible symptoms.


Asunto(s)
Burkholderia pseudomallei , Tormentas Ciclónicas , Melioidosis , Humanos , Melioidosis/diagnóstico , Hong Kong , Estaciones del Año , ARN Ribosómico 16S , Aerosoles y Gotitas Respiratorias , Brotes de Enfermedades , China
9.
Virulence ; 13(1): 1088-1100, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35791449

RESUMEN

Clinical manifestations of tuberculosis range from asymptomatic infection to a life-threatening disease such as tuberculous meningitis (TBM). Recent studies showed that the spectrum of disease severity could be related to genetic diversity among clinical strains of Mycobacterium tuberculosis (Mtb). Certain strains are reported to preferentially invade the central nervous system, thus earning the label "hypervirulent strains".However, specific genetic mutations that accounted for enhanced mycobacterial virulence are still unknown. We previously identified a set of 17 mutations in a hypervirulent Mtb strain that was from TBM patient and exhibited significantly better intracellular survivability. These mutations were also commonly shared by a cluster of globally circulating hyper-virulent strains. Here, we aimed to validate the impact of these hypervirulent-specific mutations on the dysregulation of gene networks associated with virulence in Mtb via multi-omic analysis. We surveyed transcriptomic and proteomic differences between the hyper-virulent and low-virulent strains using RNA-sequencing and label-free quantitative LC-MS/MS approach, respectively. We identified 25 genes consistently differentially expressed between the strains at both transcript and protein level, regardless the strains were growing in a nutrient-rich or a physiologically relevant multi-stress condition (acidic pH, limited nutrients, nitrosative stress, and hypoxia). Based on integrated genomic-transcriptomic and proteomic comparisons, the hypervirulent-specific mutations in FadE5 (g. 295,746 C >T), Rv0178 (p. asp150glu), higB (p. asp30glu), and pip (IS6110-insertion) were linked to deregulated expression of the respective genes and their functionally downstream regulons. The result validated the connections between mutations, gene expression, and mycobacterial pathogenicity, and identified new possible virulence-associated pathways in Mtb.


Asunto(s)
Mycobacterium tuberculosis , Cromatografía Liquida , Humanos , Proteómica , Espectrometría de Masas en Tándem , Virulencia/genética
10.
J Virol Methods ; 299: 114333, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34656702

RESUMEN

The increasing prevalence of N501Y variants of SARS-CoV-2 has kindled global concern due to their enhanced transmissibility. Genome sequencing is the gold standard method to identify the emerging variants of concern. But it is time-consuming and expensive, limiting the widespread deployment of genome surveillance in some countries. Health authorities surge the development of alternative assay to expand screening capacity with reduced time and cost. In this study, we developed an in-house TaqMan minor groove binder (MGB) probe-based one-step RT-qPCR assay to detect the presence of N501Y mutation in SARS-CoV-2. A total of 168 SARS-CoV-2 positive respiratory specimens were collected to determine diagnostic accuracy of the RT-qPCR assay. As a reference standard, PANGO lineages and the mutation patterns of all samples were characterised by whole-genome sequencing. The analytical sensitivity and the ability of the assay to detect low frequency of N501Y variants were also evaluated. A total of 31 PANGO lineages were identified from 168 SARS-CoV-2 positive cases, in which 34 samples belonged to N501Y variants, including B.1.1.7 (n = 20), B.1.351 (n = 12) and P.3 (n = 2). The N501Y RT-qPCR correctly identified all 34 samples as N501Y-positive and the other 134 samples as wildtype. The limit-of-detection of the assay consistently achieved 1.5 copies/µL on four different qPCR platforms. N501Y mutation was successfully detected at an allele frequency as low as 10 % in a sample with mixed SARS-CoV-2 lineage. The N501Y RT-qPCR is simple and inexpensive (US$1.6 per sample). It enables robust high-throughput screening for surveillance of SARS-CoV-2 variants of concern harbouring N501Y mutation.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Secuenciación Completa del Genoma
11.
Commun Biol ; 4(1): 1102, 2021 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-34545191

RESUMEN

Emerging variants of SARS-CoV-2 have been shown to rapidly replace original circulating strains in humans soon after they emerged. There is a lack of experimental evidence to explain how these natural occurring variants spread more efficiently than existing strains of SARS-CoV-2 in transmission. We found that the Alpha variant (B.1.1.7) increased competitive fitness over earlier parental D614G lineages in in-vitro and in-vivo systems. Using hamster transmission model, we further demonstrated that the Alpha variant is able to replicate and shed more efficiently in the nasal cavity of hamsters than other variants with low dose and short duration of exposure. The capability to initiate effective infection with low inocula may be one of the key factors leading to the rapid transmission of emerging variants of SARS-CoV-2.


Asunto(s)
COVID-19/genética , SARS-CoV-2/genética , Replicación Viral/genética , Animales , COVID-19/patología , COVID-19/transmisión , Línea Celular/virología , Cricetinae , Modelos Animales de Enfermedad , Humanos , SARS-CoV-2/patogenicidad
12.
Lancet Reg Health West Pac ; 17: 100281, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34611629

RESUMEN

BACKGROUND: Global dissemination of SARS-CoV-2 Variants of Concern (VOCs) remains a concern. The aim of this study is to describe how mass testing and phylogenetic analysis successfully prevented local transmission of SARS-CoV-2 VOC in a densely populated city with low herd immunity for COVID-19. METHODS: In this descriptive study, we conducted contact tracing, quarantine, and mass testing of the potentially exposed contacts with the index case. Epidemiological investigation and phylogeographic analysis were performed. FINDINGS: Among 11,818 laboratory confirmed cases of COVID-19 diagnosed till 13th May 2021 in Hong Kong, SARS-CoV-2 VOCs were found in 271 (2.3%) cases. Except for 10 locally acquired secondary cases, all SARS-CoV-2 VOCs were imported or acquired in quarantine hotels. The index case of this SARS-CoV-2 VOC B.1.351 epidemic, an inbound traveler with asymptomatic infection, was diagnosed 9 days after completing 21 days of quarantine. Contact tracing of 163 contacts in household, hotel, and residential building only revealed 1 (0.6%) secondary case. A symptomatic foreign domestic helper (FDH) without apparent epidemiological link but infected by virus with identical genome sequence was subsequently confirmed. Mass testing of 0.34 million FDHs identified two more cases which were phylogenetically linked. A total of 10 secondary cases were identified that were related to two household gatherings. The clinical attack rate of household close contact was significantly higher than non-household exposure during quarantine (7/25, 28% vs 0/2051, 0%; p<0.001). INTERPRETATION: The rising epidemic of SARS-CoV-2 VOC transmission could be successfully controlled by contact tracing, quarantine, and rapid genome sequencing complemented by mass testing. FUNDING: Health and Medical Research Fund Commissioned Research on Control of Infectious Disease (see acknowledgments for full list).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA