Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 173(7): 1783-1795.e14, 2018 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-29731169

RESUMEN

Anti-HIV-1 envelope broadly neutralizing monoclonal antibodies (bNAbs) isolated from memory B cells may not fully represent HIV-1-neutralizing profiles measured in plasma. Accordingly, we characterized near-pan-neutralizing antibodies extracted directly from the plasma of two "elite neutralizers." Circulating anti-gp120 polyclonal antibodies were deconvoluted using proteomics to guide lineage analysis of bone marrow plasma cells. In both subjects, a single lineage of anti-CD4-binding site (CD4bs) antibodies explained the plasma-neutralizing activity. Importantly, members of these lineages potently neutralized 89%-100% of a multi-tier 117 pseudovirus panel, closely matching the specificity and breadth of the circulating antibodies. X-ray crystallographic analysis of one monoclonal, N49P7, suggested a unique ability to bypass the CD4bs Phe43 cavity, while reaching deep into highly conserved residues of Layer 3 of the gp120 inner domain, likely explaining its extreme potency and breadth. Further direct analyses of plasma anti-HIV-1 bNAbs should provide new insights for developing antibody-based antiviral agents and vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/metabolismo , Secuencia de Aminoácidos , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/química , Sitios de Unión , Antígenos CD4/química , Antígenos CD4/metabolismo , Cristalografía por Rayos X , Anticuerpos Anti-VIH/sangre , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/genética , Humanos , Simulación de Dinámica Molecular , Unión Proteica , Estructura Terciaria de Proteína , ARN Viral/sangre , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/inmunología
2.
Immunity ; 52(2): 388-403.e12, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32023489

RESUMEN

Structural principles underlying the composition of protective antiviral monoclonal antibody (mAb) cocktails are poorly defined. Here, we exploited antibody cooperativity to develop a therapeutic mAb cocktail against Ebola virus. We systematically analyzed the antibody repertoire in human survivors and identified a pair of potently neutralizing mAbs that cooperatively bound to the ebolavirus glycoprotein (GP). High-resolution structures revealed that in a two-antibody cocktail, molecular mimicry was a major feature of mAb-GP interactions. Broadly neutralizing mAb rEBOV-520 targeted a conserved epitope on the GP base region. mAb rEBOV-548 bound to a glycan cap epitope, possessed neutralizing and Fc-mediated effector function activities, and potentiated neutralization by rEBOV-520. Remodeling of the glycan cap structures by the cocktail enabled enhanced GP binding and virus neutralization. The cocktail demonstrated resistance to virus escape and protected non-human primates (NHPs) against Ebola virus disease. These data illuminate structural principles of antibody cooperativity with implications for development of antiviral immunotherapeutics.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Ebolavirus/inmunología , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/inmunología , Animales , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/uso terapéutico , Línea Celular , Modelos Animales de Enfermedad , Quimioterapia Combinada , Epítopos , Femenino , Glicoproteínas/química , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Fragmentos Fab de Inmunoglobulinas/inmunología , Macaca mulatta , Masculino , Ratones , Ratones Endogámicos BALB C , Imitación Molecular , Conformación Proteica
3.
Immunity ; 49(2): 363-374.e10, 2018 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-30029854

RESUMEN

Ebolaviruses cause severe disease in humans, and identification of monoclonal antibodies (mAbs) that are effective against multiple ebolaviruses are important for therapeutics development. Here we describe a distinct class of broadly neutralizing human mAbs with protective capacity against three ebolaviruses infectious for humans: Ebola (EBOV), Sudan (SUDV), and Bundibugyo (BDBV) viruses. We isolated mAbs from human survivors of ebolavirus disease and identified a potent mAb, EBOV-520, which bound to an epitope in the glycoprotein (GP) base region. EBOV-520 efficiently neutralized EBOV, BDBV, and SUDV and also showed protective capacity in relevant animal models of these infections. EBOV-520 mediated protection principally by direct virus neutralization and exhibited multifunctional properties. This study identified a potent naturally occurring mAb and defined key features of the human antibody response that may contribute to broad protection. This multifunctional mAb and related clones are promising candidates for development as broadly protective pan-ebolavirus therapeutic molecules.


Asunto(s)
Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/farmacología , Ebolavirus/inmunología , Glicoproteínas/inmunología , Fiebre Hemorrágica Ebola/inmunología , Células 3T3 , Adulto , Animales , Células CHO , Línea Celular , Chlorocebus aethiops , Cricetulus , Modelos Animales de Enfermedad , Drosophila , Femenino , Hurones , Cobayas , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/virología , Humanos , Inmunoglobulina G/inmunología , Células Jurkat , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Células THP-1 , Células Vero
4.
J Infect Dis ; 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38365441

RESUMEN

Generation of a stable long-lived plasma cell (LLPC) population is the sine qua non of durable antibody responses after vaccination or infection. We studied 20 individuals with a prior coronavirus disease 2019 infection and characterized the antibody response using bone marrow aspiration and plasma samples. We noted deficient generation of spike-specific LLPCs in the bone marrow after severe acute respiratory syndrome coronavirus 2 infection. Furthermore, while the regression model explained 98% of the observed variance in anti-tetanus immunoglobulin G levels based on LLPC enzyme-linked immunospot assay, we were unable to fit the same model with anti-spike antibodies, again pointing to the lack of LLPC contribution to circulating anti-spike antibodies.

5.
Retrovirology ; 18(1): 35, 2021 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-34717659

RESUMEN

BACKGROUND: The critical role of antibody Fc-mediated effector functions in immune defense has been widely reported in various viral infections. These effector functions confer cellular responses through engagement with innate immune cells. The precise mechanism(s) by which immunoglobulin G (IgG) Fc domain and cognate receptors may afford protection are poorly understood, however, in the context of HIV/SHIV infections. Many different in vitro assays have been developed and utilized to measure effector functions, but the extent to which these assays capture distinct antibody activities has not been fully elucidated. RESULTS: In this study, six Fc-mediated effector function assays and two biophysical antibody profiling assays were performed on a common set of samples from HIV-1 infected and vaccinated subjects. Biophysical antibody profiles supported robust prediction of diverse IgG effector functions across distinct Fc-mediated effector function assays. While a number of assays showed correlated activities, supervised machine learning models indicated unique antibody features as primary contributing factors to the associated effector functions. Additional experiments established the mechanistic relevance of relationships discovered using this unbiased approach. CONCLUSIONS: In sum, this study provides better resolution on the diversity and complexity of effector function assays, offering a clearer perspective into this family of antibody mechanisms of action to inform future HIV-1 treatment and vaccination strategies.


Asunto(s)
Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Fragmentos Fc de Inmunoglobulinas/química , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Infecciones por VIH/inmunología , Humanos
6.
J Virol ; 94(5)2020 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-31776284

RESUMEN

We have recently shown that MUC16, a component of the glycocalyx of some mucosal barriers, has elevated binding to the G0 glycoform of the Fc portion of IgG. Therefore, IgG from patients chronically infected with human immunodeficiency virus (HIV), who typically exhibit increased amounts of G0 glycoforms, showed increased MUC16 binding compared to uninfected controls. Using the rhesus macaque simian immunodeficiency virus SIVmac251 model, we can compare plasma antibodies before and after chronic infection. We find increased binding of IgG to MUC16 after chronic SIV infection. Antibodies isolated for tight association with MUC16 (MUC16-eluted antibodies) show reduced FcγR engagement and antibody-dependent cellular cytotoxicity (ADCC) activity. The glycosylation profile of these IgGs was consistent with a decrease in FcγR engagement and subsequent ADCC effector function, as they contain a decrease in afucosylated bisecting glycoforms that preferentially bind FcγRs. Testing of the SIV antigen specificity of IgG from SIV-infected macaques revealed that the MUC16-eluted antibodies were enriched for certain specific epitopes, including regions of gp41 and gp120. This enrichment of specific antigen responses for fucosylated bisecting glycoforms and the subsequent association with MUC16 suggests that the immune response has the potential to direct specific epitope responses to localize to the glycocalyx through interaction with this specific mucin.IMPORTANCE Understanding how antibodies are distributed in the mucosal environment is valuable for developing a vaccine to block HIV infection. Here, we study an IgG binding activity in MUC16, potentially representing a new IgG effector function that would concentrate certain antibodies within the glycocalyx to trap pathogens before they can reach the underlying columnar epithelial barriers. These studies reveal that rhesus macaque IgG responses during chronic SIV infection generate increased antibodies that bind MUC16, and interestingly, these MUC16-tethered antibodies are enriched for binding to certain antigens. Therefore, it may be possible to direct HIV vaccine-generated responses to associate with MUC16 and enhance the antibody's ability to mediate immune exclusion by trapping virions within the glycocalyx and preventing the virus from reaching immune target cells within the mucosa. This concept will ultimately have to be tested in the rhesus macaque model, which is shown here to have MUC16-targeted antigen responses.


Asunto(s)
Antígeno Ca-125/inmunología , Epítopos/inmunología , Inmunoglobulina G/inmunología , Proteínas de la Membrana/inmunología , Virus de la Inmunodeficiencia de los Simios/inmunología , Vacunas contra el SIDA/inmunología , Animales , Anticuerpos Antivirales/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Humanos , Inmunoglobulina G/sangre , Mucinas/inmunología
7.
BMC Biol ; 18(1): 91, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32693837

RESUMEN

BACKGROUND: The binding of HIV-1 Envelope glycoproteins (Env) to host receptor CD4 exposes vulnerable conserved epitopes within the co-receptor binding site (CoRBS) which are required for the engagement of either CCR5 or CXCR4 co-receptor to allow HIV-1 entry. Antibodies against this region have been implicated in the protection against HIV acquisition in non-human primate (NHP) challenge studies and found to act synergistically with antibodies of other specificities to deliver effective Fc-mediated effector function against HIV-1-infected cells. Here, we describe the structure and function of N12-i2, an antibody isolated from an HIV-1-infected individual, and show how the unique structural features of this antibody allow for its effective Env recognition and Fc-mediated effector function. RESULTS: N12-i2 binds within the CoRBS utilizing two adjacent sulfo-tyrosines (TYS) for binding, one of which binds to a previously unknown TYS binding pocket formed by gp120 residues of high sequence conservation among HIV-1 strains. Structural alignment with gp120 in complex with the co-receptor CCR5 indicates that the new pocket corresponds to TYS at position 15 of CCR5. In addition, structure-function analysis of N12-i2 and other CoRBS-specific antibodies indicates a link between modes of antibody binding within the CoRBS and Fc-mediated effector activities. The efficiency of antibody-dependent cellular cytotoxicity (ADCC) correlated with both the level of antibody binding and the mode of antibody attachment to the epitope region, specifically with the way the Fc region was oriented relative to the target cell surface. Antibodies with poor Fc access mediated the poorest ADCC whereas those with their Fc region readily accessible for interaction with effector cells mediated the most potent ADCC. CONCLUSION: Our data identify a previously unknown binding site for TYS within the assembled CoRBS of the HIV-1 virus. In addition, our combined structural-modeling-functional analyses provide new insights into mechanisms of Fc-effector function of antibodies against HIV-1, in particular, how antibody binding to Env antigen affects the efficiency of ADCC response.


Asunto(s)
VIH-1/fisiología , Receptores del VIH/genética , Anticuerpos Monoclonales/metabolismo , Anticuerpos Antivirales/metabolismo , Humanos , Receptores del VIH/metabolismo
8.
Immunol Rev ; 275(1): 271-284, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28133809

RESUMEN

It is clear that antibodies can play a pivotal role in preventing the transmission of HIV-1 and large efforts to identify an effective antibody-based vaccine to quell the epidemic. Shortly after HIV-1 was discovered as the cause of AIDS, the search for epitopes recognized by neutralizing antibodies became the driving strategy for an antibody-based vaccine. Neutralization escape variants were discovered shortly thereafter, and, after almost three decades of investigation, it is now known that autologous neutralizing antibody responses and their selection of neutralization resistant HIV-1 variants can lead to broadly neutralizing antibodies in some infected individuals. This observation drives an intensive effort to identify a vaccine to elicit broadly neutralizing antibodies. In contrast, there has been less systematic study of antibody specificities that must rely mainly or exclusively on other protective mechanisms, although non-human primate (NHP) studies as well as the RV144 vaccine trial indicate that non-neutralizing antibodies can contribute to protection. Here we propose a novel strategy to identify new epitope targets recognized by these antibodies for which viral escape is unlikely or impossible.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Anti-VIH/uso terapéutico , Infecciones por VIH/inmunología , VIH-1/inmunología , Animales , Ensayos Clínicos como Asunto , Epítopos/inmunología , Antígenos VIH/inmunología , Humanos , Evasión Inmune , Primates
9.
Mol Syst Biol ; 15(5): e8747, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31048360

RESUMEN

Characterizing the antigen-binding and innate immune-recruiting properties of the humoral response offers the chance to obtain deeper insights into mechanisms of protection than revealed by measuring only overall antibody titer. Here, a high-throughput, multiplexed Fab-Fc Array was employed to profile rhesus macaques vaccinated with a gp120-CD4 fusion protein in combination with different genetically encoded adjuvants, and subsequently subjected to multiple heterologous simian immunodeficiency virus (SIV) challenges. Systems analyses modeling protection and adjuvant differences using Fab-Fc Array measurements revealed a set of correlates yielding strong and robust predictive performance, while models based on measurements of response magnitude alone exhibited significantly inferior performance. At the same time, rendering Fab-Fc measurements mathematically independent of titer had relatively little impact on predictive performance. Similar analyses for a distinct SIV vaccine study also showed that Fab-Fc measurements performed significantly better than titer. These results suggest that predictive modeling with measurements of antibody properties can provide detailed correlates with robust predictive power, suggest directions for vaccine improvement, and potentially enable discovery of mechanistic associations.


Asunto(s)
Anticuerpos Antivirales/inmunología , Fragmentos de Inmunoglobulinas/inmunología , Vacunas contra el SIDAS/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/prevención & control , Virus de la Inmunodeficiencia de los Simios/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Humanos , Inmunidad Humoral , Inmunoglobulina G/inmunología , Macaca mulatta , Glicoproteínas de Membrana/inmunología , Análisis Multivariante , Proteínas del Envoltorio Viral/inmunología
10.
Proc Natl Acad Sci U S A ; 114(46): E9893-E9902, 2017 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-29087304

RESUMEN

A complete picture of HIV antigenicity during early replication is needed to elucidate the full range of options for controlling infection. Such information is frequently gained through analyses of isolated viral envelope antigens, host CD4 receptors, and cognate antibodies. However, direct examination of viral particles and virus-cell interactions is now possible via advanced microscopy techniques and reagents. Using such methods, we recently determined that CD4-induced (CD4i) transition state epitopes in the HIV surface antigen, gp120, while not exposed on free particles, rapidly become immunoreactive upon virus-cell binding. Here, we use 3D direct stochastic optical reconstruction microscopy (dSTORM) to show that certain CD4i epitopes specific to transition state structures are exposed across the surface of cell-bound virions, thus explaining their immunoreactivity. Moreover, such structures and their marker epitopes are dispersed to regions of virions distal to CD4 contact. We further show that the appearance and positioning of distal CD4i exposures is partially dependent on Gag maturation and intact matrix-gp41 interactions within the virion. Collectively, these observations provide a unique perspective of HIV during early replication. These features may define unique insights for understanding how humoral responses target virions and for developing related antiviral countermeasures.


Asunto(s)
Epítopos/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , Infecciones por VIH/virología , VIH-1/inmunología , Virión/inmunología , Acoplamiento Viral , Antígenos CD4/metabolismo , Recuento de Linfocito CD4 , Línea Celular , Epítopos/química , Anticuerpos Anti-VIH/inmunología , Antígenos VIH/inmunología , Proteína gp120 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/química , Proteína gp41 de Envoltorio del VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/química , Humanos , Virión/química , Virión/metabolismo
11.
Cytometry A ; 93(4): 436-447, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29498807

RESUMEN

Several different assay methodologies have been described for the evaluation of HIV or SIV-specific antibody-dependent cell-mediated cytotoxicity (ADCC). Commonly used assays measure ADCC by evaluating effector cell functions, or by detecting elimination of target cells. Signaling through Fc receptors, cellular activation, cytotoxic granule exocytosis, or accumulation of cytolytic and immune signaling factors have been used to evaluate ADCC at the level of the effector cells. Alternatively, assays that measure killing or loss of target cells provide a direct assessment of the specific killing activity of antibodies capable of ADCC. Thus, each of these two distinct types of assays provides information on only one of the critical components of an ADCC event; either the effector cells involved, or the resulting effect on the target cell. We have developed a simple modification of our previously described high-throughput ADCC GranToxiLux (GTL) assay that uses area scaling analysis (ASA) to facilitate simultaneous quantification of ADCC activity at the target cell level, and assessment of the contribution of natural killer cells and monocytes to the total observed ADCC activity when whole human peripheral blood mononuclear cells are used as a source of effector cells. The modified analysis method requires no additional reagents and can, therefore, be easily included in prospective studies. Moreover, ASA can also often be applied to pre-existing ADCC-GTL datasets. Thus, incorporation of ASA to the ADCC-GTL assay provides an ancillary assessment of the ability of natural and vaccine-induced antibodies to recruit natural killer cells as well as monocytes against HIV or SIV; or to any other field of research for which this assay is applied. © 2018 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of ISAC.


Asunto(s)
Anticuerpos/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Células Asesinas Naturales/citología , Monocitos/citología , Línea Celular , Infecciones por VIH/inmunología , Humanos , Células Asesinas Naturales/inmunología , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/inmunología , Monocitos/inmunología , Estudios Prospectivos , Receptores Fc/inmunología , Vacunas/inmunología
12.
J Immunol ; 197(12): 4603-4612, 2016 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-27913647

RESUMEN

Diverse Ab effector functions mediated by the Fc domain have been commonly associated with reduced risk of infection in a growing number of nonhuman primate and human clinical studies. This study evaluated the anti-HIV Ab effector activities in polyclonal serum samples from HIV-infected donors, VAX004 vaccine recipients, and healthy HIV-negative subjects using a variety of primary and cell line-based assays, including Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cell-mediated viral inhibition, and Ab-dependent cellular phagocytosis. Additional assay characterization was performed with a panel of Fc-engineered variants of mAb b12. The goal of this study was to characterize different effector functions in the study samples and identify assays that might most comprehensively and dependably capture Fc-mediated Ab functions mediated by different effector cell types and against different viral targets. Deployment of such assays may facilitate assessment of functionally unique humoral responses and contribute to identification of correlates of protection with potential mechanistic significance in future HIV vaccine studies. Multivariate and correlative comparisons identified a set of Ab-dependent cell-mediated viral inhibition and phagocytosis assays that captured different Ab activities and were distinct from a group of ADCC assays that showed a more similar response profile across polyclonal serum samples. The activities of a panel of b12 monoclonal Fc variants further identified distinctions among the ADCC assays. These results reveal the natural diversity of Fc-mediated Ab effector responses among vaccine recipients in the VAX004 trial and in HIV-infected subjects, and they point to the potential importance of polyfunctional Ab responses.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/inmunología , VIH-1/fisiología , Fragmentos Fc de Inmunoglobulinas/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos , Línea Celular , Pruebas Inmunológicas de Citotoxicidad , Ingeniería Genética , Anticuerpos Anti-VIH/genética , Infecciones por VIH/diagnóstico , Humanos , Inmunidad Humoral , Fragmentos Fc de Inmunoglobulinas/genética , Mutación/genética , Fagocitosis , Vacunación , Replicación Viral
13.
Proc Natl Acad Sci U S A ; 112(9): E992-9, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25681373

RESUMEN

A guiding principle for HIV vaccine design has been that cellular and humoral immunity work together to provide the strongest degree of efficacy. However, three efficacy trials of Ad5-vectored HIV vaccines showed no protection. Transmission was increased in two of the trials, suggesting that this vaccine strategy elicited CD4+ T-cell responses that provide more targets for infection, attenuating protection or increasing transmission. The degree to which this problem extends to other HIV vaccine candidates is not known. Here, we show that a gp120-CD4 chimeric subunit protein vaccine (full-length single chain) elicits heterologous protection against simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) acquisition in three independent rhesus macaque repeated low-dose rectal challenge studies with SHIV162P3 or SIVmac251. Protection against acquisition was observed with multiple formulations and challenges. In each study, protection correlated with antibody-dependent cellular cytotoxicity specific for CD4-induced epitopes, provided that the concurrent antivaccine T-cell responses were minimal. Protection was lost in instances when T-cell responses were high or when the requisite antibody titers had declined. Our studies suggest that balance between a protective antibody response and antigen-specific T-cell activation is the critical element to vaccine-mediated protection against HIV. Achieving and sustaining such a balance, while enhancing antibody durability, is the major challenge for HIV vaccine development, regardless of the immunogen or vaccine formulation.


Asunto(s)
Vacunas contra el SIDA/farmacología , Linfocitos T CD4-Positivos/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/prevención & control , Inmunidad Celular/efectos de los fármacos , Vacunas contra el SIDA/inmunología , Animales , Antígenos CD4/genética , Antígenos CD4/inmunología , Antígenos CD4/farmacología , Linfocitos T CD4-Positivos/patología , Modelos Animales de Enfermedad , Femenino , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , Proteína gp120 de Envoltorio del VIH/farmacología , Infecciones por VIH/inmunología , Infecciones por VIH/patología , Humanos , Inmunidad Humoral , Macaca mulatta , Masculino , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/farmacología
14.
J Virol ; 90(9): 4481-4493, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26889042

RESUMEN

UNLABELLED: The HIV envelope binds cellular CD4 and undergoes a range of conformational changes that lead to membrane fusion and delivery of the viral nucleocapsid into the cellular cytoplasm. This binding to CD4 reveals cryptic and highly conserved epitopes, the molecular nature of which is still not fully understood. The atomic structures of CD4 complexed with gp120 core molecules (a form of gp120 in which the V1, V2, and V3 loops and N and C termini have been truncated) have indicated that a hallmark feature of the CD4-bound conformation is the bridging sheet minidomain. Variations in the orientation of the bridging sheet hairpins have been revealed when CD4-liganded gp120 was compared to CD4-unliganded trimeric envelope structures. Hence, there appears to be a number of conformational transitions possible in HIV-1 monomeric gp120 that are affected by CD4 binding. The spectrum of CD4-bound conformations has been interrogated in this study by using a well-characterized panel of conditional, CD4-induced (CD4i) monoclonal antibodies (MAbs) that bind HIV-1 gp120 and its mutations under various conditions. Two distinct CD4i epitopes of the outer domain were studied: the first comprises the bridging sheet, while the second contains elements of the V2 loop. Furthermore, we show that the unliganded extended monomeric core of gp120 (coree) assumes an intermediate CD4i conformation in solution that further undergoes detectable rearrangements upon association with CD4. These discoveries impact both accepted paradigms concerning gp120 structure and the field of HIV immunogen design. IMPORTANCE: Elucidation of the conformational transitions that the HIV-1 envelope protein undergoes during the course of entry into CD4(+)cells is fundamental to our understanding of HIV biology. The binding of CD4 triggers a range of gp120 structural rearrangements that could present targets for future drug design and development of preventive vaccines. Here we have systematically interrogated and scrutinized these conformational transitions using a panel of antibody probes that share a specific preference for the CD4i conformations. These have been employed to study a collection of gp120 mutations and truncations. Through these analyses, we propose 4 distinct sequential steps in CD4i transitions of gp120 conformations, each defined by antibody specificities and structural requirements of the HIV envelope monomer. As a result, we not only provide new insights into this dynamic process but also define probes to further investigate HIV infection.


Asunto(s)
Anticuerpos/inmunología , Antígenos CD4/química , Antígenos CD4/inmunología , Proteína gp120 de Envoltorio del VIH/química , Conformación Proteica , Secuencia de Aminoácidos , Anticuerpos/química , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos/inmunología , Antígenos CD4/metabolismo , Línea Celular , Mapeo Epitopo , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , VIH-1/fisiología , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Unión Proteica , Relación Estructura-Actividad Cuantitativa , Alineación de Secuencia
15.
J Virol ; 90(4): 2127-34, 2016 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-26637462

RESUMEN

Previous studies have shown that sera from HIV-1-infected individuals contain antibodies able to mediate antibody-dependent cellular cytotoxicity (ADCC). These antibodies preferentially recognize envelope glycoprotein (Env) epitopes induced upon CD4 binding. Here, we show that a highly conserved tryptophan at position 69 of the gp120 inner domain is important for ADCC mediated by anti-cluster A antibodies and sera from HIV-1-infected individuals.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Anti-VIH/inmunología , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/inmunología , Secuencia Conservada , Humanos
16.
PLoS Pathog ; 11(3): e1004772, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25807494

RESUMEN

The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo.


Asunto(s)
Epítopos/química , Antígenos VIH/química , Proteína gp120 de Envoltorio del VIH/química , VIH-1/química , Virión/química , Epítopos/genética , Epítopos/inmunología , Antígenos VIH/genética , Antígenos VIH/inmunología , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/inmunología , VIH-1/genética , VIH-1/inmunología , Células HeLa , Humanos , Receptores CCR5/química , Receptores CCR5/genética , Receptores CCR5/inmunología , Tropismo Viral/genética , Tropismo Viral/inmunología , Virión/genética , Virión/inmunología
17.
Proc Natl Acad Sci U S A ; 111(44): 15614-21, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25349379

RESUMEN

The quest for a prophylactic AIDS vaccine is ongoing, but it is now clear that the successful vaccine must elicit protective antibody responses. Accordingly, intense efforts are underway to identify immunogens that elicit these responses. Regardless of the mechanism of antibody-mediated protection, be it neutralization, Fc-mediated effector function, or both, antibody persistence and appropriate T-cell help are significant problems confronting the development of a successful AIDS vaccine. Here, we discuss the evidence illustrating the poor persistence of antibody responses to Env, the envelope glycoprotein of HIV-1, and the related problem of CD4(+) T-cell responses that compromise vaccine efficacy by creating excess cellular targets of HIV-1 infection. Finally, we propose solutions to both problems that are applicable to all Env-based AIDS vaccines regardless of the mechanism of antibody-mediated protection.


Asunto(s)
Vacunas contra el SIDA/inmunología , Linfocitos T CD4-Positivos/inmunología , Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Linfocitos T CD4-Positivos/patología , Infecciones por VIH/patología , Infecciones por VIH/prevención & control , Humanos
18.
J Infect Dis ; 213(1): 156-64, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26347575

RESUMEN

The humoral response to human immunodeficiency virus (HIV) remains incompletely understood. In this report, we describe biased λ light chain use during the HIV Env glycoprotein (Env) response in HIV infection and vaccination. We examined HIV Env binding (and neutralization) in the context of light chain use in subjects with acute HIV infection, chronic HIV infection, and among HIV vaccinees. In all populations tested, there was a λ chain bias for HIV Env binding antibodies, compared with other HIV antigens (such as p24) or tetanus toxoid. In subjects with chronic HIV infection, a λ bias was noted for neutralization, with λ antibodies accounting for up to 90% of all neutralization activity observed. This is the first report of antibody function in a human infection being tied to light chain use. In HIV infection, antibodies expressing λ light chains tended to have longer CDRL3s, increased light chain contact with HIV Env, and less hypermutation in the heavy chain, compared with antibodies using the κ light chain. These data also support an evolutionary model for the understanding the various κ to λ light chain ratios observed across species and suggest that the λ light chain bias against HIV provides the host an advantage in developing a more efficient humoral response.


Asunto(s)
Anticuerpos Anti-VIH/inmunología , Infecciones por VIH/inmunología , Cadenas Ligeras de Inmunoglobulina/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Adolescente , Adulto , Anticuerpos Neutralizantes/sangre , Anticuerpos Neutralizantes/inmunología , Estudios de Cohortes , Femenino , Anticuerpos Anti-VIH/sangre , Infecciones por VIH/epidemiología , Infecciones por VIH/virología , VIH-1/inmunología , Humanos , Inmunidad Humoral , Cadenas Ligeras de Inmunoglobulina/sangre , Masculino , Persona de Mediana Edad , Unión Proteica , Adulto Joven
19.
J Virol ; 89(7): 3619-29, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25589663

RESUMEN

UNLABELLED: Human immunodeficiency virus (HIV) transmission typically results from infection by a single transmitted/founder (T/F) variant. Are T/F variants chosen uniformly at random from the donor pool, or are they selected based on advantageous traits facilitating transmission? Finding evidence for selection during transmission is of particular interest, because it would indicate that phenotypic and/or genetic properties of the viruses might be harnessed as potential vaccine targets or immunotherapies. Here, we systematically evaluated the differences between the Env proteins of simian immunodeficiency virus/simian HIV (SIV/SHIV) stock and T/F variants in search of "signature" sites of transmission. We also surveyed residue preferences in HIV at the SIV/SHIV signature sites. Four sites of gp120 showed significant selection, and an additional two sites showed a similar trend. Therefore, the six sites clearly differentiate T/F viruses from the majority of circulating variants in the stocks. The selection of SIV/SHIV could be inferred reasonably across both vaccinated and unvaccinated subjects, with infections resulting from vaginal, rectal, and intravenous routes of transmission and regardless of viral dosage. The evidence for selection in SIV and SHIV T/F variants is strong and plentiful, and in HIV the evidence is suggestive though commensurate with the availability of suitable data for analysis. Two of the signature residues are completely conserved across the SIV, SHIV, and HIV variants we examined. Five of the signature residues map to the C1 region of gp120 and one to the signal peptide. Our data raise the possibility that C1, while governing the association between gp120 and gp41, modulates transmission efficiency, replicative fitness, and/or host cell tropism at the level of virus-cell attachment and entry. IMPORTANCE: The present study finds significant evidence of selection on gp120 molecules of SIV/SHIV T/F viruses. The data provide ancillary evidence suggesting the same sites are under selection in HIV. Our findings suggest that the signature residues are involved in increasing the transmissibility of infecting viruses; therefore, they are potential targets for developing a vaccine or other protective measures. A recent study identified the same T/F signature motif but interpreted it as an effect of neutralization resistance. Here, we show that the T/F motif has broader functional significance beyond neutralization sensitivity, because it is present in nonimmune subjects. Also, a vaccine regimen popular in animal trials might have increased the transmission of variants with otherwise low transmission fitness. Our observations might explain why many animal vaccine trials have not faithfully predicted outcomes in human vaccine trials and suggest that current practices in vaccine design need to be reexamined accordingly.


Asunto(s)
Secuencia Conservada , Proteína gp120 de Envoltorio del VIH/genética , Proteína gp120 de Envoltorio del VIH/metabolismo , Infecciones por VIH/transmisión , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Síndrome de Inmunodeficiencia Adquirida del Simio/transmisión , Proteínas del Envoltorio Viral/genética , Proteínas del Envoltorio Viral/metabolismo , Animales , Femenino , Genotipo , VIH/genética , VIH/fisiología , Infecciones por VIH/virología , Humanos , Macaca mulatta , Masculino , Selección Genética , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/fisiología , Tropismo Viral , Acoplamiento Viral , Replicación Viral
20.
J Virol ; 90(6): 2993-3002, 2015 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-26719277

RESUMEN

UNLABELLED: Impairment of Nef function, including reduced CD4 downregulation, was described in a subset of HIV-1-infected individuals that control viral replication without antiretroviral treatment (elite controllers [EC]). Elimination of HIV-1-infected cells by antibody-dependent cellular cytotoxicity (ADCC) requires the presence of envelope glycoproteins (Env) in the CD4-bound conformation, raising the possibility that accumulating CD4 at the surface of virus-infected cells in EC could interact with Env and thereby sensitize these cells to ADCC. We observed a significant increase in the exposure of Env epitopes targeted by ADCC-mediating antibodies at the surface of cells expressing Nef isolates from EC; this correlated with enhanced susceptibility to ADCC. Altogether, our results suggest that enhanced susceptibility of HIV-1-infected cells to ADCC may contribute to the EC phenotype. IMPORTANCE: Nef clones derived from elite controllers (EC) have been shown to be attenuated for CD4 downregulation; how this contributes to the nonprogressor phenotype of these infected individuals remains uncertain. Increasing evidence supports a role for HIV-specific antibody-dependent cellular cytotoxicity (ADCC) in controlling viral infection and replication. Here, we show that residual CD4 left at the surface of cells expressing Nef proteins isolated from ECs are sufficient to allow Env-CD4 interaction, leading to increased exposure of Env CD4-induced epitopes and increased susceptibility of infected cells to ADCC. Our results suggest that ADCC might be an active immune mechanism in EC that helps to maintain durable suppression of viral replication and low plasma viremia level in this rare subset of infected individuals. Therefore, targeting Nef's ability to downregulate CD4 could render HIV-1-infected cells susceptible to ADCC and thus have therapeutic utility.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Anticuerpos Anti-VIH/metabolismo , Infecciones por VIH/inmunología , Sobrevivientes de VIH a Largo Plazo , VIH-1/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/análisis , Productos del Gen nef del Virus de la Inmunodeficiencia Humana/metabolismo , Linfocitos T CD4-Positivos/química , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/virología , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA