Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
PLoS Biol ; 21(3): e3001977, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36862640

RESUMEN

Failures in mitophagy, a process by which damaged mitochondria are cleared, results in neurodegeneration, while enhancing mitophagy promotes the survival of dopaminergic neurons. Using an artificial intelligence platform, we employed a natural language processing approach to evaluate the semantic similarity of candidate molecules to a set of well-established mitophagy enhancers. Top candidates were screened in a cell-based mitochondrial clearance assay. Probucol, a lipid-lowering drug, was validated across several orthogonal mitophagy assays. In vivo, probucol improved survival, locomotor function, and dopaminergic neuron loss in zebrafish and fly models of mitochondrial damage. Probucol functioned independently of PINK1/Parkin, but its effects on mitophagy and in vivo depended on ABCA1, which negatively regulated mitophagy following mitochondrial damage. Autophagosome and lysosomal markers were elevated by probucol treatment in addition to increased contact between lipid droplets (LDs) and mitochondria. Conversely, LD expansion, which occurs following mitochondrial damage, was suppressed by probucol and probucol-mediated mitophagy enhancement required LDs. Probucol-mediated LD dynamics changes may prime the cell for a more efficient mitophagic response to mitochondrial damage.


Asunto(s)
Gotas Lipídicas , Probucol , Animales , Probucol/farmacología , Inteligencia Artificial , Mitofagia , Pez Cebra
2.
Nat Commun ; 11(1): 88, 2020 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-31900402

RESUMEN

The accumulation of damaged mitochondria causes the death of dopaminergic neurons. The Parkin-mediated mitophagy pathway functions to remove these mitochondria from cells. Targeting this pathway represents a therapeutic strategy for several neurodegenerative diseases, most notably Parkinson's disease. We describe a discovery pipeline to identify small molecules that increase Parkin recruitment to damaged mitochondria and ensuing mitophagy. We show that ROCK inhibitors promote the activity of this pathway by increasing the recruitment of HK2, a positive regulator of Parkin, to mitochondria. This leads to the increased targeting of mitochondria to lysosomes and removal of damaged mitochondria from cells. Furthermore, ROCK inhibitors demonstrate neuroprotective effects in flies subjected to paraquat, a parkinsonian toxin that induces mitochondrial damage. Importantly, parkin and rok are required for these effects, revealing a signaling axis which controls Parkin-mediated mitophagy that may be exploited for the development of Parkinson's disease therapeutics.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Mitocondrias/metabolismo , Mitofagia/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Ubiquitina-Proteína Ligasas/metabolismo , Quinasas Asociadas a rho/antagonistas & inhibidores , Animales , Línea Celular Tumoral , Dípteros , Hexoquinasa/genética , Hexoquinasa/metabolismo , Humanos , Masculino , Mitocondrias/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ubiquitina-Proteína Ligasas/genética , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo
3.
J Biol Chem ; 281(17): 11702-11, 2006 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16520376

RESUMEN

The Sir2 family of enzymes is highly conserved throughout evolution and functions in silencing, control of life span, apoptosis, and many other cellular processes. Since the discovery of the NAD-dependent deacetylase activity of Sir2 proteins, there has been a flurry of activity aiming to uncover the mode of substrate binding and catalysis. Structural and biochemical studies have led to several proposed reaction mechanisms, yet the exact catalytic steps remain unclear. Here we present in vitro studies of yeast homolog Hst2 that shed light on the mechanism of Sir2 proteins. Using acetyl-lysine substrate analogs, we demonstrate that the Hst2 reaction proceeds via an initial SN2-type mechanism with the direct formation of an ADP-ribose-acetyl-lysine intermediate. Kinetic studies further suggest that ADP-ribose inhibits the Hst2 reaction in a biologically relevant manner. Through biochemical and kinetic analyses of point mutants, we also clarify the role of several conserved core domain residues in substrate binding, stabilization of the ADP-ribose-acetyl-lysine intermediate, and catalysis. These findings bring us a few steps closer to understanding Sir2 activity and may provide a useful platform for the design of Sir2-specific inhibitors for analysis of Sir2 function and possibly therapeutic applications.


Asunto(s)
Histona Desacetilasas/metabolismo , Lisina/metabolismo , NAD/metabolismo , O-Acetil-ADP-Ribosa/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/metabolismo , Sirtuinas/metabolismo , Acetilación , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Histona Desacetilasas/química , Histona Desacetilasas/genética , Cinética , Lisina/química , Datos de Secuencia Molecular , Mutagénesis , O-Acetil-ADP-Ribosa/química , Mutación Puntual , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/química , Proteínas Reguladoras de Información Silente de Saccharomyces cerevisiae/genética , Sirtuina 2 , Sirtuinas/química , Sirtuinas/genética , Especificidad por Sustrato
4.
J Biol Chem ; 280(43): 36073-8, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16131486

RESUMEN

The regulation of protein function is often achieved through post-translational modifications including phosphorylation, methylation, ubiquitination, and acetylation. The role of acetylation has been most extensively studied in the context of histones, but it is becoming increasingly evident that this modification now includes other proteins. The Sir2 family of NAD-dependent deacetylases was initially recognized as mediating gene silencing through histone deacetylation, but several family members display non-nuclear sub-cellular localization and deacetylate non-histone protein substrates. Although many structural and enzymatic studies of Sir2 proteins have been reported, how substrate recognition is achieved by this family of enzymes is unknown. Here we use in vitro deacetylase assays and a variety of potential substrates to examine the substrate specificity of yeast homologue Hst2. We show that Hst2 is specific for acetyl-lysine within proteins; it does not deacetylate small polycations such as acetyl-spermine or acetylated amino ter-mini of proteins. Furthermore we have found that Hst2 displays conformational rather than sequence specificity, preferentially deacetylating acetyl-lysine within unstructured regions of proteins. Our results suggest that this conformational requirement may be a general feature for substrate recognition in the Sir2 family.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Sirtuinas/química , Sirtuinas/metabolismo , Animales , Arginina/química , Unión Competitiva , Cationes , Núcleo Celular/metabolismo , Dicroismo Circular , Relación Dosis-Respuesta a Droga , Silenciador del Gen , Histonas/química , Caballos , Cinética , Lisina/química , Modelos Moleculares , Péptidos/química , Fosforilación , Polilisina/química , Conformación Proteica , Procesamiento Proteico-Postraduccional , Proteínas Recombinantes/química , Ribonucleasa Pancreática/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sirtuina 2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA