Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 178
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660786

RESUMEN

BACKGROUND: Dysregulated metabolism of bioactive sphingolipids, including ceramides and sphingosine-1-phosphate, has been implicated in cardiovascular disease, although the specific species, disease contexts, and cellular roles are not completely understood. Sphingolipids are produced by the serine palmitoyltransferase enzyme, canonically composed of 2 subunits, SPTLC1 (serine palmitoyltransferase long chain base subunit 1) and SPTLC2 (serine palmitoyltransferase long chain base subunit 2). Noncanonical sphingolipids are produced by a more recently described subunit, SPTLC3 (serine palmitoyltransferase long chain base subunit 3). METHODS: The noncanonical (d16) and canonical (d18) sphingolipidome profiles in cardiac tissues of patients with end-stage ischemic cardiomyopathy and in mice with ischemic cardiomyopathy were analyzed by targeted lipidomics. Regulation of SPTLC3 by HIF1α under ischemic conditions was determined with chromatin immunoprecipitation. Transcriptomics, lipidomics, metabolomics, echocardiography, mitochondrial electron transport chain, mitochondrial membrane fluidity, and mitochondrial membrane potential were assessed in the cSPTLC3KO transgenic mice we generated. Furthermore, morphological and functional studies were performed on cSPTLC3KO mice subjected to permanent nonreperfused myocardial infarction. RESULTS: Herein, we report that SPTLC3 is induced in both human and mouse models of ischemic cardiomyopathy and leads to production of atypical sphingolipids bearing 16-carbon sphingoid bases, resulting in broad changes in cell sphingolipid composition. This induction is in part attributable to transcriptional regulation by HIF1α under ischemic conditions. Furthermore, cardiomyocyte-specific depletion of SPTLC3 in mice attenuates oxidative stress, fibrosis, and hypertrophy in chronic ischemia, and mice demonstrate improved cardiac function and increased survival along with increased ketone and glucose substrate metabolism utilization. Depletion of SPTLC3 mechanistically alters the membrane environment and subunit composition of mitochondrial complex I of the electron transport chain, decreasing its activity. CONCLUSIONS: Our findings suggest a novel essential role for SPTLC3 in electron transport chain function and a contribution to ischemic injury by regulating complex I activity.

2.
Am J Physiol Cell Physiol ; 326(4): C1272-C1290, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38602847

RESUMEN

Sodium-glucose cotransporter, type 2 inhibitors (SGLT2i) are emerging as the gold standard for treatment of type 2 diabetes (T2D) with renal protective benefits independent of glucose lowering. We took a high-level approach to evaluate the effects of the SGLT2i, empagliflozin (EMPA) on renal metabolism and function in a prediabetic model of metabolic syndrome. Male and female 12-wk-old TallyHo (TH) mice, and their closest genetic lean strain (Swiss-Webster, SW) were treated with a high-milk-fat diet (HMFD) plus/minus EMPA (@0.01%) for 12-wk. Kidney weights and glomerular filtration rate were slightly increased by EMPA in the TH mice. Glomerular feature analysis by unsupervised clustering revealed sexually dimorphic clustering, and one unique cluster relating to EMPA. Periodic acid Schiff (PAS) positive areas, reflecting basement membranes and mesangium were slightly reduced by EMPA. Phasor-fluorescent life-time imaging (FLIM) of free-to-protein bound NADH in cortex showed a marginally greater reliance on oxidative phosphorylation with EMPA. Overall, net urine sodium, glucose, and albumin were slightly increased by EMPA. In TH, EMPA reduced the sodium phosphate cotransporter, type 2 (NaPi-2), but increased sodium hydrogen exchanger, type 3 (NHE3). These changes were absent or blunted in SW. EMPA led to changes in urine exosomal microRNA profile including, in females, enhanced levels of miRs 27a-3p, 190a-5p, and 196b-5p. Network analysis revealed "cancer pathways" and "FOXO signaling" as the major regulated pathways. Overall, EMPA treatment to prediabetic mice with limited renal disease resulted in modifications in renal metabolism, structure, and transport, which may preclude and underlie protection against kidney disease with developing T2D.NEW & NOTEWORTHY Renal protection afforded by sodium glucose transporter, type 2 inhibitors (SGLT2i), e.g., empagliflozin (EMPA) involves complex intertwined mechanisms. Using a novel mouse model of obesity with insulin resistance, the TallyHo/Jng (TH) mouse on a high-milk-fat diet (HMFD), we found subtle changes in metabolism including altered regulation of sodium transporters that line the renal tubule. New potential epigenetic determinants of metabolic changes relating to FOXO and cancer signaling pathways were elucidated from an altered urine exosomal microRNA signature.


Asunto(s)
Compuestos de Bencidrilo , Diabetes Mellitus Tipo 2 , Glucósidos , Enfermedades Renales , MicroARNs , Neoplasias , Estado Prediabético , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Masculino , Femenino , Ratones , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Estado Prediabético/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Riñón , Glucosa/farmacología , MicroARNs/farmacología , Sodio
3.
J Biol Chem ; 299(8): 104975, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37429506

RESUMEN

Diabetes mellitus is the leading cause of cardiovascular and renal disease in the United -States. Despite the beneficial interventions available for patients with diabetes, there remains a need for additional therapeutic targets and therapies in diabetic kidney disease (DKD). Inflammation and oxidative stress are increasingly recognized as important causes of renal diseases. Inflammation is closely associated with mitochondrial damage. The molecular connection between inflammation and mitochondrial metabolism remains to be elucidated. Recently, nicotinamide adenine nucleotide (NAD+) metabolism has been found to regulate immune function and inflammation. In the present studies, we tested the hypothesis that enhancing NAD metabolism could prevent inflammation in and progression of DKD. We found that treatment of db/db mice with type 2 diabetes with nicotinamide riboside (NR) prevented several manifestations of kidney dysfunction (i.e., albuminuria, increased urinary kidney injury marker-1 (KIM1) excretion, and pathologic changes). These effects were associated with decreased inflammation, at least in part via inhibiting the activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling pathway. An antagonist of the serum stimulator of interferon genes (STING) and whole-body STING deletion in diabetic mice showed similar renoprotection. Further analysis found that NR increased SIRT3 activity and improved mitochondrial function, which led to decreased mitochondrial DNA damage, a trigger for mitochondrial DNA leakage which activates the cGAS-STING pathway. Overall, these data show that NR supplementation boosted NAD metabolism to augment mitochondrial function, reducing inflammation and thereby preventing the progression of diabetic kidney disease.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Ratones , Animales , Nefropatías Diabéticas/metabolismo , NAD/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/metabolismo , Mitocondrias/metabolismo , ADN Mitocondrial/metabolismo , Nucleotidiltransferasas/metabolismo , Inflamación/metabolismo , Interferones/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-38961841

RESUMEN

HIV disease remains prevalent in the USA and is particularly prevalent in sub-Saharan Africa. Recent investigations revealed that mitochondrial dysfunction in kidney contributes to HIV-associated nephropathy (HIVAN) in Tg26 transgenic mice. We hypothesized that nicotinamide adenine dinucleotide (NAD) deficiency contributes to energetic dysfunction and progressive tubular injury. We investigated metabolomic mechanisms of HIVAN tubulopathy. Tg26 and wild-type (WT) mice were treated with the farnesoid-X receptor (FXR) agonist INT-747 or nicotinamide riboside (NR) from 6 to 12 weeks of age. Multi-omic approaches were used to characterize kidney tissue transcriptomes and metabolomes. Treatment with INT-747 or NR ameliorated kidney tubular injury, as shown by serum creatinine, the tubular injury marker urinary neutrophil-associated lipocalin and tubular morphometry. Integrated analysis of metabolomic and transcriptomic measurements showed that NAD levels and production were globally downregulated in Tg26 mouse kidney, especially nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in the NAD salvage pathway. Further, NAD-dependent deacetylase sirtuin3 activity and mitochondrial oxidative phosphorylation activity were lower in ex vivo proximal tubules from Tg26 mouse kidneys compared to those of WT mice. Restoration of NAD levels in kidney improved these abnormalities. These data suggest that NAD deficiency might be a treatable target for HIVAN.

5.
Lab Invest ; 104(5): 100336, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38266922

RESUMEN

Chronic kidney disease progresses through the replacement of functional tissue compartments with fibrosis, a maladaptive repair process. Shifting kidney repair toward a physiologically intact architecture, rather than fibrosis, is key to blocking chronic kidney disease progression. Much research into the mechanisms of fibrosis is performed in rodent models with less attention to the human genetic context. Recently, human induced pluripotent stem cell (iPSC)-derived organoids have shown promise in overcoming the limitation. In this study, we developed a fibrosis model that uses human iPSC-based 3-dimensional renal organoids, in which exogenous transforming growth factor-ß1 (TGF-ß1) induced the production of extracellular matrix. TGF-ß1-treated organoids showed tubulocentric collagen 1α1 production by regulating downstream transcriptional regulators, Farnesoid X receptor, phosphorylated mothers against decapentaplegic homolog 3 (p-SMAD3), and transcriptional coactivator with PDZ-binding motif (TAZ). Increased nuclear TAZ expression was confirmed in the tubular epithelium in human kidney biopsies with tubular injury and early fibrosis. A dual bile acid receptor agonist (INT-767) increased Farnesoid X receptor and reduced p-SMAD3 and TAZ, attenuating TGF-ß1-induced fibrosis in kidney organoids. Finally, we show that TAZ interacted with TEA-domain transcription factors and p-SMAD3 with TAZ and TEA-domain transcription factor 4 coregulating collagen 1α1 gene transcription. In summary, we establish a novel, readily manipulable fibrogenesis model and posit a role for bile acid receptor agonism early in renal parenchymal fibrosis.


Asunto(s)
Fibrosis , Células Madre Pluripotentes Inducidas , Riñón , Organoides , Factor de Crecimiento Transformador beta1 , Humanos , Organoides/metabolismo , Organoides/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Riñón/metabolismo , Riñón/patología
6.
Am J Pathol ; 193(12): 1969-1987, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37717940

RESUMEN

A gradual decline in renal function occurs even in healthy aging individuals. In addition to aging, per se, concurrent metabolic syndrome and hypertension, which are common in the aging population, can induce mitochondrial dysfunction and inflammation, which collectively contribute to age-related kidney dysfunction and disease. This study examined the role of the nuclear hormone receptors, the estrogen-related receptors (ERRs), in regulation of age-related mitochondrial dysfunction and inflammation. The ERRs were decreased in both aging human and mouse kidneys and were preserved in aging mice with lifelong caloric restriction (CR). A pan-ERR agonist, SLU-PP-332, was used to treat 21-month-old mice for 8 weeks. In addition, 21-month-old mice were treated with a stimulator of interferon genes (STING) inhibitor, C-176, for 3 weeks. Remarkably, similar to CR, an 8-week treatment with a pan-ERR agonist reversed the age-related increases in albuminuria, podocyte loss, mitochondrial dysfunction, and inflammatory cytokines, via the cyclic GMP-AMP synthase-STING and STAT3 signaling pathways. A 3-week treatment of 21-month-old mice with a STING inhibitor reversed the increases in inflammatory cytokines and the senescence marker, p21/cyclin dependent kinase inhibitor 1A (Cdkn1a), but also unexpectedly reversed the age-related decreases in PPARG coactivator (PGC)-1α, ERRα, mitochondrial complexes, and medium chain acyl coenzyme A dehydrogenase (MCAD) expression. These studies identified ERRs as CR mimetics and as important modulators of age-related mitochondrial dysfunction and inflammation. These findings highlight novel druggable pathways that can be further evaluated to prevent progression of age-related kidney disease.


Asunto(s)
Inflamación , Riñón , Ratones , Humanos , Animales , Anciano , Lactante , Recién Nacido , Riñón/metabolismo , Inflamación/metabolismo , Estrógenos/metabolismo , Mitocondrias/metabolismo , Citocinas/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo
7.
J Biol Chem ; 298(11): 102530, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36209823

RESUMEN

Nonalcoholic steatohepatitis (NASH) is the most common chronic liver disease in the US, partly due to the increasing incidence of metabolic syndrome, obesity, and type 2 diabetes. The roles of bile acids and their receptors, such as the nuclear receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5, on the development of NASH are not fully clear. C57BL/6J male mice fed a Western diet (WD) develop characteristics of NASH, allowing determination of the effects of FXR and TGR5 agonists on this disease. Here we show that the FXR-TGR5 dual agonist INT-767 prevents progression of WD-induced hepatic steatosis, inflammation, and fibrosis, as determined by histological and biochemical assays and novel label-free microscopy imaging techniques, including third harmonic generation, second harmonic generation, and fluorescence lifetime imaging microscopy. Furthermore, we show INT-767 decreases liver fatty acid synthesis and fatty acid and cholesterol uptake, as well as liver inflammation. INT-767 markedly changed bile acid composition in the liver and intestine, leading to notable decreases in the hydrophobicity index of bile acids, known to limit cholesterol and lipid absorption. In addition, INT-767 upregulated expression of liver p-AMPK, SIRT1, PGC-1α, and SIRT3, which are master regulators of mitochondrial function. Finally, we found INT-767 treatment reduced WD-induced dysbiosis of gut microbiota. Interestingly, the effects of INT-767 in attenuating NASH were absent in FXR-null mice, but still present in TGR5-null mice. Our findings support treatment and prevention protocols with the dual FXR-TGR5 agonist INT-767 arrest progression of WD-induced NASH in mice mediated by FXR-dependent, TGR5-independent mechanisms.


Asunto(s)
Diabetes Mellitus Tipo 2 , Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Ácidos y Sales Biliares , Colesterol/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Dieta Occidental , Ácidos Grasos , Fibrosis , Inflamación/complicaciones , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
8.
Am J Physiol Renal Physiol ; 325(6): F792-F810, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37823198

RESUMEN

Farnesoid X receptor (FXR) activation reduces renal inflammation, but the underlying mechanisms remain elusive. Neutrophil extracellular traps (NETs) are webs of DNA formed when neutrophils undergo specialized programmed cell death (NETosis). The signaling lipid sphingosine-1-phosphate (S1P) stimulates NETosis via its receptor on neutrophils. Here, we identify FXR as a negative regulator of NETosis via repressing S1P signaling. We determined the effects of the FXR agonist obeticholic acid (OCA) in mouse models of adenosine phosphoribosyltransferase (APRT) deficiency and Alport syndrome, both genetic disorders that cause chronic kidney disease. Renal FXR activity is greatly reduced in both models, and FXR agonism reduces disease severity. Renal NETosis and sphingosine kinase 1 (Sphk1) expression are increased in diseased mice, and they are reduced by OCA in both models. Genetic deletion of FXR increases Sphk1 expression, and Sphk1 expression correlates with NETosis. Importantly, kidney S1P levels in Alport mice are two-fold higher than controls, and FXR agonism restores them back to baseline. Short-term inhibition of sphingosine synthesis in Alport mice with severe kidney disease reverses NETosis, establishing a causal relationship between S1P signaling and renal NETosis. Finally, extensive NETosis is present in human Alport kidney biopsies (six male, nine female), and NETosis severity correlates with clinical markers of kidney disease. This suggests the potential clinical relevance of the newly identified FXR-S1P-NETosis pathway. In summary, FXR agonism represses kidney Sphk1 expression. This inhibits renal S1P signaling, thereby reducing neutrophilic inflammation and NETosis.NEW & NOTEWORTHY Many preclinical studies have shown that the farnesoid X receptor (FXR) reduces renal inflammation, but the mechanism is poorly understood. This report identifies FXR as a novel regulator of neutrophilic inflammation and NETosis via the inhibition of sphingosine-1-phosphate signaling. Additionally, NETosis severity in human Alport kidney biopsies correlates with clinical markers of kidney disease. A better understanding of this signaling axis may lead to novel treatments that prevent renal inflammation and chronic kidney disease.


Asunto(s)
Trampas Extracelulares , Nefritis , Insuficiencia Renal Crónica , Animales , Femenino , Humanos , Masculino , Ratones , Biomarcadores , Trampas Extracelulares/metabolismo , Inflamación , Insuficiencia Renal Crónica/tratamiento farmacológico , Esfingosina/metabolismo
9.
Int J Mol Sci ; 23(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35628485

RESUMEN

Sodium-glucose co-transporters (SGLTs) serve to reabsorb glucose in the kidney. Recently, these transporters, mainly SGLT2, have emerged as new therapeutic targets for patients with diabetes and kidney disease; by inhibiting glucose reabsorption, they promote glycosuria, weight loss, and improve glucose tolerance. They have also been linked to cardiac protection and mitigation of liver injury. However, to date, the mechanism(s) by which SGLT2 inhibition promotes systemic improvements is not fully appreciated. Using an obese TallyHo mouse model which recapitulates the human condition of diabetes and nonalcoholic fatty liver disease (NAFLD), we sought to determine how modulation of renal glucose handling impacts liver structure and function. Apart from an attenuation of hyperglycemia, Empagliflozin was found to decrease circulating triglycerides and lipid accumulation in the liver in male TallyHo mice. This correlated with lowered hepatic cholesterol esters. Using in vivo MRI analysis, we further determined that the reduction in hepatic steatosis in male TallyHo mice was associated with an increase in nuchal white fat indicative of "healthy adipose expansion". Notably, this whitening of the adipose came at the expense of brown adipose tissue. Collectively, these data indicate that the modulation of renal glucose handling has systemic effects and may be useful as a treatment option for NAFLD and steatohepatitis.


Asunto(s)
Tejido Adiposo Blanco , Diabetes Mellitus , Enfermedad del Hígado Graso no Alcohólico , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Tejido Adiposo Pardo , Tejido Adiposo Blanco/crecimiento & desarrollo , Animales , Compuestos de Bencidrilo/farmacología , Glucosa/metabolismo , Glucósidos/farmacología , Humanos , Masculino , Ratones , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología
10.
J Biol Chem ; 295(16): 5204-5205, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32303644

RESUMEN

ATP plays important roles outside the cell, but the mechanism by which it is arrives in the extracellular environment is not clear. Dunn et al now show that decreases in cellular cholesterol levels mediated by the ABCG1 transporter increase ATP release by volume-regulated anion channels under hypotonic conditions. Importantly, these results may imply that cells that handle cholesterol differently might experience differential extracellular ATP release during hypotonicity.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Adenosina Trifosfato , Aniones , Colesterol , Aprendizaje
11.
J Biol Chem ; 295(14): 4733-4747, 2020 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-32075905

RESUMEN

Nonalcoholic fatty liver disease is a rapidly rising problem in the 21st century and is a leading cause of chronic liver disease that can lead to end-stage liver diseases, including cirrhosis and hepatocellular cancer. Despite this rising epidemic, no pharmacological treatment has yet been established to treat this disease. The rapidly increasing prevalence of nonalcoholic fatty liver disease and its aggressive form, nonalcoholic steatohepatitis (NASH), requires novel therapeutic approaches to prevent disease progression. Alterations in microbiome dynamics and dysbiosis play an important role in liver disease and may represent targetable pathways to treat liver disorders. Improving microbiome properties or restoring normal bile acid metabolism may prevent or slow the progression of liver diseases such as NASH. Importantly, aberrant systemic circulation of bile acids can greatly disrupt metabolic homeostasis. Bile acid sequestrants are orally administered polymers that bind bile acids in the intestine, forming nonabsorbable complexes. Bile acid sequestrants interrupt intestinal reabsorption of bile acids, decreasing their circulating levels. We determined that treatment with the bile acid sequestrant sevelamer reversed the liver injury and prevented the progression of NASH, including steatosis, inflammation, and fibrosis in a Western diet-induced NASH mouse model. Metabolomics and microbiome analysis revealed that this beneficial effect is associated with changes in the microbiota population and bile acid composition, including reversing microbiota complexity in cecum by increasing Lactobacillus and decreased Desulfovibrio The net effect of these changes was improvement in liver function and markers of liver injury and the positive effects of reversal of insulin resistance.


Asunto(s)
Ácidos y Sales Biliares/metabolismo , Dieta Occidental , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/patología , Sevelamer/farmacología , Animales , Ácidos y Sales Biliares/química , Ciego/microbiología , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colesterol/análisis , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Modelos Animales de Enfermedad , Heces/química , Microbioma Gastrointestinal/efectos de los fármacos , Lactobacillus/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Sevelamer/química , Sevelamer/uso terapéutico , Índice de Severidad de la Enfermedad , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
12.
Am J Physiol Renal Physiol ; 320(6): F1133-F1151, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33870733

RESUMEN

Although renin-angiotensin blockade has shown beneficial outcomes in patients with diabetes, renal injury progresses in most of these patients. Therefore, there remains a need for new therapeutic targets in diabetic kidney disease. Enhancement of vasoactive peptides, such as natriuretic peptides, via neprilysin inhibition, has been a new approach. A first-in-class drug, sacubitril/valsartan (Sac/Val), a combination of the angiotensin II receptor blocker Val and neprilysin inhibitor prodrug Sac, has been shown to be more effective than renin-angiotensin blockade alone in the treatment of heart failure with reduced ejection fraction. In this study, we tested the effects of Sac/Val in diabetic kidney disease. We administered Sac/Val or Val to two type 2 diabetes mouse models, db/db mice or KKAy mice. After 3 mo of treatment, Sac/Val attenuated the progression of proteinuria, glomerulosclerosis, and podocyte loss in both models of diabetic mice. Val shared a similar improvement but to a lesser degree in some parameters compared with Sac/Val. Sac/Val but not Val decreased the blood glucose level in KKAy mice. Sac/Val exerted renal protection through coordinated effects on antioxidative stress and anti-inflammation. In both diabetic models, we revealed a new mechanism to cause inflammation, self-DNA-activated cGMP-AMP synthase-stimulator of interferon genes (cGAS-STING) signaling, which was activated in diabetic kidneys and prevented by Sac/Val or Val treatment. The present data suggest that Sac/Val has sufficient therapeutical potential to counter the pathophysiological effects of diabetic kidney disease, and its effectiveness could be better than Val alone.NEW & NOTEWORTHY The first-in-class drug sacubitril/valsartan, a combination of the angiotensin II receptor blocker valsartan and neprilysin inhibitor sacubitril, was tested for its effects in diabetic kidney disease using db/db mice and KKAy mice. We found that Sac/Val has sufficient therapeutical potential to counter the pathophysiological effects of diabetic kidney disease. We further revealed a new mechanism to cause inflammation, self-DNA-activated cGAS-STING signaling, which was activated in diabetic kidneys and prevented by sacubitril/valsartan or valsartan treatment.


Asunto(s)
Aminobutiratos/farmacología , Compuestos de Bifenilo/farmacología , Nefropatías Diabéticas/tratamiento farmacológico , Valsartán/farmacología , Albuminuria/tratamiento farmacológico , Antagonistas de Receptores de Angiotensina/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Combinación de Medicamentos , Inflamación/prevención & control , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Estrés Oxidativo , Valsartán/administración & dosificación
13.
Am J Pathol ; 190(7): 1565-1579, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32304697

RESUMEN

Mitochondria regulate ATP production, metabolism, and cell death. Alterations in mitochondrial DNA (mtDNA) sequence and copy number are implicated in aging and organ dysfunction in diverse inherited and sporadic diseases. Because most measurements of mtDNA use homogenates of complex tissues, little is known about cell-type-specific mtDNA copy number heterogeneity in normal physiology, aging, and disease. Thus, the precise cell types whose loss of mitochondrial activity and altered mtDNA copy number that result in organ dysfunction in aging and disease have often not been clarified. Here, an in situ hybridization approach to generate a single-cell-resolution atlas of mtDNA content in mammalian tissues was validated. In hierarchically organized self-renewing tissues, higher levels of mtDNA were observed in stem/proliferative compartments compared with differentiated compartments. Striking zonal patterns of mtDNA levels in the liver reflected the known oxygen tension gradient. In the kidney, proximal and distal tubules had markedly higher mtDNA levels compared with cells within glomeruli and collecting duct epithelial cells. In mice, decreased mtDNA levels were visualized in renal tubules as a function of aging, which was prevented by calorie restriction. This study provides a novel approach for quantifying species- and cell-type-specific mtDNA copy number and dynamics in any normal or diseased tissue that can be used for monitoring the effects of interventions in animal and human studies.


Asunto(s)
Proliferación Celular , ADN Mitocondrial/análisis , Células Madre , Envejecimiento/fisiología , Animales , Atlas como Asunto , Variaciones en el Número de Copia de ADN , Femenino , Humanos , Hibridación in Situ/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Kidney Int ; 98(5): 1341-1346, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32475606

RESUMEN

Diabetic kidney disease continues to be the leading cause of chronic kidney disease, often advancing to end stage kidney disease. In addition to the well characterized glomerular alterations including mesangial expansion, podocyte injury, and glomerulosclerosis, tubulointerstitial fibrosis is also an important component of diabetic kidney injury. Similarly, tubulointerstitial fibrosis is a critical component of any chronic kidney injury. Therefore, sensitive and quantitative identification of tubulointerstitial fibrosis is critical for the assessment of long-term prognosis of kidney disease. Here, we employed phasor approach to fluorescence lifetime imaging, commonly known as FLIM, to understand tissue heterogeneity and calculate changes in the tissue autofluorescence lifetime signatures due to diabetic kidney disease. FLIM imaging was performed on cryostat sections of snap-frozen biopsy material of patients with diabetic nephropathy. There was an overall increase in phase lifetime (τphase) with increased disease severity. Multicomponent phasor analysis shows the distinctive differences between the different disease states. Thus, phasor autofluorescence lifetime imaging, which does not involve any staining, can be used to understand and evaluate the severity of kidney disease.


Asunto(s)
Riñón , Imagen Óptica , Biomarcadores , Fibrosis , Humanos , Riñón/diagnóstico por imagen , Riñón/patología , Glomérulos Renales
15.
Pflugers Arch ; 471(4): 533-542, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30613865

RESUMEN

The cloning of the renal NaPi-2a (SLC34A1) and NaPi-2c (SLC34A3) phosphate transporters has made it possible to characterize the molecular and biophysical regulation of renal proximal tubular reabsorption of inorganic phosphate (Pi). Dietary factors, such as Pi and K, and several hormones and phosphatonins, including parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and glucocorticoids, regulate the transporters through various transcriptional, translational, and post-translational mechanisms that involve acute trafficking via endocytosis or exocytosis, interactions with PDZ domain proteins, lipid microdomains, and diffusion and clustering in the apical brush border membrane. The visualization of these trafficking events by means of novel microscopy techniques that includes fluorescence lifetime imaging microscopy (FLIM), Förster resonance energy transfer (FRET), fluctuation correlation spectroscopy (FCS), and modulation tracking (MT), is the primary focus of this review.


Asunto(s)
Membrana Celular/metabolismo , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo II/metabolismo , Animales , Factor-23 de Crecimiento de Fibroblastos , Humanos , Túbulos Renales Proximales/metabolismo , Fosfatos/metabolismo , Transporte de Proteínas/fisiología
16.
Am J Physiol Renal Physiol ; 316(4): F732-F742, 2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30649890

RESUMEN

In inflammatory diseases, the 5-lipoxygenase (5-LO) pathway contributes to epithelial damage and fibrosis by catalyzing the production of leukotrienes (LTs). Antagonists of the 5-LO pathway are currently approved for use in patients and are well tolerated. We found that expression of 5-LO is strongly induced in three models of chronic kidney disease: unilateral ureteral obstruction (UUO), folate nephropathy, and an orthologous mouse model of polycystic kidney disease. Immunohistochemistry showed that macrophages are the dominant source of 5-LO. Zileuton, a US Food and Drug Administration-approved antagonist of 5-LO, significantly reduced fibrosis at 7 and 14 days after UUO; these findings were confirmed using a genetically modified [5-LO-associated protein-knockout ( Alox5ap-/-)] mouse strain. Inhibition of 5-LO did not appear to change infiltration of leukocytes after UUO as measured by flow cytometry. However, fluorescence-lifetime imaging microscopy showed that 5-LO inhibitors reversed the glycolytic switch in renal tubular epithelial cells after UUO. Two downstream enzymes of 5-LO, LTA4 hydrolase (LTA4H) and LTC4 synthase (LTC4S), are responsible for the synthesis of LTB4 and cysteinyl LTs, respectively. Fibrosis was reduced after UUO in Ltc4s-/-, but not Lta4h-/-, mice. In contrast, using the folate nephropathy model, we found reduced fibrosis and improved renal function in both Ltc4s-/- and Lta4h-/- mice. In summary, our studies suggest that manipulation of the 5-LO pathway may represent a novel treatment approach for chronic kidney disease.


Asunto(s)
Riñón/patología , Inhibidores de la Lipooxigenasa/uso terapéutico , Insuficiencia Renal Crónica/tratamiento farmacológico , Insuficiencia Renal Crónica/patología , Animales , Araquidonato 5-Lipooxigenasa/genética , Fibrosis , Túbulos Renales/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Renales Poliquísticas/tratamiento farmacológico , Receptores de Leucotrienos/genética , Receptores de Leucotrienos/metabolismo , Insuficiencia Renal Crónica/inducido químicamente , Transducción de Señal/efectos de los fármacos , Obstrucción Ureteral/tratamiento farmacológico , Obstrucción Ureteral/etiología
17.
Cell Physiol Biochem ; 52(4): 838-849, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30946558

RESUMEN

BACKGROUND/AIMS: Phosphate (Pi) homeostasis is controlled by the intestine and kidneys whose capacities to transport Pi are under endocrine control. Several studies point to intestinal absorption as a therapeutic target to modulate Pi homeostasis. The small intestine is responsible for almost all Pi absorption in the gut, a process involving Na+-dependent and independent mechanisms. Three Na+-dependent Pi cotransporters have been described in the gastrointestinal tract: NaPi-IIb (a SLC34 member) and Pit-1 and Pit-2 (SLC20 transporters). We recently analysed the acute hormonal and renal response to intragastric (i.g) and intravenous (i.v) Pi-loading. This study demonstrated that the kidney quickly adapts to Pi-loading, with changes manifesting earlier in the i.v than i.g intervention. The aim of this work was to extend the previous studies in order to investigate the acute adaptation of intestinal transport of Pi and expression of intestinal Na+/Pi-cotransporters in response to acute Pi-loading. METHODS: Duodenal and jejunal mucosa was collected 40 minutes and/or 4 hours after administration (i.g and i.v) of either NaCl or Pi to anaesthetized rats. Uptakes of Pi and protein expression of Na+/Pi cotransporters were measured in brush border membrane vesicles (BBMV); the cotransporters' mRNA abundance was quantified by real-time PCR in total RNA extracted from whole mucosa. RESULTS: Pi-loading did not modify transport of Pi in duodenal and jejunal BBMV 4 hours after treatment. Administration of Pi did not alter either the intestinal expression of NaPi-IIb and Pit-2 mRNAs, whereas Pit-1 mRNA expression was only regulated (diminished) in duodenum collected 4 hours after i.g Pi-loading. NaPi-IIb protein expression was decreased in duodenum 4 hours upon i.v Pi infusion, whereas the duodenal and jejunal abundance of the cotransporter was unaffected by i.g administration of Pi. CONCLUSION: Together, these data suggest that the intestine responds acutely to Pi-loading, though this response seems slower than the renal adaptation.


Asunto(s)
Regulación hacia Abajo/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Fosfatos/farmacología , Administración Intravenosa , Animales , Glucosa/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/metabolismo , Masculino , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIb/metabolismo , Factor de Transcripción Pit-1/genética , Factor de Transcripción Pit-1/metabolismo
18.
Exp Physiol ; 104(1): 149-161, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30379374

RESUMEN

NEW FINDINGS: What is the central question of this study? The opossum kidney (OK) cell line is the main in vitro model of proximal tubular Pi transport, but it is incomplete because only the NaPiIIa Pi transporter has been identified. What is the main finding and its importance? We have cloned and characterized the Pi transporters NaPiIIc, PiT1 and PiT2 from OK cells and have analysed the relevance of the four transporters to Pi transport. All four transporters are involved in the upregulated Pi transport of cells incubated using a low-Pi medium, and only PiT1 is not involved in basal transport. ABSTRACT: The apical membrane of renal proximal tubular epithelial cells is the main controller of phosphate homeostasis, because it determines the rate of urinary Pi excretion. The opossum kidney (OK) cell line is a good model for studying this function, but only NaPiIIa (NaPi4) has been identified to date as a Pi transporter in this cell line. In this work, we have identified three additional Pi transporters that are present in OK cells: NaPiIIc, PiT1 and PiT2. All three sequences are similar to the corresponding orthologues, but PiT1 is missing the first transmembrane domain. Confluent cells exhibit characteristics of type II Pi transport, which increases with alkalinity and is inhibited by phosphonoformic acid (PFA), and they mainly express NaPiIIa and NaPiIIc, with a low abundance of PiT1 and PiT2. Proliferating cells show a higher expression of PiT1 and PiT2 and a low expression of NaPiIIa and NaPiIIc. Adaptation to a low Pi concentration for 24 h induces the expression of RNA from NaPiIIa and NaPiIIc, which is not prevented by actinomycin D. Small interfering RNA transfections revealed that PiT1 is not necessary for Pi transport, but it is necessary for adaptation to a low Pi , similar to NaPiIIa and PiT2. Our study reveals the complexity of the coordination between the four Pi transporters, the variability of RNA expression according to confluence and the heterogeneous correlation between Pi transport and RNA levels.


Asunto(s)
Transporte Biológico/fisiología , Riñón/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Zarigüeyas/metabolismo , Animales , Línea Celular , Membrana Celular/metabolismo , Fosfatos/metabolismo , Regulación hacia Arriba
19.
J Am Soc Nephrol ; 29(11): 2658-2670, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30305310

RESUMEN

BACKGROUND: The bile acid-activated receptors, including the membrane G protein-coupled receptor TGR5 and nuclear farnesoid X receptor (FXR), have roles in kidney diseases. In this study, we investigated the role of TGR5 in renal water handling and the underlying molecular mechanisms. METHODS: We used tubule suspensions of inner medullary collecting duct (IMCD) cells from rat kidneys to investigate the effect of TGR5 signaling on aquaporin-2 (AQP2) expression, and examined the in vivo effects of TGR5 in mice with lithium-induced nephrogenic diabetes insipidus (NDI) and Tgr5 knockout (Tgr5-/-) mice. RESULTS: Activation of TGR5 by lithocholic acid (LCA), an endogenous TGR5 ligand, or INT-777, a synthetic TGR5-specific agonist, induced AQP2 expression and intracellular trafficking in rat IMCD cells via a cAMP-protein kinase A signaling pathway. In mice with NDI, dietary supplementation with LCA markedly decreased urine output and increased urine osmolality, which was associated with significantly upregulated AQP2 expression in the kidney inner medulla. Supplementation with endogenous FXR agonist had no effect. In primary IMCD suspensions from lithium-treated rats, treatment with INT-767 (FXR and TGR5 dual agonist) or INT-777, but not INT-747 (FXR agonist), increased AQP2 expression. Tgr5-/- mice exhibited an attenuated ability to concentrate urine in response to dehydration, which was associated with decreased AQP2 expression in the kidney inner medulla. In lithium-treated Tgr5-/- mice, LCA treatment failed to prevent reduction of AQP2 expression. CONCLUSIONS: TGR5 stimulation increases renal AQP2 expression and improves impaired urinary concentration in lithium-induced NDI. TGR5 is thus involved in regulating water metabolism in the kidney.


Asunto(s)
Acuaporina 2/metabolismo , Túbulos Renales Colectores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Agua/metabolismo , Animales , Acuaporina 2/genética , Ácidos y Sales Biliares/farmacología , Células Cultivadas , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacología , Ácidos Cólicos/farmacología , Diabetes Insípida Nefrogénica/metabolismo , Homeostasis , Túbulos Renales Colectores/efectos de los fármacos , Ácido Litocólico/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiencia , Receptores Acoplados a Proteínas G/genética , Transducción de Señal
20.
J Am Soc Nephrol ; 29(1): 118-137, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29089371

RESUMEN

Bile acids are ligands for the nuclear hormone receptor farnesoid X receptor (FXR) and the G protein-coupled receptor TGR5. We have shown that FXR and TGR5 have renoprotective roles in diabetes- and obesity-related kidney disease. Here, we determined whether these effects are mediated through differential or synergistic signaling pathways. We administered the FXR/TGR5 dual agonist INT-767 to DBA/2J mice with streptozotocin-induced diabetes, db/db mice with type 2 diabetes, and C57BL/6J mice with high-fat diet-induced obesity. We also examined the individual effects of the selective FXR agonist obeticholic acid (OCA) and the TGR5 agonist INT-777 in diabetic mice. The FXR agonist OCA and the TGR5 agonist INT-777 modulated distinct renal signaling pathways involved in the pathogenesis and treatment of diabetic nephropathy. Treatment of diabetic DBA/2J and db/db mice with the dual FXR/TGR5 agonist INT-767 improved proteinuria and prevented podocyte injury, mesangial expansion, and tubulointerstitial fibrosis. INT-767 exerted coordinated effects on multiple pathways, including stimulation of a signaling cascade involving AMP-activated protein kinase, sirtuin 1, PGC-1α, sirtuin 3, estrogen-related receptor-α, and Nrf-1; inhibition of endoplasmic reticulum stress; and inhibition of enhanced renal fatty acid and cholesterol metabolism. Additionally, in mice with diet-induced obesity, INT-767 prevented mitochondrial dysfunction and oxidative stress determined by fluorescence lifetime imaging of NADH and kidney fibrosis determined by second harmonic imaging microscopy. These results identify the renal signaling pathways regulated by FXR and TGR5, which may be promising targets for the treatment of nephropathy in diabetes and obesity.


Asunto(s)
Diabetes Mellitus Experimental/metabolismo , Nefropatías Diabéticas/metabolismo , Nefropatías Diabéticas/prevención & control , Túbulos Renales/patología , Obesidad/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Albuminuria/etiología , Animales , Ácidos y Sales Biliares/farmacología , Ácido Quenodesoxicólico/análogos & derivados , Ácido Quenodesoxicólico/farmacología , Colesterol/metabolismo , Ácidos Cólicos/farmacología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Nefropatías Diabéticas/complicaciones , Nefropatías Diabéticas/patología , Progresión de la Enfermedad , Estrés del Retículo Endoplásmico , Fibrosis , Mesangio Glomerular/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Mitocondrias/metabolismo , Obesidad/complicaciones , Estrés Oxidativo , Podocitos/patología , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/agonistas , Receptores Citoplasmáticos y Nucleares/genética , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Triglicéridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA