RESUMEN
BACKGROUND: Influenza circulation during the 2022-2023 season in the United States largely returned to pre-coronavirus disease 2019 (COVID-19)-pandemic patterns and levels. Influenza A(H3N2) viruses were detected most frequently this season, predominately clade 3C.2a1b.2a, a close antigenic match to the vaccine strain. METHODS: To understand effectiveness of the 2022-2023 influenza vaccine against influenza-associated hospitalization, organ failure, and death, a multicenter sentinel surveillance network in the United States prospectively enrolled adults hospitalized with acute respiratory illness between 1 October 2022, and 28 February 2023. Using the test-negative design, vaccine effectiveness (VE) estimates against influenza-associated hospitalization, organ failures, and death were measured by comparing the odds of current-season influenza vaccination in influenza-positive case-patients and influenza-negative, SARS-CoV-2-negative control-patients. RESULTS: A total of 3707 patients, including 714 influenza cases (33% vaccinated) and 2993 influenza- and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative controls (49% vaccinated) were analyzed. VE against influenza-associated hospitalization was 37% (95% confidence interval [CI]: 27%-46%) and varied by age (18-64 years: 47% [30%-60%]; ≥65 years: 28% [10%-43%]), and virus (A[H3N2]: 29% [6%-46%], A[H1N1]: 47% [23%-64%]). VE against more severe influenza-associated outcomes included: 41% (29%-50%) against influenza with hypoxemia treated with supplemental oxygen; 65% (56%-72%) against influenza with respiratory, cardiovascular, or renal failure treated with organ support; and 66% (40%-81%) against influenza with respiratory failure treated with invasive mechanical ventilation. CONCLUSIONS: During an early 2022-2023 influenza season with a well-matched influenza vaccine, vaccination was associated with reduced risk of influenza-associated hospitalization and organ failure.
Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Adulto , Humanos , Estados Unidos/epidemiología , Adolescente , Adulto Joven , Persona de Mediana Edad , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Subtipo H3N2 del Virus de la Influenza A , Eficacia de las Vacunas , Virus de la Influenza B , Hospitalización , Vacunación , Estaciones del AñoRESUMEN
In the United States, annual influenza vaccination is recommended for all persons aged ≥6 months. Using data from four vaccine effectiveness (VE) networks during the 2023-24 influenza season, interim influenza VE was estimated among patients aged ≥6 months with acute respiratory illness-associated medical encounters using a test-negative case-control study design. Among children and adolescents aged 6 months-17 years, VE against influenza-associated outpatient visits ranged from 59% to 67% and against influenza-associated hospitalization ranged from 52% to 61%. Among adults aged ≥18 years, VE against influenza-associated outpatient visits ranged from 33% to 49% and against hospitalization from 41% to 44%. VE against influenza A ranged from 46% to 59% for children and adolescents and from 27% to 46% for adults across settings. VE against influenza B ranged from 64% to 89% for pediatric patients in outpatient settings and from 60% to 78% for all adults across settings. These findings demonstrate that the 2023-24 seasonal influenza vaccine is effective at reducing the risk for medically attended influenza virus infection. CDC recommends that all persons aged ≥6 months who have not yet been vaccinated this season get vaccinated while influenza circulates locally.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Adolescente , Adulto , Humanos , Niño , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Estaciones del Año , Estudios de Casos y Controles , Eficacia de las VacunasRESUMEN
CONTEXT: Home-based asthma interventions have a significant evidence base as an effective means to address moderate and severe breathing concerns triggered by home conditions. However, the literature lacks logistical and staffing considerations necessary to successfully implement such a program at a governmental level. This practice report and process evaluation outlines practical details and lessons learned during a healthy homes pilot, and how they were addressed in the design of a permanent program. OBJECTIVE: To inform the creation of a permanent home-based asthma intervention at the Alexandria Health Department (AHD) (City of Alexandria, Virginia) and understand the tools and resources necessary for success. INTERVENTION: Participating households received a health and environmental assessment, followed by cleaning supplies, relevant education, and referrals to partners for services. AHD staff tracked challenges and insights at each step of the intervention. At the end of the pilot, staff worked with the community to identify solutions and design a permanent program. CONCLUSIONS: Although the pilot model was constructed based on existing case studies, technical assistance from national experts, and guidance documents, the team still experienced challenges around recruitment, staff support, home visit implementation, and impact evaluation. While pilots and existing literature can be instructive for identifying issues, work with residents and partners to develop a uniquely tailored community program was essential for practical success. IMPLICATIONS ON POLICY AND PRACTICE: Health departments developing new initiatives should consider both the staff and participant experience throughout the creation of administrative and programmatic processes. Testing out draft versions of these processes and materials using internal and external focus groups can identify potential bottlenecks and solutions upfront.
Asunto(s)
Asma , Humanos , Asma/terapia , VirginiaRESUMEN
BACKGROUND: The COVID-19 pandemic was associated with historically low influenza circulation during the 2020-2021 season, followed by an increase in influenza circulation during the 2021-2022 US season. The 2a.2 subgroup of the influenza A(H3N2) 3C.2a1b subclade that predominated was antigenically different from the vaccine strain. METHODS: To understand the effectiveness of the 2021-2022 vaccine against hospitalized influenza illness, a multistate sentinel surveillance network enrolled adults aged ≥18 years hospitalized with acute respiratory illness and tested for influenza by a molecular assay. Using the test-negative design, vaccine effectiveness (VE) was measured by comparing the odds of current-season influenza vaccination in influenza-positive case-patients and influenza-negative, SARS-CoV-2-negative controls, adjusting for confounders. A separate analysis was performed to illustrate bias introduced by including SARS-CoV-2-positive controls. RESULTS: A total of 2334 patients, including 295 influenza cases (47% vaccinated), 1175 influenza- and SARS-CoV-2-negative controls (53% vaccinated), and 864 influenza-negative and SARS-CoV-2-positive controls (49% vaccinated), were analyzed. Influenza VE was 26% (95% CI: -14% to 52%) among adults aged 18-64 years, -3% (-54% to 31%) among adults aged ≥65 years, and 50% (15-71%) among adults aged 18-64 years without immunocompromising conditions. Estimated VE decreased with inclusion of SARS-CoV-2-positive controls. CONCLUSIONS: During a season where influenza A(H3N2) was antigenically different from the vaccine virus, vaccination was associated with a reduced risk of influenza hospitalization in younger immunocompetent adults. However, vaccination did not provide protection in adults ≥65 years of age. Improvements in vaccines, antivirals, and prevention strategies are warranted.
Asunto(s)
Subtipo H3N2 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Eficacia de las Vacunas , Adolescente , Adulto , Anciano , Humanos , Hospitalización/estadística & datos numéricos , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Gripe Humana/virología , Estaciones del Año , Estados Unidos/epidemiología , Masculino , Femenino , Adulto Joven , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificaciónRESUMEN
During February 7âSeptember 3, 2022, a total of 39 US states experienced outbreaks of highly pathogenic avian influenza A(H5N1) virus in birds from commercial poultry farms and backyard flocks. Among persons exposed to infected birds, highly pathogenic avian influenza A(H5) viral RNA was detected in 1 respiratory specimen from 1 person.
Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Aviar , Gripe Humana , Animales , Humanos , Estados Unidos/epidemiología , Gripe Aviar/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Aves , Gripe Humana/epidemiología , Aves de Corral , Brotes de EnfermedadesRESUMEN
On June 21, 2023, CDC's Advisory Committee on Immunization Practices recommended respiratory syncytial virus (RSV) vaccination for adults aged ≥60 years, offered to individual adults using shared clinical decision-making. Informed use of these vaccines requires an understanding of RSV disease severity. To characterize RSV-associated severity, 5,784 adults aged ≥60 years hospitalized with acute respiratory illness and laboratory-confirmed RSV, SARS-CoV-2, or influenza infection were prospectively enrolled from 25 hospitals in 20 U.S. states during February 1, 2022-May 31, 2023. Multivariable logistic regression was used to compare RSV disease severity with COVID-19 and influenza severity on the basis of the following outcomes: 1) standard flow (<30 L/minute) oxygen therapy, 2) high-flow nasal cannula (HFNC) or noninvasive ventilation (NIV), 3) intensive care unit (ICU) admission, and 4) invasive mechanical ventilation (IMV) or death. Overall, 304 (5.3%) enrolled adults were hospitalized with RSV, 4,734 (81.8%) with COVID-19 and 746 (12.9%) with influenza. Patients hospitalized with RSV were more likely to receive standard flow oxygen, HFNC or NIV, and ICU admission than were those hospitalized with COVID-19 or influenza. Patients hospitalized with RSV were more likely to receive IMV or die compared with patients hospitalized with influenza (adjusted odds ratio = 2.08; 95% CI = 1.33-3.26). Among hospitalized older adults, RSV was less common, but was associated with more severe disease than COVID-19 or influenza. High disease severity in older adults hospitalized with RSV is important to consider in shared clinical decision-making regarding RSV vaccination.
Asunto(s)
COVID-19 , Gripe Humana , Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Humanos , Anciano , COVID-19/epidemiología , COVID-19/terapia , Gripe Humana/epidemiología , Gripe Humana/terapia , SARS-CoV-2 , Infecciones por Virus Sincitial Respiratorio/epidemiología , Infecciones por Virus Sincitial Respiratorio/terapia , Hospitalización , Gravedad del Paciente , OxígenoRESUMEN
As of April 2023, the COVID-19 pandemic has resulted in 1.1 million deaths in the United States, with approximately 75% of deaths occurring among adults aged ≥65 years (1). Data on the durability of protection provided by monovalent mRNA COVID-19 vaccination against critical outcomes of COVID-19 are limited beyond the Omicron BA.1 lineage period (December 26, 2021-March 26, 2022). In this case-control analysis, the effectiveness of 2-4 monovalent mRNA COVID-19 vaccine doses was evaluated against COVID-19-associated invasive mechanical ventilation (IMV) and in-hospital death among immunocompetent adults aged ≥18 years during February 1, 2022-January 31, 2023. Vaccine effectiveness (VE) against IMV and in-hospital death was 62% among adults aged ≥18 years and 69% among those aged ≥65 years. When stratified by time since last dose, VE was 76% at 7-179 days, 54% at 180-364 days, and 56% at ≥365 days. Monovalent mRNA COVID-19 vaccination provided substantial, durable protection against IMV and in-hospital death among adults during the Omicron variant period. All adults should remain up to date with recommended COVID-19 vaccination to prevent critical COVID-19-associated outcomes.
Asunto(s)
COVID-19 , Humanos , Adulto , Adolescente , COVID-19/prevención & control , Vacunas contra la COVID-19 , Mortalidad Hospitalaria , Pandemias , Respiración Artificial , SARS-CoV-2 , ARN MensajeroRESUMEN
Vaccine effectiveness (VE) against COVID-19 hospitalization was evaluated among immunocompetent adults (≥18 years) during March-August 2021 using a case-control design. Among 1669 hospitalized COVID-19 cases (11% fully vaccinated) and 1950 RT-PCR-negative controls (54% fully vaccinated), VE was 96% (95% confidence interval [CI], 93%-98%) among patients with no chronic medical conditions and 83% (95% CI, 76%-88%) among patients with ≥ 3 categories of conditions. VE was similar between those aged 18-64 years versus ≥65 years (P > .05). VE against severe COVID-19 was very high among adults without chronic conditions and lessened with increasing comorbidity burden.
Asunto(s)
COVID-19 , Adulto , COVID-19/epidemiología , COVID-19/prevención & control , Vacunas contra la COVID-19 , Enfermedad Crónica , Hospitalización , Humanos , Vacunas Sintéticas , Vacunas de ARNmRESUMEN
BACKGROUND: Relative vaccine effectiveness (rVE) are metrics commonly reported to compare absolute VE (aVE) of 2 vaccine products. METHODS: Estimates of rVE for enhanced influenza vaccines (eIV) vs standard inactivated influenza vaccine (IIV) have been assessed across different seasons, influenza-specific endpoints, and nonspecific endpoints (eg, all-cause cardiovascular hospitalizations). To illustrate the challenges of comparability across studies, we conducted a scenario analysis to evaluate the effects of varying absolute VE (aVE) of IIV (ie, as compared with placebo) on the interpretation of rVE of eIV vs IIV. RESULTS: We show that estimates of rVE might not be comparable across studies because additional benefits commensurate with a given estimate of rVE are dependent on the aVE for the comparator vaccine, which can depend on factors such as host response to vaccine, virus type, and clinical endpoint evaluated. CONCLUSIONS: These findings have implications for interpretation of rVE across studies and for sample size considerations in future trials.
Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Hospitalización , Humanos , Estaciones del Año , Vacunas de Productos InactivadosRESUMEN
Background . Adults in the United States (US) began receiving the adenovirus vector coronavirus disease 2019 (COVID-19) vaccine, Ad26.COV2.S (Johnson & Johnson [Janssen]), in February 2021. We evaluated Ad26.COV2.S vaccine effectiveness (VE) against COVID-19 hospitalization and high disease severity during the first 10 months of its use. Methods . In a multicenter case-control analysis of US adults (≥18 years) hospitalized 11 March to 15 December 2021, we estimated VE against susceptibility to COVID-19 hospitalization (VEs), comparing odds of prior vaccination with a single dose Ad26.COV2.S vaccine between hospitalized cases with COVID-19 and controls without COVID-19. Among hospitalized patients with COVID-19, we estimated VE against disease progression (VEp) to death or invasive mechanical ventilation (IMV), comparing odds of prior vaccination between patients with and without progression. Results . After excluding patients receiving mRNA vaccines, among 3979 COVID-19 case-patients (5% vaccinated with Ad26.COV2.S) and 2229 controls (13% vaccinated with Ad26.COV2.S), VEs of Ad26.COV2.S against COVID-19 hospitalization was 70% (95% confidence interval [CI]: 63-75%) overall, including 55% (29-72%) among immunocompromised patients, and 72% (64-77%) among immunocompetent patients, for whom VEs was similar at 14-90 days (73% [59-82%]), 91-180 days (71% [60-80%]), and 181-274 days (70% [54-81%]) postvaccination. Among hospitalized COVID-19 case-patients, VEp was 46% (18-65%) among immunocompetent patients. Conclusions . The Ad26.COV2.S COVID-19 vaccine reduced the risk of COVID-19 hospitalization by 72% among immunocompetent adults without waning through 6 months postvaccination. After hospitalization for COVID-19, vaccinated immunocompetent patients were less likely to require IMV or die compared to unvaccinated immunocompetent patients.
Asunto(s)
COVID-19 , Vacunas contra la Influenza , Gripe Humana , Ad26COVS1 , Adulto , COVID-19/prevención & control , Vacunas contra la COVID-19 , Hospitalización , Humanos , Gripe Humana/prevención & control , Índice de Severidad de la Enfermedad , Estados Unidos/epidemiologíaRESUMEN
Human monkeypox is caused by Monkeypox virus (MPXV), an Orthopoxvirus, previously rare in the United States (1). The first U.S. case of monkeypox during the current outbreak was identified on May 17, 2022 (2). As of September 28, 2022, a total of 25,341 monkeypox cases have been reported in the United States.* The outbreak has disproportionately affected gay, bisexual, and other men who have sex with men (MSM) (3). JYNNEOS vaccine (Modified Vaccinia Ankara vaccine, Bavarian Nordic), administered subcutaneously as a 2-dose (0.5 mL per dose) series with doses administered 4 weeks apart, was approved by the Food and Drug Administration (FDA) in 2019 to prevent smallpox and monkeypox infection (4). U.S. distribution of JYNNEOS vaccine as postexposure prophylaxis (PEP) for persons with known exposures to MPXV began in May 2022. A U.S. national vaccination strategy for expanded PEP, announced on June 28, 2022, recommended subcutaneous vaccination of persons with known or presumed exposure to MPXV, broadening vaccination eligibility. FDA emergency use authorization (EUA) of intradermal administration of 0.1 mL of JYNNEOS on August 9, 2022, increased vaccine supply (5). As of September 28, 2022, most vaccine has been administered as PEP or expanded PEP. Because of the limited amount of time that has elapsed since administration of initial vaccine doses, as of September 28, 2022, relatively few persons in the current outbreak have completed the recommended 2-dose series.§ To examine the incidence of monkeypox among persons who were unvaccinated and those who had received ≥1 JYNNEOS vaccine dose, 5,402 reported monkeypox cases occurring among males¶ aged 18-49 years during July 31-September 3, 2022, were analyzed by vaccination status across 32 U.S. jurisdictions.** Average monkeypox incidence (cases per 100,000) among unvaccinated persons was 14.3 (95% CI = 5.0-41.0) times that among persons who received 1 dose of JYNNEOS vaccine ≥14 days earlier. Monitoring monkeypox incidence by vaccination status in timely surveillance data might provide early indications of vaccine-related protection that can be confirmed through other well-controlled vaccine effectiveness studies. This early finding suggests that a single dose of JYNNEOS vaccine provides some protection against monkeypox infection. The degree and durability of such protection is unknown, and it is recommended that people who are eligible for monkeypox vaccination receive the complete 2-dose series.
Asunto(s)
Mpox , Minorías Sexuales y de Género , Vacuna contra Viruela , Homosexualidad Masculina , Humanos , Incidencia , Masculino , Mpox/epidemiología , Mpox/prevención & control , Estados Unidos/epidemiologíaRESUMEN
As of October 28, 2022, a total of 28,244* monkeypox (mpox) cases have been reported in the United States during an outbreak that has disproportionately affected gay, bisexual, and other men who have sex with men (MSM) (1). JYNNEOS vaccine (Modified Vaccinia Ankara vaccine, Bavarian Nordic), administered subcutaneously as a 2-dose (0.5 mL per dose) series (with doses administered 4 weeks apart), was approved by the Food and Drug Administration (FDA) in 2019 to prevent smallpox and mpox disease (2); an FDA Emergency Use Authorization issued on August 9, 2022, authorized intradermal administration of 0.1 mL per dose, increasing the number of persons who could be vaccinated with the available vaccine supply (3). A previous comparison of mpox incidence during July 31-September 3, 2022, among unvaccinated, but vaccine-eligible men aged 18-49 years and those who had received ≥1 JYNNEOS vaccine dose in 32 U.S. jurisdictions, found that incidence among unvaccinated persons was 14 times that among vaccinated persons (95% CI = 5.0-41.0) (4). During September 4-October 1, 2022, a total of 205,504 persons received JYNNEOS vaccine dose 2 in the United States.§ To further examine mpox incidence among persons who were unvaccinated and those who had received either 1 or 2 JYNNEOS doses, investigators analyzed data on 9,544 reported mpox cases among men¶ aged 18-49 years during July 31-October 1, 2022, from 43 U.S. jurisdictions,** by vaccination status. During this study period, mpox incidence (cases per 100,000 population at risk) among unvaccinated persons was 7.4 (95% CI = 6.0-9.1) times that among persons who received only 1 dose of JYNNEOS vaccine ≥14 days earlier and 9.6 (95% CI = 6.9-13.2) times that among persons who received dose 2 ≥14 days earlier. The observed distribution of subcutaneous and intradermal routes of administration of dose 1 among vaccinated persons with mpox was not different from the expected distribution. This report provides additional data suggesting JYNNEOS vaccine provides protection against mpox, irrespective of whether the vaccine is administered intradermally or subcutaneously. The degree and durability of such protection remains unclear. Persons eligible for mpox vaccination should receive the complete 2-dose series to optimize strength of protection (5).
Asunto(s)
Mpox , Minorías Sexuales y de Género , Humanos , Masculino , Homosexualidad Masculina , Estados Unidos/epidemiología , United States Food and Drug Administration , Mpox/prevención & control , Vacuna contra Viruela/administración & dosificaciónRESUMEN
As of November 14, 2022, monkeypox (mpox) cases had been reported from more than 110 countries, including 29,133 cases in the United States.* Among U.S. cases to date, 95% have occurred among males (1). After the first confirmed U.S. mpox case on May 17, 2022, limited supplies of JYNNEOS vaccine (Modified Vaccinia Ankara vaccine, Bavarian Nordic) were made available to jurisdictions for persons exposed to mpox. JYNNEOS vaccine was approved by the Food and Drug Administration (FDA) in 2019 as a 2-dose series (0.5 mL per dose, administered subcutaneously) to prevent smallpox and mpox disease. On August 9, 2022, FDA issued an emergency use authorization to allow administration of JYNNEOS vaccine by intradermal injection (0.1 mL per dose) (2). A previous report on U.S. mpox cases during July 31-September 3, 2022, suggested that 1 dose of vaccine offers some protection against mpox (3). This report describes demographic and clinical characteristics of cases occurring ≥14 days after receipt of 1 dose of JYNNEOS vaccine and compares them with characteristics of cases among unvaccinated persons with mpox and with the vaccine-eligible vaccinated population in participating jurisdictions. During May 22-September 3, 2022, among 14,504 mpox cases reported from 29 participating U.S. jurisdictions,§ 6,605 (45.5%) had available vaccination information and were included in the analysis. Among included cases, 276 (4.2%) were among persons who had received 1 dose of vaccine ≥14 days before illness onset. Mpox cases that occurred in these vaccinated persons were associated with lower percentage of hospitalization (2.1% versus 7.5%), fever, headache, malaise, myalgia, and chills, compared with cases in unvaccinated persons. Although 1 dose of JYNNEOS vaccine offers some protection from disease, mpox infection can occur after receipt of 1 dose, and the duration of protection conferred by 1 dose is unknown. Providers and public health officials should therefore encourage persons at risk for acquiring mpox to complete the 2-dose vaccination series and provide guidance and education regarding nonvaccine-related prevention strategies (4).
Asunto(s)
Mpox , Vacuna contra Viruela , Humanos , Masculino , Demografía , Estados Unidos/epidemiología , Mpox/epidemiología , Mpox/prevención & controlRESUMEN
Monovalent COVID-19 mRNA vaccines, designed against the ancestral strain of SARS-CoV-2, successfully reduced COVID-19-related morbidity and mortality in the United States and globally (1,2). However, vaccine effectiveness (VE) against COVID-19-associated hospitalization has declined over time, likely related to a combination of factors, including waning immunity and, with the emergence of the Omicron variant and its sublineages, immune evasion (3). To address these factors, on September 1, 2022, the Advisory Committee on Immunization Practices recommended a bivalent COVID-19 mRNA booster (bivalent booster) dose, developed against the spike protein from ancestral SARS-CoV-2 and Omicron BA.4/BA.5 sublineages, for persons who had completed at least a primary COVID-19 vaccination series (with or without monovalent booster doses) ≥2 months earlier (4). Data on the effectiveness of a bivalent booster dose against COVID-19 hospitalization in the United States are lacking, including among older adults, who are at highest risk for severe COVID-19-associated illness. During September 8-November 30, 2022, the Investigating Respiratory Viruses in the Acutely Ill (IVY) Network§ assessed effectiveness of a bivalent booster dose received after ≥2 doses of monovalent mRNA vaccine against COVID-19-associated hospitalization among immunocompetent adults aged ≥65 years. When compared with unvaccinated persons, VE of a bivalent booster dose received ≥7 days before illness onset (median = 29 days) against COVID-19-associated hospitalization was 84%. Compared with persons who received ≥2 monovalent-only mRNA vaccine doses, relative VE of a bivalent booster dose was 73%. These early findings show that a bivalent booster dose provided strong protection against COVID-19-associated hospitalization in older adults and additional protection among persons with previous monovalent-only mRNA vaccination. All eligible persons, especially adults aged ≥65 years, should receive a bivalent booster dose to maximize protection against COVID-19 hospitalization this winter season. Additional strategies to prevent respiratory illness, such as masking in indoor public spaces, should also be considered, especially in areas where COVID-19 community levels are high (4,5).
Asunto(s)
COVID-19 , Humanos , Anciano , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2 , Vacunas contra la COVID-19 , Eficacia de las Vacunas , Hospitalización , ARN Mensajero , Vacunas CombinadasRESUMEN
BACKGROUND: To better understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding and infectivity, we estimated SARS-CoV-2 RNA shedding duration, described participant characteristics associated with the first negative rRT-PCR test (resolution), and determined if replication-competent viruses was recoverable ≥10 days after symptom onset. METHODS: We collected serial nasopharyngeal specimens from 109 individuals with rRT-PCR-confirmed COVID-19 in Utah and Wisconsin. We calculated viral RNA shedding resolution probability using the Kaplan-Meier estimator and evaluated characteristics associated with shedding resolution using Cox proportional hazards regression. We attempted viral culture for 35 rRT-PCR-positive nasopharyngeal specimens collected ≥10 days after symptom onset. RESULTS: The likelihood of viral RNA shedding resolution at 10 days after symptom onset was approximately 3%. Time to shedding resolution was shorter among participants aged <18 years (adjusted hazards ratio [aHR], 3.01; 95% confidence interval [CI], 1.6-5.6) and longer among those aged ≥50 years (aHR, 0.50; 95% CI, .3-.9) compared to participants aged 18-49 years. No replication-competent viruses were recovered. CONCLUSIONS: Although most patients were positive for SARS-CoV-2 for ≥10 days after symptom onset, our findings suggest that individuals with mild to moderate COVID-19 are unlikely to be infectious ≥10 days after symptom onset.
Asunto(s)
COVID-19/transmisión , ARN Viral/aislamiento & purificación , SARS-CoV-2/patogenicidad , Esparcimiento de Virus , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , COVID-19/diagnóstico , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Niño , Preescolar , Trazado de Contacto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Nasofaringe/patología , Nasofaringe/virología , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Factores de Tiempo , Replicación Viral , Adulto JovenRESUMEN
BACKGROUND: Improved understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spectrum of disease is essential for clinical and public health interventions. There are limited data on mild or asymptomatic infections, but recognition of these individuals is key as they contribute to viral transmission. We describe the symptom profiles from individuals with mild or asymptomatic SARS-CoV-2 infection. METHODS: From 22 March to 22 April 2020 in Wisconsin and Utah, we enrolled and prospectively observed 198 household contacts exposed to SARS-CoV-2. We collected and tested nasopharyngeal specimens by real-time reverse-transcription polymerase chain reaction (rRT-PCR) 2 or more times during a 14-day period. Contacts completed daily symptom diaries. We characterized symptom profiles on the date of first positive rRT-PCR test and described progression of symptoms over time. RESULTS: We identified 47 contacts, median age 24 (3-75) years, with detectable SARS-CoV-2 by rRT-PCR. The most commonly reported symptoms on the day of first positive rRT-PCR test were upper respiratory (n = 32 [68%]) and neurologic (n = 30 [64%]); fever was not commonly reported (n = 9 [19%]). Eight (17%) individuals were asymptomatic at the date of first positive rRT-PCR collection; 2 (4%) had preceding symptoms that resolved and 6 (13%) subsequently developed symptoms. Children less frequently reported lower respiratory symptoms (21%, 60%, and 69% for <18, 18-49, and ≥50 years of age, respectively; P = .03). CONCLUSIONS: Household contacts with laboratory-confirmed SARS-CoV-2 infection reported mild symptoms. When assessed at a single timepoint, several contacts appeared to have asymptomatic infection; however, over time all developed symptoms. These findings are important to inform infection control, contact tracing, and community mitigation strategies.
Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Trazado de Contacto , Fiebre , Humanos , Estudios Prospectivos , Adulto JovenRESUMEN
BACKGROUND: The evidence base for severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is nascent. We sought to characterize SARS-CoV-2 transmission within US households and estimate the household secondary infection rate (SIR) to inform strategies to reduce transmission. METHODS: We recruited patients with laboratory-confirmed SARS-CoV-2 infection and their household contacts in Utah and Wisconsin during 22 March 2020-25 April 2020. We interviewed patients and all household contacts to obtain demographics and medical histories. At the initial household visit, 14 days later, and when a household contact became newly symptomatic, we collected respiratory swabs from patients and household contacts for testing by SARS-CoV-2 real-time reverse-transcription polymerase chain reaction (rRT-PCR) and sera for SARS-CoV-2 antibodies testing by enzyme-linked immunosorbent assay (ELISA). We estimated SIR and odds ratios (ORs) to assess risk factors for secondary infection, defined by a positive rRT-PCR or ELISA test. RESULTS: Thirty-two (55%) of 58 households secondary infection among household contacts. The SIR was 29% (nâ =â 55/188; 95% confidence interval [CI], 23%-36%) overall, 42% among children (aged <18 years) of the COVID-19 patient and 33% among spouses/partners. Household contacts to COVID-19 patients with immunocompromised conditions and household contacts who themselves had diabetes mellitus had increased odds of infection with ORs 15.9 (95% CI, 2.4-106.9) and 7.1 (95% CI: 1.2-42.5), respectively. CONCLUSIONS: We found substantial evidence of secondary infections among household contacts. People with COVID-19, particularly those with immunocompromising conditions or those with household contacts with diabetes, should take care to promptly self-isolate to prevent household transmission.
Asunto(s)
COVID-19 , SARS-CoV-2 , Niño , Trazado de Contacto , Composición Familiar , Humanos , Estados Unidos/epidemiología , WisconsinRESUMEN
We characterized common exposures reported by a convenience sample of 202 US patients with coronavirus disease during January-April 2020 and identified factors associated with presumed household transmission. The most commonly reported settings of known exposure were households and healthcare facilities; among case-patients who had known contact with a confirmed case-patient compared with those who did not, healthcare occupations were more common. Among case-patients without known contact, use of public transportation was more common. Within the household, presumed transmission was highest from older (>65 years) index case-patients and from children to parents, independent of index case-patient age. These findings may inform guidance for limiting transmission and emphasize the value of testing to identify community-acquired infections.
Asunto(s)
COVID-19 , Anciano , COVID-19/transmisión , Niño , Virus ADN , Composición Familiar , Humanos , SARS-CoV-2 , Estados Unidos/epidemiologíaRESUMEN
Virus shedding in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can occur before onset of symptoms; less is known about symptom progression or infectiousness associated with initiation of viral shedding. We investigated household transmission in 5 households with daily specimen collection for 5 consecutive days starting a median of 4 days after symptom onset in index patients. Seven contacts across 2 households implementing no precautionary measures were infected. Of these 7, 2 tested positive for SARS-CoV-2 by reverse transcription PCR on day 3 of 5. Both had mild, nonspecific symptoms for 1-3 days preceding the first positive test. SARS-CoV-2 was cultured from the fourth-day specimen in 1 patient and from the fourth- and fifth-day specimens in the other. We also describe infection control measures taken in the households that had no transmission. Persons exposed to SARS-CoV-2 should self-isolate, including from household contacts, wear a mask, practice hand hygiene, and seek testing promptly.
Asunto(s)
COVID-19/transmisión , Transmisión de Enfermedad Infecciosa/estadística & datos numéricos , Exposición a Riesgos Ambientales/estadística & datos numéricos , SARS-CoV-2/aislamiento & purificación , Esparcimiento de Virus , Adolescente , Adulto , Niño , Transmisión de Enfermedad Infecciosa/prevención & control , Exposición a Riesgos Ambientales/prevención & control , Composición Familiar , Femenino , Humanos , Control de Infecciones/métodos , Masculino , Persona de Mediana Edad , Manejo de Especímenes , Factores de Tiempo , UtahRESUMEN
Outcomes and costs of coronavirus disease (COVID-19) contact tracing are limited. During March-May 2020, we constructed transmission chains from 184 index cases and 1,499 contacts in Salt Lake County, Utah, USA, to assess outcomes and estimate staff time and salaries. We estimated 1,102 staff hours and $29,234 spent investigating index cases and contacts. Among contacts, 374 (25%) had COVID-19; secondary case detection rate was ≈31% among first-generation contacts, ≈16% among second- and third-generation contacts, and ≈12% among fourth-, fifth-, and sixth-generation contacts. At initial interview, 51% (187/370) of contacts were COVID-19-positive; 35% (98/277) became positive during 14-day quarantine. Median time from symptom onset to investigation was 7 days for index cases and 4 days for first-generation contacts. Contact tracing reduced the number of cases between contact generations and time between symptom onset and investigation but required substantial resources. Our findings can help jurisdictions allocate resources for contact tracing.