Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Semin Cell Dev Biol ; 49: 11-23, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26688334

RESUMEN

Parathyroid hormone (PTH)-related peptide (PTHrP) controls the pace of pre- and post-natal growth plate development by activating the PTH1R in chondrocytes, while PTH maintains mineral and skeletal homeostasis by modulating calciotropic activities in kidneys, gut, and bone. The extracellular calcium-sensing receptor (CaSR) is a member of family C, G protein-coupled receptor, which regulates mineral and skeletal homeostasis by controlling PTH secretion in parathyroid glands and Ca(2+) excretion in kidneys. Recent studies showed the expression of CaSR in chondrocytes, osteoblasts, and osteoclasts and confirmed its non-redundant roles in modulating the recruitment, proliferation, survival, and differentiation of the cells. This review emphasizes the actions of CaSR and PTH1R signaling responses in cartilage and bone and discusses how these two signaling cascades interact to control growth plate development and maintain skeletal metabolism in physiological and pathological conditions. Lastly, novel therapeutic regimens that exploit interrelationship between the CaSR and PTH1R are proposed to produce more robust osteoanabolism.


Asunto(s)
Osteogénesis , Receptor de Hormona Paratiroídea Tipo 1/fisiología , Receptores Sensibles al Calcio/fisiología , Transducción de Señal , Animales , Remodelación Ósea , Huesos/citología , Huesos/fisiología , Calcio/metabolismo , Cartílago/citología , Cartílago/fisiología , Diferenciación Celular , Condrocitos/fisiología , Placa de Crecimiento/fisiología , Humanos , Hormona Paratiroidea/fisiología
2.
Sci Rep ; 11(1): 6175, 2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33731726

RESUMEN

Fibroblast growth factor 23 (FGF23) is a bone-derived endocrine hormone that regulates phosphate and vitamin D metabolism. In models of FGF23 excess, renal deoxyribonuclease 1 (Dnase1) mRNA expression is downregulated. Dnase-1 is an endonuclease which binds monomeric actin. We investigated whether FGF23 suppresses renal Dnase-1 expression to facilitate endocytic retrieval of renal sodium dependent phosphate co-transporters (NaPi-IIa/c) from the brush border membrane by promoting actin polymerization. We showed that wild type mice on low phosphate diet and Fgf23-/- mice with hyperphosphatemia have increased renal Dnase1 mRNA expression while in Hyp mice with FGF23 excess and hypophosphatemia, Dnase1 mRNA expression is decreased. Administration of FGF23 in wild type and Fgf23-/- mice lowered Dnase1 expression. Taken together, our data shows that Dnase1 is regulated by FGF23. In 6-week-old Dnase1-/- mice, plasma phosphate and renal NaPi-IIa protein were significantly lower compared to wild-type mice. However, these changes were transient, normalized by 12 weeks of age and had no impact on bone morphology. Adaptation to low and high phosphate diet were similar in Dnase1-/- and Dnase1+/+ mice, and loss of Dnase1 gene expression did not rescue hyperphosphatemia in Fgf23-/- mice. We conclude that Dnase-1 does not mediate FGF23-induced inhibition of renal tubular phosphate reabsorption.


Asunto(s)
Desoxirribonucleasa I/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Hiperfosfatemia/metabolismo , Hipofosfatemia/metabolismo , Riñón/metabolismo , Fosfatos/metabolismo , Animales , Factor-23 de Crecimiento de Fibroblastos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
3.
JBMR Plus ; 5(11): e10545, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34761148

RESUMEN

Humans are exposed to ionizing radiation via spaceflight or cancer radiotherapy, and exposure from radiotherapy is known to increase risk of skeletal fractures. Although irradiation can reduce trabecular bone mass, alter trabecular microarchitecture, and increase collagen cross-linking, the relative contributions of these effects to any loss of mechanical integrity remain unclear. To provide insight, while addressing both the monotonic strength and cyclic-loading fatigue life, we conducted total-body, acute, gamma-irradiation experiments on skeletally mature (17-week-old) C57BL/6J male mice (n = 84). Mice were administered doses of either 0 Gy (sham), 1 Gy (motivated by cumulative exposures from a Mars mission), or 5 Gy (motivated by clinical therapy regimens) with retrieval of the lumbar vertebrae at either a short-term (11-day) or long-term (12-week) time point after exposure. Micro-computed tomography was used to assess trabecular and cortical quantity and architecture, biochemical composition assays were used to assess collagen quality, and mechanical testing was performed to evaluate vertebral compressive strength and fatigue life. At 11 days post-exposure, 5 Gy irradiation significantly reduced trabecular mass (p < 0.001), altered microarchitecture (eg, connectivity density p < 0.001), and increased collagen cross-links (p < 0.001). Despite these changes, vertebral strength (p = 0.745) and fatigue life (p = 0.332) remained unaltered. At 12 weeks after 5 Gy exposure, the trends in trabecular bone persisted; in addition, regardless of irradiation, cortical thickness (p < 0.01) and fatigue life (p < 0.01) decreased. These results demonstrate that the highly significant effects of 5 Gy total-body irradiation on the trabecular bone morphology and collagen cross-links did not translate into detectable effects on vertebral mechanics. The only mechanical deficits observed were associated with aging. Together, these vertebral results suggest that for spaceflight, irradiation alone will likely not alter failure properties, and for radiotherapy, more investigations that include post-exposure time as a positive control and testing of both failure modalities are needed to determine the cause of increased fracture risk. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research. This article has been contributed to by US Government employees and their work is in the public domain in the USA.

4.
J Bone Miner Res ; 35(1): 143-154, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498905

RESUMEN

Calcium and its putative receptor (CaSR) control skeletal development by pacing chondrocyte differentiation and mediating osteoblast (OB) function during endochondral bone formation-an essential process recapitulated during fracture repair. Here, we delineated the role of the CaSR in mediating transition of callus chondrocytes into the OB lineage and subsequent bone formation at fracture sites and explored targeting CaSRs pharmacologically to enhance fracture repair. In chondrocytes cultured from soft calluses at a closed, unfixed fracture site, extracellular [Ca2+ ] and the allosteric CaSR agonist (NPS-R568) promoted terminal differentiation of resident cells and the attainment of an osteoblastic phenotype. Knockout (KO) of the Casr gene in chondrocytes lengthened the chondrogenic phase of fracture repair by increasing cell proliferation in soft calluses but retarded subsequent osteogenic activity in hard calluses. Tracing growth plate (GP) and callus chondrocytes that express Rosa26-tdTomato showed reduced chondrocyte transition into OBs (by >80%) in the spongiosa of the metaphysis and in hard calluses. In addition, KO of the Casr gene specifically in mature OBs suppressed osteogenic activity and mineralizing function in bony calluses. Importantly, in experiments using PTH (1-34) to enhance fracture healing, co-injection of NPS-R568 not only normalized the hypercalcemic side effects of intermittent PTH (1-34) treatment in mice but also produced synergistic osteoanabolic effects in calluses. These data indicate a functional role of CaSR in mediating chondrogenesis and osteogenesis in the fracture callus and the potential of CaSR agonism to facilitate fracture repair. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Condrocitos , Curación de Fractura , Animales , Callo Óseo , Ratones , Ratones Noqueados , Osteoblastos , Osteogénesis , Receptores Sensibles al Calcio/genética
5.
Nat Metab ; 2(3): 243-255, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32694772

RESUMEN

Molecular mechanisms mediating tonic secretion of parathyroid hormone (PTH) in response to hypocalcaemia and hyperparathyroidism (HPT) are unclear. Here we demonstrate increased heterocomplex formation between the calcium-sensing receptor (CaSR) and metabotropic γ-aminobutyric acid (GABA) B1 receptor (GABAB1R) in hyperplastic parathyroid glands (PTGs) of patients with primary and secondary HPT. Targeted ablation of GABAB1R or glutamic acid decarboxylase 1 and 2 in PTGs produces hypocalcaemia and hypoparathyroidism, and prevents PTH hypersecretion in PTGs cultured from mouse models of hereditary HPT and dietary calcium-deficiency. Cobinding of the CaSR/GABAB1R complex by baclofen and high extracellular calcium blocks the coupling of heterotrimeric G-proteins to homomeric CaSRs in cultured cells and promotes PTH secretion in cultured mouse PTGs. These results combined with the ability of PTG to synthesize GABA support a critical autocrine action of GABA/GABAB1R in mediating tonic PTH secretion of PTGs and ascribe aberrant activities of CaSR/GABAB1R heteromer to HPT.


Asunto(s)
Hiperparatiroidismo Secundario/metabolismo , Hormona Paratiroidea/metabolismo , Receptores Sensibles al Calcio/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Animales , Calcio/metabolismo , Humanos , Hiperparatiroidismo Secundario/complicaciones , Hipocalcemia/complicaciones , Hipocalcemia/metabolismo , Ratones , Receptores de GABA-B/metabolismo
6.
Aging Cell ; 18(3): e12914, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30790400

RESUMEN

We previously reported that the canonical innate immune receptor toll-like receptor 4 (TLR4) is critical in maintaining lung integrity. However, the molecular mechanisms via which TLR4 mediates its effect remained unclear. In the present study, we identified distinct contributions of lung endothelial cells (Ec) and epithelial cells TLR4 to pulmonary homeostasis using genetic-specific, lung- and cell-targeted in vivo methods. Emphysema was significantly prevented via the reconstituting of human TLR4 expression in the lung Ec of TLR4-/- mice. Lung Ec-silencing of TLR4 in wild-type mice induced emphysema, highlighting the specific and distinct role of Ec-expressed TLR4 in maintaining lung integrity. We also identified a previously unrecognized role of TLR4 in preventing expression of p16INK4a , a senescence-associated gene. Lung Ec-p16INK4a -silencing prevented TLR4-/- induced emphysema, revealing a new functional role for p16INK4a in lungs. TLR4 suppressed endogenous p16INK4a expression via HDAC2-mediated deacetylation of histone H4. These findings suggest a novel role for TLR4 in maintaining of lung homeostasis via epigenetic regulation of senescence-related gene expression.


Asunto(s)
Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Células Endoteliales/metabolismo , Epigénesis Genética/genética , Pulmón/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Receptor Toll-Like 4/deficiencia
7.
Nat Commun ; 10(1): 163, 2019 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-30635563

RESUMEN

Central estrogen signaling coordinates energy expenditure, reproduction, and in concert with peripheral estrogen impacts skeletal homeostasis in females. Here, we ablate estrogen receptor alpha (ERα) in the medial basal hypothalamus and find a robust bone phenotype only in female mice that results in exceptionally strong trabecular and cortical bones, whose density surpasses other reported mouse models. Stereotaxic guided deletion of ERα in the arcuate nucleus increases bone mass in intact and ovariectomized females, confirming the central role of estrogen signaling in this sex-dependent bone phenotype. Loss of ERα in kisspeptin (Kiss1)-expressing cells is sufficient to recapitulate the bone phenotype, identifying Kiss1 neurons as a critical node in this powerful neuroskeletal circuit. We propose that this newly-identified female brain-to-bone pathway exists as a homeostatic regulator diverting calcium and energy stores from bone building when energetic demands are high. Our work reveals a previously unknown target for treatment of age-related bone disease.


Asunto(s)
Núcleo Arqueado del Hipotálamo/fisiología , Densidad Ósea , Receptor alfa de Estrógeno/fisiología , Kisspeptinas/metabolismo , Animales , Metabolismo Energético , Femenino , Homeostasis , Masculino , Ratones Transgénicos , Osteogénesis , Fenotipo , Caracteres Sexuales
8.
Bone Rep ; 9: 165-172, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30417036

RESUMEN

One potentially important bone quality characteristic is the response of bone to cyclic (repetitive) mechanical loading. In small animals, such as in rats and mice, cyclic loading experiments are particularly challenging to perform in a precise manner due to the small size of the bones and difficult-to-eliminate machine compliance. Addressing this issue, we developed a precise method for ex vivo cyclic compressive loading of isolated mouse vertebral bodies. The method has three key characteristics: 3D-printed support jigs for machining plano-parallel surfaces of the tiny vertebrae; pivotable loading platens to ensure uniform contact and loading of specimen surfaces; and specimen-specific micro-CT-based finite element analysis to measure stiffness to prescribe force levels that produce the same specified level of strain for all test specimens. To demonstrate utility, we measured fatigue life for three groups (n = 5-6 per group) of L5 vertebrae of C57BL/6J male mice, comparing our new method against two methods commonly used in the literature. We found reduced scatter of the mechanical behavior for this new method compared to the literature methods. In particular, for a controlled level of strain, the standard deviation of the measured fatigue life was up to 5-fold lower for the new method (F-ratio = 4.9; p < 0.01). The improved precision for this new method for biomechanical testing of small-animal vertebrae may help elucidate aspects of bone quality.

9.
J Orthop Res ; 36(1): 192-201, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28590060

RESUMEN

Damage at the intervertebral disc-vertebra interface associates with back pain and disc herniation. However, the structural and biomechanical properties of the disc-vertebra interface remain underexplored. We sought to measure mechanical properties and failure mechanisms, quantify architectural features, and assess structure-function relationships at this vulnerable location. Vertebra-disc-vertebra specimens from human cadaver thoracic spines were scanned with micro-computed tomography (µCT), surface speckle-coated, and loaded to failure in uniaxial tension. Digital image correlation (DIC) was used to calculate local surface strains. Failure surfaces were scanned using scanning electron microscopy (SEM), and adjacent sagittal slices were analyzed with histology and SEM. Seventy-one percent of specimens failed initially at the cartilage endplate-bone interface of the inner annulus region. Histology and SEM both indicated a lack of structural integration between the cartilage endplate (CEP) and bone. The interface failure strength was increased in samples with higher trabecular bone volume fraction in the vertebral endplates. Furthermore, failure strength decreased with degeneration, and in discs with thicker CEPs. Our findings indicate that poor structural connectivity between the CEP and vertebra may explain the structural weakness at this region, and provide insight into structural features that may contribute to risk for disc-vertebra interface injury. The disc-vertebra interface is the site of failure in the majority of herniation injuries. Here we show new structure-function relationships at this interface that may motivate the development of diagnostics, prevention strategies, and treatments to improve the prognosis for many low back pain patients with disc-vertebra interface injuries. © 2017 The Authors. Journal of Orthopaedic Research® Published by Wiley Periodicals, Inc. on behalf of Orthopaedic Research Society. J Orthop Res 36:192-201, 2018.


Asunto(s)
Disco Intervertebral/anatomía & histología , Vértebras Torácicas/anatomía & histología , Anciano , Fenómenos Biomecánicos , Cartílago/anatomía & histología , Cartílago/fisiología , Femenino , Humanos , Disco Intervertebral/fisiología , Desplazamiento del Disco Intervertebral/patología , Masculino , Microscopía Electroquímica de Rastreo , Persona de Mediana Edad , Vértebras Torácicas/fisiología , Microtomografía por Rayos X
10.
J Clin Invest ; 128(10): 4343-4358, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29999500

RESUMEN

GWAS have repeatedly mapped susceptibility loci for emphysema to genes that modify hedgehog signaling, but the functional relevance of hedgehog signaling to this morbid disease remains unclear. In the current study, we identified a broad population of mesenchymal cells in the adult murine lung receptive to hedgehog signaling, characterized by higher activation of hedgehog surrounding the proximal airway relative to the distal alveoli. Single-cell RNA-sequencing showed that the hedgehog-receptive mesenchyme is composed of mostly fibroblasts with distinct proximal and distal subsets with discrete identities. Ectopic hedgehog activation in the distal fibroblasts promoted expression of proximal fibroblast markers and loss of distal alveoli and airspace enlargement of over 20% compared with controls. We found that hedgehog suppressed mesenchymal-derived mitogens enriched in distal fibroblasts that regulate alveolar stem cell regeneration and airspace size. Finally, single-cell analysis of the human lung mesenchyme showed that segregated proximal-distal identity with preferential hedgehog activation in the proximal fibroblasts was conserved between mice and humans. In conclusion, we showed that differential hedgehog activation segregates mesenchymal identities of distinct fibroblast subsets and that disruption of fibroblast identity can alter the alveolar stem cell niche, leading to emphysematous changes in the murine lung.


Asunto(s)
Fibroblastos/metabolismo , Proteínas Hedgehog/metabolismo , Alveolos Pulmonares/metabolismo , Enfisema Pulmonar/metabolismo , Transducción de Señal , Animales , Fibroblastos/patología , Proteínas Hedgehog/genética , Humanos , Ratones , Ratones Noqueados , Alveolos Pulmonares/patología , Enfisema Pulmonar/genética , Enfisema Pulmonar/patología
11.
J Orthop Res ; 34(1): 48-57, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26285046

RESUMEN

Intervertebral disc herniation rates are quadrupled in astronauts following spaceflight. While bending motions are main contributors to herniation, the effects of microgravity on the bending properties of spinal discs are unknown. Consequently, the goal of this study was to quantify the bending properties of tail discs from mice with or without microgravity exposure. Caudal motion segments from six mice returned from a 30-day Bion M1 mission and eight vivarium controls were loaded to failure in four-point bending. After testing, specimens were processed using histology to determine the location of failure, and adjacent motion segments were scanned with micro-computed tomography (µCT) to quantify bone properties. We observed that spaceflight significantly shortened the nonlinear toe region of the force-displacement curve by 32% and reduced the bending strength by 17%. Flight mouse spinal segments tended to fail within the growth plate and epiphyseal bone, while controls tended to fail at the disc-vertebra junction. Spaceflight significantly reduced vertebral bone volume fraction, bone mineral density, and trabecular thickness, which may explain the tendency of flight specimens to fail within the epiphyseal bone. Together, these results indicate that vertebral bone loss during spaceflight may degrade spine bending properties and contribute to increased disc herniation risk in astronauts.


Asunto(s)
Resorción Ósea/etiología , Ingravidez/efectos adversos , Animales , Resorción Ósea/diagnóstico por imagen , Resorción Ósea/patología , Resorción Ósea/fisiopatología , Huesos/patología , Masculino , Ratones Endogámicos C57BL , Vuelo Espacial , Cola (estructura animal) , Soporte de Peso , Microtomografía por Rayos X
12.
J Bone Miner Res ; 30(9): 1572-84, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25801198

RESUMEN

Insulin-like growth factors (IGFs) are important local regulators during fracture healing. Although IGF1 deficiency is known to increase the risk of delayed union or non-union fractures in the elderly population, the underlying mechanisms that contribute to this defect remains unclear. In this study, IGF1 signaling during fracture healing was investigated in an osteoblast-specific IGF1 receptor (IGF1R) conditional knockout (KO) mouse model. A closed tibial fracture was induced in IGF1R(flox/flox) /2.3-kb α1(1)-collagen-Cre (KO) and IGF1R(flox/flox) (control) mice aged 12 weeks. Fracture callus samples and nonfractured tibial diaphysis were collected and analyzed by µCT, histology, immunohistochemistry, histomorphometry, and gene expression analysis at 10, 15, 21, and 28 days after fracture. A smaller size callus, lower bone volume accompanied by a defect in mineralization, bone microarchitectural abnormalities, and a higher cartilage volume were observed in the callus of these KO mice. The levels of osteoblast differentiation markers (osteocalcin, alkaline phosphatase, collagen 1α1) were significantly reduced, but the early osteoblast transcription factor runx2, as well as chondrocyte differentiation markers (collagen 2α1 and collagen 10α1) were significantly increased in the KO callus. Moreover, increased numbers of osteoclasts and impaired angiogenesis were observed during the first 15 days of fracture repair, but decreased numbers of osteoclasts were found in the later stages of fracture repair in the KO mice. Although baseline nonfractured tibias of KO mice had decreased trabecular and cortical bone compared to control mice, subsequent studies with mice expressing the 2.3-kb α1(1)-collagen-Cre ERT2 construct and given tamoxifen at the time of fracture and so starting with comparable bone levels showed similar impairment in fracture repair at least initially. Our data indicate that not only is the IGF1R in osteoblasts involved in osteoblast differentiation during fracture repair, but it plays an important role in coordinating chondrocyte, osteoclast, and endothelial responses that all contribute to the endochondral bone formation required for normal fracture repair.


Asunto(s)
Huesos/metabolismo , Callo Óseo/metabolismo , Curación de Fractura , Osteoblastos/metabolismo , Osteogénesis , Receptor IGF Tipo 1/genética , Animales , Fenómenos Biomecánicos , Callo Óseo/citología , Diferenciación Celular , Colágeno/metabolismo , Femenino , Genotipo , Ratones , Ratones Noqueados , Neovascularización Patológica , Osteoblastos/citología , Osteoclastos/metabolismo , Transducción de Señal , Tibia/patología , Fracturas de la Tibia/patología , Microtomografía por Rayos X
13.
PLoS One ; 9(5): e94989, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24788917

RESUMEN

Normal hearing requires exquisite cooperation between bony and sensorineural structures within the cochlea. For example, the inner ear secretes proteins such as osteoprotegrin (OPG) that can prevent cochlear bone remodeling. Accordingly, diseases that affect bone regulation can also result in hearing loss. Patients with fibrous dysplasia develop trabecular bone overgrowth resulting in hearing loss if the lesions affect the temporal bones. Unfortunately, the mechanisms responsible for this hearing loss, which could be sensorineural and/or conductive, remain unclear. In this study, we used a unique transgenic mouse model of increased Gs G-protein coupled receptor (GPCR) signaling induced by expression of an engineered receptor, Rs1, in osteoblastic cells. These ColI(2.3)+/Rs1+ mice showed dramatic bone lesions that histologically and radiologically resembled fibrous dysplasia. We found that ColI(2.3)+/Rs1+ mice showed progressive and severe conductive hearing loss. Ossicular chain impingement increased with the size and number of dysplastic lesions. While sensorineural structures were unaffected, ColI(2.3)+/Rs1+ cochleae had abnormally high osteoclast activity, together with elevated tartrate resistant acid phosphatase (TRAP) activity and receptor activator of nuclear factor kappa-B ligand (Rankl) mRNA expression. ColI(2.3)+/Rs1+ cochleae also showed decreased expression of Sclerostin (Sost), an antagonist of the Wnt signaling pathway that normally increases bone formation. The osteocyte canalicular networks of ColI(2.3)+/Rs1+ cochleae were disrupted and showed abnormal osteocyte morphology. The osteocytes in the ColI(2.3)+/Rs1+ cochleae showed increased expression of matrix metalloproteinase 13 (MMP-13) and TRAP, both of which can support osteocyte-mediated peri-lacunar remodeling. Thus, while the ossicular chain impingement is sufficient to account for the progressive hearing loss in fibrous dysplasia, the deregulation of bone remodeling extends to the cochlea as well. Our findings suggest that factors regulating bone remodeling, including peri-lacunar remodeling by osteocytes, may be useful targets for treating the bony overgrowths and hearing changes of fibrous dysplasia and other bony pathologies.


Asunto(s)
Remodelación Ósea , Cóclea/patología , Displasia Fibrosa Ósea/complicaciones , Pérdida Auditiva/etiología , Pérdida Auditiva/patología , Animales , Moléculas de Adhesión Celular/genética , Colágeno Tipo I/genética , Modelos Animales de Enfermedad , Proteínas del Ojo/genética , Femenino , Displasia Fibrosa Ósea/genética , Pérdida Auditiva Conductiva/etiología , Pérdida Auditiva Conductiva/patología , Masculino , Ratones , Ratones Transgénicos , Osteoclastos/metabolismo
14.
J Bone Miner Res ; 28(5): 1087-100, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23239173

RESUMEN

We studied mice with or without heterozygous deletion of the Casr in the parathyroid gland (PTG) [(PTG) CaSR(+/-)] to delineate effects of age and sex on manifestations of hyperparathyroidism (HPT). In control mice, aging induced a left-shift in the Ca(2+) /parathyroid hormone (PTH) set point accompanied by increased PTG CaSR expression along with lowered serum Ca(2+) and mildly increased PTH levels, suggesting adaptive responses of PTGs to aging-induced changes in mineral homeostasis. The aging effects on Ca(2+) /PTH set point and CaSR expression were significantly blunted in (PTG) CaSR(+/-) mice, who showed instead progressively elevated PTH levels with age, especially in 12-month-old females. These 12-month-old knockout mice demonstrated resistance to their high PTH levels in that serum 1,25-dihydroxyvitamin D (1,25-D) levels and RNA expression of renal Cyp27b1 and expression of genes involved in Ca(2+) transport in kidney and intestine were unresponsive to the rising PTH levels. Such changes may promote negative Ca(2+) balance, which further exacerbate the HPT. Skeletal responses to HPT were age-, sex-, and site-dependent. In control mice of either sex, trabecular bone in the distal femur decreased whereas cortical bone in the tibiofibular junction increased with age. In male (PTG) CaSR(+/-) mice, anabolic actions of the elevated PTH levels seemed to protect against trabecular bone loss at ≥ 3 months of age at the expense of cortical bone loss. In contrast, HPT produced catabolic effects on trabecular bone and anabolic effects on cortical bone in 3-month-old females; but these effects reversed by 12 months, preserving trabecular bone in aging mice. We demonstrate that the CaSR plays a central role in the adaptive responses of parathyroid function to age-induced changes in mineral metabolism and in target organ responses to calciotropic hormones. Restraining the ability of the PTG to upregulate CaSRs by heterozygous gene deletion contributes to biochemical and skeletal manifestations of HPT, especially in aging females.


Asunto(s)
Calcio/metabolismo , Hiperparatiroidismo/metabolismo , Hormona Paratiroidea/metabolismo , Animales , Enfermedad Crónica , Femenino , Hiperparatiroidismo/patología , Masculino , Ratones , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Receptores Sensibles al Calcio/genética , Factores Sexuales , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA