Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 19(8): e1010863, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37616321

RESUMEN

Quantitative traits may be controlled by many loci, many alleles at each locus, and subject to genotype-by-environment interactions, making them difficult to map. One example of such a complex trait is shoot branching in the model plant Arabidopsis, and its plasticity in response to nitrate. Here, we use artificial selection under contrasting nitrate supplies to dissect the genetic architecture of this complex trait, where loci identified by association mapping failed to explain heritability estimates. We found a consistent response to selection for high branching, with correlated responses in other traits such as plasticity and flowering time. Genome-wide scans for selection and simulations suggest that at least tens of loci control this trait, with a distinct genetic architecture between low and high nitrate treatments. While signals of selection could be detected in the populations selected for high branching on low nitrate, there was very little overlap in the regions selected in three independent populations. Thus the regulatory network controlling shoot branching can be tuned in different ways to give similar phenotypes.


Asunto(s)
Arabidopsis , Nitratos , Alelos , Genotipo , Herencia Multifactorial
2.
Proc Natl Acad Sci U S A ; 120(48): e2308587120, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37991945

RESUMEN

Due to their long lifespan, trees and bushes develop higher order of branches in a perennial manner. In contrast to a tall tree, with a clearly defined main stem and branching order, a bush is shorter and has a less apparent main stem and branching pattern. To address the developmental basis of these two forms, we studied several naturally occurring architectural variants in silver birch (Betula pendula). Using a candidate gene approach, we identified a bushy kanttarelli variant with a loss-of-function mutation in the BpMAX1 gene required for strigolactone (SL) biosynthesis. While kanttarelli is shorter than the wild type (WT), it has the same number of primary branches, whereas the number of secondary branches is increased, contributing to its bush-like phenotype. To confirm that the identified mutation was responsible for the phenotype, we phenocopied kanttarelli in transgenic BpMAX1::RNAi birch lines. SL profiling confirmed that both kanttarelli and the transgenic lines produced very limited amounts of SL. Interestingly, the auxin (IAA) distribution along the main stem differed between WT and BpMAX1::RNAi. In the WT, the auxin concentration formed a gradient, being higher in the uppermost internodes and decreasing toward the basal part of the stem, whereas in the transgenic line, this gradient was not observed. Through modeling, we showed that the different IAA distribution patterns may result from the difference in the number of higher-order branches and plant height. Future studies will determine whether the IAA gradient itself regulates aspects of plant architecture.


Asunto(s)
Ácidos Indolacéticos , Reguladores del Crecimiento de las Plantas , Árboles , Lactonas , Regulación de la Expresión Génica de las Plantas
3.
Development ; 149(21)2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36281807

RESUMEN

Plants develop throughout their lives: seeds become seedlings that mature and form fruits and seeds. Although the underlying mechanisms that drive these developmental phase transitions have been well elucidated for shoots, the extent to which they affect the root is less clear. However, root anatomy does change as some plants mature; meristems enlarge and radial thickening occurs. Here, in Arabidopsis thaliana, we show that overexpressing miR156A, a gene that promotes the juvenile phase, increased the density of the root system, even in grafted plants in which only the rootstock had the overexpression genotype. In the root, overexpression of miR156A resulted in lower levels of PLETHORA 2, a protein that affects formation of the meristem and elongation zone. Crossing in an extra copy of PLETHORA 2 partially rescued the effects of miR156A overexpression on traits affecting root architecture, including meristem length and the rate of lateral root emergence. Consistent with this, PLETHORA 2 also inhibited the root-tip expression of another miR156 gene, miR156C. We conclude that the system driving phase change in the shoot affects developmental progression in the root, and that PLETHORA 2 participates in this network.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , MicroARNs , Meristema/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Arabidopsis/metabolismo , Plantones/genética , MicroARNs/genética , MicroARNs/metabolismo
4.
New Phytol ; 242(3): 1084-1097, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503686

RESUMEN

Arabidopsis thaliana (Arabidopsis) shoot architecture is largely determined by the pattern of axillary buds that grow into lateral branches, the regulation of which requires integrating both local and systemic signals. Nodal explants - stem explants each bearing one leaf and its associated axillary bud - are a simplified system to understand the regulation of bud activation. To explore signal integration in bud activation, we characterised the growth dynamics of buds in nodal explants in key mutants and under different treatments. We observed that isolated axillary buds activate in two genetically and physiologically separable phases: a slow-growing lag phase, followed by a switch to rapid outgrowth. Modifying BRANCHED1 expression or the properties of the auxin transport network, including via strigolactone application, changed the length of the lag phase. While most interventions affected only the length of the lag phase, strigolactone treatment and a second bud also affected the rapid growth phase. Our results are consistent with the hypothesis that the slow-growing lag phase corresponds to the time during which buds establish canalised auxin transport out of the bud, after which they enter a rapid growth phase. Our work also hints at a role for auxin transport in influencing the maximum growth rate of branches.


Asunto(s)
Arabidopsis , Compuestos Heterocíclicos con 3 Anillos , Ácidos Indolacéticos , Ácidos Indolacéticos/farmacología , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Brotes de la Planta/metabolismo , Lactonas/farmacología , Lactonas/metabolismo , Regulación de la Expresión Génica de las Plantas
5.
Nature ; 563(7733): 652-656, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464344

RESUMEN

The strigolactones, a class of plant hormones, regulate many aspects of plant physiology. In the inhibition of shoot branching, the α/ß hydrolase D14-which metabolizes strigolactone-interacts with the F-box protein D3 to ubiquitinate and degrade the transcription repressor D53. Despite the fact that multiple modes of interaction between D14 and strigolactone have recently been determined, how the hydrolase functions with D3 to mediate hormone-dependent D53 ubiquitination remains unknown. Here we show that D3 has a C-terminal α-helix that can switch between two conformational states. The engaged form of this α-helix facilitates the binding of D3 and D14 with a hydrolysed strigolactone intermediate, whereas the dislodged form can recognize unmodified D14 in an open conformation and inhibits its enzymatic activity. The D3 C-terminal α-helix enables D14 to recruit D53 in a strigolactone-dependent manner, which in turn activates the hydrolase. By revealing the structural plasticity of the SCFD3-D14 ubiquitin ligase, our results suggest a mechanism by which the E3 coordinates strigolactone signalling and metabolism.


Asunto(s)
Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Oryza/enzimología , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Ligasas SKP Cullina F-box/química , Proteínas Ligasas SKP Cullina F-box/metabolismo , Transducción de Señal , Compuestos Heterocíclicos con 3 Anillos/química , Lactonas/química , Modelos Moleculares , Complejos Multienzimáticos/antagonistas & inhibidores , Complejos Multienzimáticos/química , Complejos Multienzimáticos/metabolismo , Reguladores del Crecimiento de las Plantas/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Ligasas SKP Cullina F-box/antagonistas & inhibidores , Relación Estructura-Actividad , Ubiquitina , Ubiquitinación
6.
Nat Rev Mol Cell Biol ; 12(4): 211-21, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21427763

RESUMEN

Shoot branching is a highly plastic developmental process in which axillary buds are formed in the axil of each leaf and may subsequently be activated to give branches. Three classes of plant hormones, auxins, cytokinins and strigolactones (or strigolactone derivatives) are central to the control of bud activation. These hormones move throughout the plant forming a network of systemic signals. The past decade brought great progress in understanding the mechanisms of shoot branching control. Biological and computational studies have led to the proposal of two models, the auxin transport canalization-based model and the second messenger model, which provide mechanistic explanations for apical dominance.


Asunto(s)
Desarrollo de la Planta , Brotes de la Planta/crecimiento & desarrollo , Transducción de Señal/fisiología , Transporte Biológico/fisiología , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/fisiología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Plantas/genética , Plantas/metabolismo , Sistemas de Mensajero Secundario/genética , Sistemas de Mensajero Secundario/fisiología , Transducción de Señal/genética
7.
New Phytol ; 235(1): 126-140, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35313031

RESUMEN

Photomorphogenic remodelling of seedling growth is a key developmental transition in the plant life cycle. The α/ß-hydrolase signalling protein KARRIKIN-INSENSITIVE2 (KAI2), a close homologue of the strigolactone receptor DWARF14 (D14), is involved in this process, but it is unclear how the effects of KAI2 on development are mediated. Here, using a combination of physiological, pharmacological, genetic and imaging approaches in Arabidopsis thaliana (Heynh.) we show that kai2 phenotypes arise because of a failure to downregulate auxin transport from the seedling shoot apex towards the root system, rather than a failure to respond to light per se. We demonstrate that KAI2 controls the light-induced remodelling of the PIN-mediated auxin transport system in seedlings, promoting a reduction in PIN7 abundance in older tissues, and an increase of PIN1/PIN2 abundance in the root meristem. We show that removing PIN3, PIN4 and PIN7 from kai2 mutants, or pharmacological inhibition of auxin transport and synthesis, is sufficient to suppress most kai2 seedling phenotypes. We conclude that KAI2 regulates seedling morphogenesis by its effects on the auxin transport system. We propose that KAI2 is not required for the light-mediated changes in PIN gene expression but is required for the appropriate changes in PIN protein abundance within cells.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Furanos , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Raíces de Plantas/metabolismo , Piranos , Plantones
8.
PLoS Genet ; 15(3): e1008023, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30865619

RESUMEN

The shoot systems of plants are built by the action of the primary shoot apical meristem, established during embryogenesis. In the axil of each leaf produced by the primary meristem, secondary axillary shoot apical meristems are established. The dynamic regulation of the activity of these axillary meristems gives shoot systems their extraordinary plasticity of form. The ability of plants to activate or repress these axillary meristems appropriately requires communication between meristems that is environmentally sensitive. The transport network of the plant hormone auxin has long been implicated as a central player in this tuneable communication system, with other systemically mobile hormones, such as strigolactone and cytokinin, acting in part by modulating auxin transport. Until recently, the polar auxin transport stream, which provides a high conductance auxin transport route down stems dominated by the auxin export protein PIN-FORMED1 (PIN1), has been the focus for understanding long range auxin transport in the shoot. However, recently additional auxin exporters with important roles in the shoot have been identified, including PIN3, PIN4 and PIN7. These proteins contribute to a wider less polar stem auxin transport regime, which we have termed connective auxin transport (CAT), because of its role in communication across the shoot system. Here we present a genetic analysis of the role of CAT in shoot branching. We demonstrate that in Arabidopsis, CAT plays an important role in strigolactone-mediated shoot branching control, with the triple pin3pin4pin7 mutant able to suppress partially the highly branched phenotype of strigolactone deficient mutants. In contrast, the branchy phenotype of mutants lacking the axillary meristem-expressed transcription factor, BRANCHED1 (BRC1) is unaffected by pin3pin4pin7. We further demonstrate that mutation in the ABCB19 auxin export protein, which like PIN3 PIN4 and PIN7 is widely expressed in stems, has very different effects, implicating ABCB19 in auxin loading at axillary bud apices.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Lactonas/metabolismo , Factores de Transcripción/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Transporte Biológico Activo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Cinética , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Modelos Biológicos , Mutación , Fenotipo , Reguladores del Crecimiento de las Plantas/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Factores de Transcripción/genética
9.
PLoS Genet ; 15(9): e1008366, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31539368

RESUMEN

The capacity of organisms to tune their development in response to environmental cues is pervasive in nature. This phenotypic plasticity is particularly striking in plants, enabled by their modular and continuous development. A good example is the activation of lateral shoot branches in Arabidopsis, which develop from axillary meristems at the base of leaves. The activity and elongation of lateral shoots depends on the integration of many signals both external (e.g. light, nutrient supply) and internal (e.g. the phytohormones auxin, strigolactone and cytokinin). Here, we characterise natural variation in plasticity of shoot branching in response to nitrate supply using two diverse panels of Arabidopsis lines. We find extensive variation in nitrate sensitivity across these lines, suggesting a genetic basis for variation in branching plasticity. High plasticity is associated with extreme branching phenotypes such that lines with the most branches on high nitrate have the fewest under nitrate deficient conditions. Conversely, low plasticity is associated with a constitutively moderate level of branching. Furthermore, variation in plasticity is associated with alternative life histories with the low plasticity lines flowering significantly earlier than high plasticity lines. In Arabidopsis, branching is highly correlated with fruit yield, and thus low plasticity lines produce more fruit than high plasticity lines under nitrate deficient conditions, whereas highly plastic lines produce more fruit under high nitrate conditions. Low and high plasticity, associated with early and late flowering respectively, can therefore be interpreted alternative escape vs mitigate strategies to low N environments. The genetic architecture of these traits appears to be highly complex, with only a small proportion of the estimated genetic variance detected in association mapping.


Asunto(s)
Arabidopsis/genética , Nitratos/metabolismo , Brotes de la Planta/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Meristema/crecimiento & desarrollo , Fenotipo , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo
10.
Development ; 144(9): 1661-1673, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28289131

RESUMEN

The degree of shoot branching in Arabidopsis is determined by the activation of axillary buds. Bud activity is regulated by diverse environmental and developmental signals, often mediated via plant hormones, including auxin, strigolactone and cytokinin. The transcription factor BRANCHED1 (BRC1) has been proposed to integrate these regulatory signals. This idea is based on increased branching in brc1 mutants, the effects of bud-regulating hormones on BRC1 expression, and a general correlation between BRC1 expression and bud growth inhibition. These data demonstrate the important role of BRC1 in shoot branching, but here we show that in Arabidopsis this correlation can be broken. Buds lacking BRC1 expression can remain inhibited and sensitive to inhibition by strigolactone. Furthermore, buds with high BRC1 transcript levels can be active. Based on these data, we propose that BRC1 regulates bud activation potential in concert with an auxin transport-based mechanism underpinning bud activity. In the context of strigolactone-mediated bud regulation, our data suggest a coherent feed-forward loop in which strigolactone treatment reduces the probability of bud activation by parallel effects on BRC1 transcription and the shoot auxin transport network.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/embriología , Arabidopsis/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Brotes de la Planta/embriología , Brotes de la Planta/genética , Factores de Transcripción/genética , Arabidopsis/efectos de los fármacos , Proteínas de Arabidopsis/metabolismo , Epistasis Genética/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ácidos Indolacéticos/farmacología , Lactonas/farmacología , Mutación/genética , Brotes de la Planta/efectos de los fármacos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factores de Transcripción/metabolismo
11.
PLoS Comput Biol ; 15(9): e1007325, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31509526

RESUMEN

Understanding the optimization objectives that shape shoot architectures remains a critical problem in plant biology. Here, we performed 3D scanning of 152 Arabidopsis shoot architectures, including wildtype and 10 mutant strains, and we uncovered a design principle that describes how architectures make trade-offs between competing objectives. First, we used graph-theoretic analysis to show that Arabidopsis shoot architectures strike a Pareto optimal that can be captured as maximizing performance in transporting nutrients and minimizing costs in building the architecture. Second, we identify small sets of genes that can be mutated to shift the weight prioritizing one objective over the other. Third, we show that this prioritization weight feature is significantly less variable across replicates of the same genotype compared to other common plant traits (e.g., number of rosette leaves, total volume occupied). This suggests that this feature is a robust descriptor of a genotype, and that local variability in structure may be compensated for globally in a homeostatic manner. Overall, our work provides a framework to understand optimization trade-offs made by shoot architectures and provides evidence that these trade-offs can be modified genetically, which may aid plant breeding and selection efforts.


Asunto(s)
Arabidopsis , Homeostasis/genética , Brotes de la Planta , Algoritmos , Arabidopsis/anatomía & histología , Arabidopsis/genética , Biología Computacional , Genes de Plantas/genética , Genotipo , Modelos Biológicos , Mutación/genética , Hojas de la Planta/anatomía & histología , Hojas de la Planta/genética , Brotes de la Planta/anatomía & histología , Brotes de la Planta/genética
12.
PLoS Genet ; 13(12): e1007089, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29220348

RESUMEN

Strigolactones (SLs) are well known for their role in repressing shoot branching. In pea, increased transcript levels of SL biosynthesis genes are observed in stems of highly branched SL deficient (ramosus1 (rms1) and rms5) and SL response (rms3 and rms4) mutants indicative of negative feedback control. In contrast, the highly branched rms2 mutant has reduced transcript levels of SL biosynthesis genes. Grafting studies and hormone quantification led to a model where RMS2 mediates a shoot-to-root feedback signal that regulates both SL biosynthesis gene transcript levels and xylem sap levels of cytokinin exported from roots. Here we cloned RMS2 using synteny with Medicago truncatula and demonstrated that it encodes a putative auxin receptor of the AFB4/5 clade. Phenotypes similar to rms2 were found in Arabidopsis afb4/5 mutants, including increased shoot branching, low expression of SL biosynthesis genes and high auxin levels in stems. Moreover, afb4/5 and rms2 display a specific resistance to the herbicide picloram. Yeast-two-hybrid experiments supported the hypothesis that the RMS2 protein functions as an auxin receptor. SL root feeding using hydroponics repressed auxin levels in stems and down-regulated transcript levels of auxin biosynthesis genes within one hour. This auxin down-regulation was also observed in plants treated with the polar auxin transport inhibitor NPA. Together these data suggest a homeostatic feedback loop in which auxin up-regulates SL synthesis in an RMS2-dependent manner and SL down-regulates auxin synthesis in an RMS3 and RMS4-dependent manner.


Asunto(s)
Proteínas de Arabidopsis/genética , Pisum sativum/genética , Proteínas de Plantas/genética , Receptores de Superficie Celular/genética , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Ácidos Indolacéticos/metabolismo , Medicago truncatula/genética , Pisum sativum/crecimiento & desarrollo , Picloram/farmacología , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/crecimiento & desarrollo , Receptores de Superficie Celular/metabolismo , Transducción de Señal
13.
Plant Physiol ; 177(2): 803-818, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29717021

RESUMEN

Cytokinin promotes shoot branching by activating axillary buds, but its mechanism of action in Arabidopsis (Arabidopsis thaliana) in this process is unclear. We have shown previously that a hextuple mutant lacking a clade of type-A Arabidopsis Response Regulators (ARRs) known to act in cytokinin signaling has reduced shoot branching compared with the wild type. Since these proteins typically act as negative regulators of cytokinin signaling, this is an unexpected result. To explore this paradox more deeply, we characterized the effects of loss of function of the type-B ARR, ARR1, which positively regulates cytokinin-induced gene expression. The arr1 mutant has increased branching, consistent with a role antagonistic to the type-A ARRs but in apparent conflict with the known positive role for cytokinin in bud activation. We show that the arr branching phenotypes correlate with increases in stem auxin transport and steady-state levels of the auxin export proteins PIN3 and PIN7 on the plasma membrane of xylem-associated cells in the main stem. Cytokinin treatment results in an increased accumulation of PIN3, PIN7, and the closely related PIN4 within several hours, and loss of PIN3, PIN4, and PIN7 can partially rescue the arr1 branching phenotype. This suggests that there are multiple signaling pathways for cytokinin in bud outgrowth; one of these pathways regulates PIN proteins in shoots, independently of the canonical signaling function of the ARR genes tested here. A hypothesis consistent with the arr shoot phenotypes is that feedback control of biosynthesis leads to altered cytokinin accumulation, driving cytokinin signaling via this pathway.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Citocininas/farmacología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Mutación , Nitratos/metabolismo , Nitratos/farmacología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transducción de Señal , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
14.
Plant Cell ; 28(7): 1581-601, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27317673

RESUMEN

Strigolactones (SLs) are hormonal signals that regulate multiple aspects of shoot architecture, including shoot branching. Like many plant hormonal signaling systems, SLs act by promoting ubiquitination of target proteins and their subsequent proteasome-mediated degradation. Recently, SMXL6, SMXL7, and SMXL8, members of the SMAX1-LIKE (SMXL) family of chaperonin-like proteins, have been identified as proteolytic targets of SL signaling in Arabidopsis thaliana However, the mechanisms by which these proteins regulate downstream events remain largely unclear. Here, we show that SMXL7 functions in the nucleus, as does the SL receptor, DWARF14 (D14). We show that nucleus-localized D14 can physically interact with both SMXL7 and the MAX2 F-box protein in a SL-dependent manner and that disruption of specific conserved domains in SMXL7 affects its localization, SL-induced degradation, and activity. By expressing and overexpressing these SMXL7 protein variants, we show that shoot tissues are broadly sensitive to SMXL7 activity, but degradation normally buffers the effect of increasing SMXL7 expression. SMXL7 contains a well-conserved EAR (ETHYLENE-RESPONSE FACTOR Amphiphilic Repression) motif, which contributes to, but is not essential for, SMXL7 functionality. Intriguingly, different developmental processes show differential sensitivity to the loss of the EAR motif, raising the possibility that there may be several distinct mechanisms at play downstream of SMXL7.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Núcleo Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Brotes de la Planta/metabolismo , Arabidopsis/genética , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Brotes de la Planta/genética , Brotes de la Planta/fisiología , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
15.
PLoS Biol ; 14(4): e1002446, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27119525

RESUMEN

The bulk polar movement of the plant signaling molecule auxin through the stem is a long-recognized but poorly understood phenomenon. Here we show that the highly polar, high conductance polar auxin transport stream (PATS) is only part of a multimodal auxin transport network in the stem. The dynamics of auxin movement through stems are inconsistent with a single polar transport regime and instead suggest widespread low conductance, less polar auxin transport in the stem, which we term connective auxin transport (CAT). The bidirectional movement of auxin between the PATS and the surrounding tissues, mediated by CAT, can explain the complex auxin transport kinetics we observe. We show that the auxin efflux carriers PIN3, PIN4, and PIN7 are major contributors to this auxin transport connectivity and that their activity is important for communication between shoot apices in the regulation of shoot branching. We propose that the PATS provides a long-range, consolidated stream of information throughout the plant, while CAT acts locally, allowing tissues to modulate and be modulated by information in the PATS.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Brotes de la Planta/metabolismo , Transporte Biológico , Cinética , Proteínas de Plantas/metabolismo , Tallos de la Planta/metabolismo
16.
Plant Cell ; 27(11): 3143-59, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26546447

RESUMEN

The plant hormones strigolactones and smoke-derived karrikins are butenolide signals that control distinct aspects of plant development. Perception of both molecules in Arabidopsis thaliana requires the F-box protein MORE AXILLARY GROWTH2 (MAX2). Recent studies suggest that the homologous SUPPRESSOR OF MAX2 1 (SMAX1) in Arabidopsis and DWARF53 (D53) in rice (Oryza sativa) are downstream targets of MAX2. Through an extensive analysis of loss-of-function mutants, we demonstrate that the Arabidopsis SMAX1-LIKE genes SMXL6, SMXL7, and SMXL8 are co-orthologs of rice D53 that promote shoot branching. SMXL7 is degraded rapidly after treatment with the synthetic strigolactone mixture rac-GR24. Like D53, SMXL7 degradation is MAX2- and D14-dependent and can be prevented by deletion of a putative P-loop. Loss of SMXL6,7,8 suppresses several other strigolactone-related phenotypes in max2, including increased auxin transport and PIN1 accumulation, and increased lateral root density. Although only SMAX1 regulates germination and hypocotyl elongation, SMAX1 and SMXL6,7,8 have complementary roles in the control of leaf morphology. Our data indicate that SMAX1 and SMXL6,7,8 repress karrikin and strigolactone signaling, respectively, and suggest that all MAX2-dependent growth effects are mediated by degradation of SMAX1/SMXL proteins. We propose that functional diversification within the SMXL family enabled responses to different butenolide signals through a shared regulatory mechanism.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Furanos/farmacología , Lactonas/farmacología , Familia de Multigenes , Piranos/farmacología , Alelos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Transporte Biológico/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Germinación/efectos de los fármacos , Hipocótilo/efectos de los fármacos , Hipocótilo/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , Modelos Biológicos , Mutación/genética , Especificidad de Órganos/efectos de los fármacos , Hojas de la Planta/anatomía & histología , Hojas de la Planta/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/crecimiento & desarrollo , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/metabolismo , Unión Proteica/efectos de los fármacos , Proteolisis/efectos de los fármacos
17.
Trends Genet ; 30(2): 41-8, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24296041

RESUMEN

Polarized transport of the hormone auxin plays crucial roles in many processes in plant development. A self-organizing pattern of auxin transport--canalization--is thought to be responsible for vascular patterning and shoot branching regulation in flowering plants. Mathematical modeling has demonstrated that membrane localization of PIN-FORMED (PIN)-family auxin efflux carriers in proportion to net auxin flux can plausibly explain canalization and possibly other auxin transport phenomena. Other plausible models have also been proposed, and there has recently been much interest in producing a unified model of all auxin transport phenomena. However, it is our opinion that lacunae in our understanding of auxin transport biology are now limiting progress in developing the next generation of models. Here we examine several key areas where significant experimental advances are necessary to address both biological and theoretical aspects of auxin transport, including the possibility of a unified transport model.


Asunto(s)
Fenómenos Fisiológicos de las Plantas , Transporte Biológico , Ácidos Indolacéticos/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Modelos Biológicos , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/metabolismo
18.
PLoS Biol ; 12(6): e1001887, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24914954

RESUMEN

Once again, there are calls to reopen the debate on genetically modified (GM) crops. I find these calls frustrating and unnecessarily decisive. In my opinion the GM debate, on both sides, continues to hamper the urgent need to address the diverse and pressing challenges of global food security and environmental sustainability. The destructive power of the debate comes from its conflation of unrelated issues, coupled with deeply rooted misconceptions of the nature of agriculture.


Asunto(s)
Agricultura , Productos Agrícolas/genética , Abastecimiento de Alimentos , Alimentos Modificados Genéticamente , Plantas Modificadas Genéticamente
19.
Proc Natl Acad Sci U S A ; 111(6): 2379-84, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24464483

RESUMEN

Rice (Oryza sativa) cultivar Azucena--belonging to the Japonica subspecies--exudes high strigolactone (SL) levels and induces high germination of the root parasitic plant Striga hermonthica. Consistent with the fact that SLs also inhibit shoot branching, Azucena is a low-tillering variety. In contrast, Bala, an Indica cultivar, is a low-SL producer, stimulates less Striga germination, and is highly tillered. Using a Bala × Azucena F6 population, a major quantitative trait loci--qSLB1.1--for the exudation of SL, tillering, and induction of Striga germination was detected on chromosome 1. Sequence analysis of the corresponding locus revealed a rearrangement of a 51- to 59-kbp stretch between 28.9 and 29 Mbp in the Bala genome, resulting in the deletion of two cytochrome P450 genes--SLB1 and SLB2--with high homology to the Arabidopsis SL biosynthesis gene, MAX1. Both rice genes rescue the Arabidopsis max1-1 highly branched mutant phenotype and increase the production of the SL, ent-2'-epi-5-deoxystrigol, when overexpressed in Bala. Furthermore, analysis of this region in 367 cultivars of the publicly available Rice Diversity Panel population shows that the rearrangement at this locus is a recurrent natural trait associated with the Indica/Japonica divide in rice.


Asunto(s)
Eliminación de Gen , Variación Genética , Lactonas/metabolismo , Oryza/metabolismo , Proteínas de Plantas/genética , Cromosomas de las Plantas , Genes de Plantas , Datos de Secuencia Molecular , Oryza/genética , Sitios de Carácter Cuantitativo
20.
Plant J ; 82(5): 874-86, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25904120

RESUMEN

Auxin produced by an active primary shoot apex is transported down the main stem and inhibits the growth of the axillary buds below it, contributing to apical dominance. Here we use Arabidopsis thaliana cytokinin (CK) biosynthetic and signalling mutants to probe the role of CK in this process. It is well established that bud outgrowth is promoted by CK, and that CK synthesis is inhibited by auxin, leading to the hypothesis that release from apical dominance relies on an increased supply of CK to buds. Our data confirm that decapitation induces the expression of at least one ISOPENTENYLTRANSFERASE (IPT) CK biosynthetic gene in the stem. We further show that transcript abundance of a clade of the CK-responsive type-A Arabidopsis response regulator (ARR) genes increases in buds following CK supply, and that, contrary to their typical action as inhibitors of CK signalling, these genes are required for CK-mediated bud activation. However, analysis of the relevant arr and ipt multiple mutants demonstrates that defects in bud CK response do not affect auxin-mediated bud inhibition, and increased IPT transcript levels are not needed for bud release following decapitation. Instead, our data suggest that CK acts to overcome auxin-mediated bud inhibition, allowing buds to escape apical dominance under favourable conditions, such as high nitrate availability.


Asunto(s)
Arabidopsis/metabolismo , Citocininas/metabolismo , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Citocininas/genética , Familia de Multigenes , Mutación , Nitratos/metabolismo , Brotes de la Planta/crecimiento & desarrollo , Brotes de la Planta/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA