Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Gastroenterology ; 162(2): 548-561.e4, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34687739

RESUMEN

BACKGROUND AND AIMS: Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is associated with altered gut microbiota composition. Phylogenetic groups of gut bacteria involved in the metabolism of short chain fatty acids (SCFAs) were depleted in SARS-CoV-2-infected patients. We aimed to characterize a functional profile of the gut microbiome in patients with COVID-19 before and after disease resolution. METHODS: We performed shotgun metagenomic sequencing on fecal samples from 66 antibiotics-naïve patients with COVID-19 and 70 non-COVID-19 controls. Serial fecal samples were collected (at up to 6 times points) during hospitalization and beyond 1 month after discharge. We assessed gut microbial pathways in association with disease severity and blood inflammatory markers. We also determined changes of microbial functions in fecal samples before and after disease resolution and validated these functions using targeted analysis of fecal metabolites. RESULTS: Compared with non-COVID-19 controls, patients with COVID-19 with severe/critical illness showed significant alterations in gut microbiome functionality (P < .001), characterized by impaired capacity of gut microbiome for SCFA and L-isoleucine biosynthesis and enhanced capacity for urea production. Impaired SCFA and L-isoleucine biosynthesis in gut microbiome persisted beyond 30 days after recovery in patients with COVID-19. Targeted analysis of fecal metabolites showed significantly lower fecal concentrations of SCFAs and L-isoleucine in patients with COVID-19 before and after disease resolution. Lack of SCFA and L-isoleucine biosynthesis significantly correlated with disease severity and increased plasma concentrations of CXCL-10, NT- proB-type natriuretic peptide, and C-reactive protein (all P < .05). CONCLUSIONS: Gut microbiome of patients with COVID-19 displayed impaired capacity for SCFA and L-isoleucine biosynthesis that persisted even after disease resolution. These 2 microbial functions correlated with host immune response underscoring the importance of gut microbial functions in SARS-CoV-2 infection pathogenesis and outcome.


Asunto(s)
COVID-19/microbiología , Ácidos Grasos Volátiles/biosíntesis , Microbioma Gastrointestinal/genética , Inmunidad/fisiología , Isoleucina/biosíntesis , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Heces/microbiología , Femenino , Humanos , Masculino , Metagenómica , Persona de Mediana Edad , Filogenia , SARS-CoV-2 , Índice de Severidad de la Enfermedad
2.
Gut ; 71(3): 544-552, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35082169

RESUMEN

BACKGROUND: Long-term complications after COVID-19 are common, but the potential cause for persistent symptoms after viral clearance remains unclear. OBJECTIVE: To investigate whether gut microbiome composition is linked to post-acute COVID-19 syndrome (PACS), defined as at least one persistent symptom 4 weeks after clearance of the SARS-CoV-2 virus. METHODS: We conducted a prospective study of 106 patients with a spectrum of COVID-19 severity followed up from admission to 6 months and 68 non-COVID-19 controls. We analysed serial faecal microbiome of 258 samples using shotgun metagenomic sequencing, and correlated the results with persistent symptoms at 6 months. RESULTS: At 6 months, 76% of patients had PACS and the most common symptoms were fatigue, poor memory and hair loss. Gut microbiota composition at admission was associated with occurrence of PACS. Patients without PACS showed recovered gut microbiome profile at 6 months comparable to that of non-COVID-19 controls. Gut microbiome of patients with PACS were characterised by higher levels of Ruminococcus gnavus, Bacteroides vulgatus and lower levels of Faecalibacterium prausnitzii. Persistent respiratory symptoms were correlated with opportunistic gut pathogens, and neuropsychiatric symptoms and fatigue were correlated with nosocomial gut pathogens, including Clostridium innocuum and Actinomyces naeslundii (all p<0.05). Butyrate-producing bacteria, including Bifidobacterium pseudocatenulatum and Faecalibacterium prausnitzii showed the largest inverse correlations with PACS at 6 months. CONCLUSION: These findings provided observational evidence of compositional alterations of gut microbiome in patients with long-term complications of COVID-19. Further studies should investigate whether microbiota modulation can facilitate timely recovery from post-acute COVID-19 syndrome.


Asunto(s)
COVID-19/complicaciones , Microbioma Gastrointestinal/fisiología , Metagenómica/métodos , SARS-CoV-2 , COVID-19/diagnóstico , COVID-19/microbiología , Estudios de Seguimiento , Humanos , Estudios Prospectivos , Índice de Severidad de la Enfermedad , Síndrome Post Agudo de COVID-19
3.
Gut ; 71(4): 716-723, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33785557

RESUMEN

OBJECTIVE: The impact of faecal microbiota transplantation (FMT) on microbiota engraftment in patients with metabolic syndrome is uncertain. We aimed to study whether combining FMT with lifestyle modification could enhance the engraftment of favourable microbiota in obese patients with type 2 diabetes mellitus (T2DM). DESIGN: In this double-blind, randomised, placebo-controlled trial, 61 obese subjects with T2DM were randomly assigned to three parallel groups: FMT plus lifestyle intervention (LSI), FMT alone, or sham transplantation plus LSI every 4 weeks for up to week 12. FMT solution was prepared from six healthy lean donors. Faecal metagenomic sequencing was performed at baseline, weeks 4, 16 and 24. The primary outcome was the proportion of subjects acquiring ≥20% of microbiota from lean donors at week 24. RESULTS: Proportions of subjects acquiring ≥20% of lean-associated microbiota at week 24 were 100%, 88.2% and 22% in the FMT plus LSI, FMT alone, and sham plus LSI groups, respectively (p<0.0001). Repeated FMTs significantly increased the engraftment of lean-associated microbiota (p<0.05). FMT with or without LSI increased butyrate-producing bacteria. Combining LSI and FMT led to increase in Bifidobacterium and Lactobacillus compared with FMT alone (p<0.05). FMT plus LSI group had reduced total and low-density lipoprotein cholesterol and liver stiffness at week 24 compared with baseline (p<0.05). CONCLUSION: Repeated FMTs enhance the level and duration of microbiota engraftment in obese patients with T2DM. Combining lifestyle intervention with FMT led to more favourable changes in recipients' microbiota and improvement in lipid profile and liver stiffness. TRIAL REGISTRATION NUMBER: NCT03127696.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/terapia , Método Doble Ciego , Trasplante de Microbiota Fecal , Heces , Humanos , Obesidad/complicaciones , Obesidad/microbiología , Obesidad/terapia , Resultado del Tratamiento
4.
Gastroenterology ; 159(3): 944-955.e8, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32442562

RESUMEN

BACKGROUND & AIMS: Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infects gastrointestinal tissues, little is known about the roles of gut commensal microbes in susceptibility to and severity of infection. We investigated changes in fecal microbiomes of patients with SARS-CoV-2 infection during hospitalization and associations with severity and fecal shedding of virus. METHODS: We performed shotgun metagenomic sequencing analyses of fecal samples from 15 patients with Coronavirus Disease 2019 (COVID-19) in Hong Kong, from February 5 through March 17, 2020. Fecal samples were collected 2 or 3 times per week from time of hospitalization until discharge; disease was categorized as mild (no radiographic evidence of pneumonia), moderate (pneumonia was present), severe (respiratory rate ≥30/min, or oxygen saturation ≤93% when breathing ambient air), or critical (respiratory failure requiring mechanical ventilation, shock, or organ failure requiring intensive care). We compared microbiome data with those from 6 subjects with community-acquired pneumonia and 15 healthy individuals (controls). We assessed gut microbiome profiles in association with disease severity and changes in fecal shedding of SARS-CoV-2. RESULTS: Patients with COVID-19 had significant alterations in fecal microbiomes compared with controls, characterized by enrichment of opportunistic pathogens and depletion of beneficial commensals, at time of hospitalization and at all timepoints during hospitalization. Depleted symbionts and gut dysbiosis persisted even after clearance of SARS-CoV-2 (determined from throat swabs) and resolution of respiratory symptoms. The baseline abundance of Coprobacillus, Clostridium ramosum, and Clostridium hathewayi correlated with COVID-19 severity; there was an inverse correlation between abundance of Faecalibacterium prausnitzii (an anti-inflammatory bacterium) and disease severity. Over the course of hospitalization, Bacteroides dorei, Bacteroides thetaiotaomicron, Bacteroides massiliensis, and Bacteroides ovatus, which downregulate expression of angiotensin-converting enzyme 2 (ACE2) in murine gut, correlated inversely with SARS-CoV-2 load in fecal samples from patients. CONCLUSIONS: In a pilot study of 15 patients with COVID-19, we found persistent alterations in the fecal microbiome during the time of hospitalization, compared with controls. Fecal microbiota alterations were associated with fecal levels of SARS-CoV-2 and COVID-19 severity. Strategies to alter the intestinal microbiota might reduce disease severity.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus/microbiología , Disbiosis/virología , Heces/microbiología , Microbioma Gastrointestinal/genética , Neumonía Viral/microbiología , Adulto , Anciano , COVID-19 , Femenino , Tracto Gastrointestinal/microbiología , Hong Kong/epidemiología , Hospitalización/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Proyectos Piloto , SARS-CoV-2
5.
Microbiome ; 9(1): 91, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853691

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) caused by the enveloped RNA virus SARS-CoV-2 primarily affects the respiratory and gastrointestinal tracts. SARS-CoV-2 was isolated from fecal samples, and active viral replication was reported in human intestinal cells. The human gut also harbors an enormous amount of resident viruses (collectively known as the virome) that play a role in regulating host immunity and disease pathophysiology. Understanding gut virome perturbation that underlies SARS-CoV-2 infection and severity is an unmet need. METHODS: We enrolled 98 COVID-19 patients with varying disease severity (3 asymptomatic, 53 mild, 34 moderate, 5 severe, 3 critical) and 78 non-COVID-19 controls matched for gender and co-morbidities. All subjects had fecal specimens sampled at inclusion. Blood specimens were collected for COVID-19 patients at admission to test for inflammatory markers and white cell counts. Among COVID-19 cases, 37 (38%) patients had serial fecal samples collected 2 to 3 times per week from time of hospitalization until after discharge. Using shotgun metagenomics sequencing, we sequenced and profiled the fecal RNA and DNA virome. We investigated alterations and longitudinal dynamics of the gut virome in association with disease severity and blood parameters. RESULTS: Patients with COVID-19 showed underrepresentation of Pepper mild mottle virus (RNA virus) and multiple bacteriophage lineages (DNA viruses) and enrichment of environment-derived eukaryotic DNA viruses in fecal samples, compared to non-COVID-19 subjects. Such gut virome alterations persisted up to 30 days after disease resolution. Fecal virome in SARS-CoV-2 infection harbored more stress-, inflammation-, and virulence-associated gene encoding capacities including those pertaining to bacteriophage integration, DNA repair, and metabolism and virulence associated with their bacterial host. Baseline fecal abundance of 10 virus species (1 RNA virus, pepper chlorotic spot virus, and 9 DNA virus species) inversely correlated with disease COVID-19 severity. These viruses inversely correlated with blood levels of pro-inflammatory proteins, white cells, and neutrophils. Among the 10 COVID-19 severity-associated DNA virus species, 4 showed inverse correlation with age; 5 showed persistent lower abundance both during disease course and after disease resolution relative to non-COVID-19 subjects. CONCLUSIONS: Both enteric RNA and DNA virome in COVID-19 patients were different from non-COVID-19 subjects, which persisted after disease resolution of COVID-19. Gut virome may calibrate host immunity and regulate severity to SARS-CoV-2 infection. Our observation that gut viruses inversely correlated with both severity of COVID-19 and host age may partly explain that older subjects are prone to severe and worse COVID-19 outcomes. Altogether, our data highlight the importance of human gut virome in severity and potentially therapeutics of COVID-19. Video Abstract.


Asunto(s)
COVID-19 , Microbioma Gastrointestinal , Preescolar , ADN , Microbioma Gastrointestinal/genética , Humanos , ARN , SARS-CoV-2 , Viroma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA