RESUMEN
Pulmonary surfactant is a lipid-protein complex that forms a thin film at the air-water surface of the lungs. This surfactant film defines the elastic recoil and respiratory mechanics of the lungs. One generally accepted rationale of using oxygenated perfluorocarbon (PFC) as a respiratory medium in liquid ventilation is to take advantage of its low surface tensions (14-18 mN/m), which was believed to make PFC an ideal replacement of the exogenous surfactant. Compared with the extensive studies of the phospholipid phase behavior of the pulmonary surfactant film at the air-water surface, its phase behavior at the PFC-water interface is essentially unknown. Here, we reported the first detailed biophysical study of phospholipid phase transitions in two animal-derived natural pulmonary surfactant films, Infasurf and Survanta, at the PFC-water interface using constrained drop surfactometry. Constrained drop surfactometry allows in situ Langmuir-Blodgett transfer from the PFC-water interface, thus permitting direct visualization of lipid polymorphism in pulmonary surfactant films using atomic force microscopy. Our data suggested that regardless of its low surface tension, the PFC cannot be used as a replacement of pulmonary surfactant in liquid ventilation where the air-water surface of the lungs is replaced with the PFC-water interface that features an intrinsically high interfacial tension. The pulmonary surfactant film at the PFC-water interface undergoes continuous phase transitions at surface pressures less than the equilibrium spreading pressure of 50 mN/m and a monolayer-to-multilayer transition above this critical pressure. These results provided not only novel biophysical insight into the phase behavior of natural pulmonary surfactant at the oil-water interface but also translational implications into the further development of liquid ventilation and liquid breathing techniques.
Asunto(s)
Fluorocarburos , Surfactantes Pulmonares , Animales , Agua , Fosfolípidos , Tensoactivos , Tensión Superficial , Propiedades de SuperficieRESUMEN
Liquid ventilation is a mechanical ventilation technique in which the entire or part of the lung is filled with oxygenated perfluorocarbon (PFC) liquids rather than air in conventional mechanical ventilation. Despite its many ideal biophysicochemical properties for assisting liquid breathing, a general misconception about PFC is to use it as a replacement for pulmonary surfactant. Because of the high PFC-water interfacial tension (59 mN/m), pulmonary surfactant is indispensable in liquid ventilation to increase lung compliance. However, the biophysical function of pulmonary surfactant in liquid ventilation is still unknown. Here, we have studied the adsorption and dynamic surface activity of a natural surfactant preparation, Infasurf, at the PFC-water interface using constrained drop surfactometry. The constrained drop surfactometry is capable of simulating the intra-alveolar microenvironment of liquid ventilation under physiologically relevant conditions. It was found that Infasurf adsorbed to the PFC-water interface reduces the PFC-water interfacial tension from 59 mN/m to an equilibrium value of 9 mN/m within seconds. Atomic force microscopy revealed that after de novo adsorption, Infasurf forms multilayered structures at the PFC-water interface with an average thickness of 10-20 nm, depending on the adsorbing surfactant concentration. It was found that the adsorbed Infasurf film is capable of regulating the interfacial tension of the PFC-water interface within a narrow range, between â¼12 and â¼1 mN/m, during dynamic compression-expansion cycles that mimic liquid ventilation. These findings have novel implications in understanding the physiological and biophysical functions of the pulmonary surfactant film at the PFC-water interface, and may offer new translational insights into the development of liquid ventilation and liquid breathing techniques.
Asunto(s)
Fluorocarburos , Ventilación Liquida , Surfactantes Pulmonares , Surfactantes Pulmonares/química , Tensoactivos , Tensión Superficial , Agua/químicaRESUMEN
Exogenous surfactant therapy has been used as a standard clinical intervention for treating premature newborns with respiratory distress syndrome. The phospholipid concentrations of exogenous surfactants used in clinical practice are consistently higher than 25 mg/mL; while it was estimated that the phospholipid concentration of endogenous surfactant is approximately in the range between 15 and 50 mg/mL. However, most in vitro biophysical simulations of pulmonary surfactants were only capable of studying surfactant concentrations up to 3 mg/mL, one order of magnitude lower than the physiologically relevant concentration. Using a new in vitro biophysical model, called constrained drop surfactometry, in conjunction with atomic force microscopy and other technological advances, we have investigated the biophysical properties, ultrastructure, and topography of the pulmonary surfactant film adsorbed from the subphase at physiologically relevant high surfactant concentrations of 10-35 mg/mL. It was found that the effect of surfactant concentration on the dynamic surface activity of the surfactant film was only important when the surface area of the surfactant film varied no more than 15%, mimicking normal tidal breathing. The adsorbed surfactant film depicts a multilayer conformation consisting of a layer-by-layer assembly of stacked bilayers with the height of the multilayers proportional to the surfactant concentration. Our experimental data suggest that the biophysical function of these multilayer structures formed after de novo adsorption is to act as a buffer zone to store surface-active materials ejected from the interfacial monolayer under extreme conditions such as deep breathing.NEW & NOTEWORTHY An in vitro biophysical model, called constrained drop surfactometry, was developed to study the biophysical properties, ultrastructure, and topography of the pulmonary surfactant film adsorbed from the subphase at physiologically relevant high surfactant concentrations of 10-35 mg/mL. These results suggest that the biophysical function of multilayers formed after de novo adsorption is to act as a buffer zone to store surface-active materials ejected from the interfacial monolayer under extreme conditions such as deep breathing.
RESUMEN
The attractiveness and abundance of flavors are primary factors eliciting youth to use e-cigarettes. Emerging studies in recent years revealed the adverse health impact of e-cigarette flavoring chemicals, including disruption of the biophysical function of pulmonary surfactants in the lung. Nevertheless, a comprehensive understanding of the biophysical impact of various flavoring chemicals is still lacking. We used constrained drop surfactometry as a new alternative method to study the biophysical impact of flavored e-cigarette aerosols on an animal-derived natural pulmonary surfactant. The dose of exposure to e-cigarette aerosols was quantified with a quartz crystal microbalance, and alterations to the ultrastructure of the surfactant film were visualized using atomic force microscopy. We have systematically studied eight representative flavoring chemicals (benzyl alcohol, menthol, maltol, ethyl maltol, vanillin, ethyl vanillin, ethyl acetate, and ethyl butyrate) and six popular recombinant flavors (coffee, vanilla, tobacco, cotton candy, menthol/mint, and chocolate). Our results suggested a flavor-dependent inhibitory effect of e-cigarette aerosols on the biophysical properties of the pulmonary surfactant. A qualitative phase diagram was proposed to predict the hazardous potential of various flavoring chemicals. These results provide novel implications in understanding the environmental, health, and safety impacts of e-cigarette aerosols and may contribute to better regulation of e-cigarette products.
Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Surfactantes Pulmonares , Mentol , Aromatizantes/análisis , AerosolesRESUMEN
Microplastics (MPs) are ubiquitous environmental pollutants produced through the degradation of plastic products. Nanoplastics (NPs), commonly coexisting with MPs in the environment, are submicrometer debris incidentally produced from fragmentation of MPs. We studied the biophysical impacts of MPs/NPs derived from commonly used commercial plastic products on a natural pulmonary surfactant extracted from calf lung lavage. It was found that in comparison to MPs/NPs derived from lunch boxes made of polypropylene or from drinking water bottles made of poly(ethylene terephthalate), the MP/NP derived from foam packaging boxes made of polystyrene showed the highest adverse impact on the biophysical function of the pulmonary surfactant. Accordingly, intranasal exposure of MP/NP derived from the foam boxes also induced the most serious proinflammatory responses and lung injury in mice. Atomic force microscopy revealed that NP particles were adsorbed on the air-water surface and heteroaggregated with the pulmonary surfactant film. These results indicate that although the incidentally formed NPs only make up a small mass fraction, they likely play a predominant role in determining the nano-bio interactions and the lung toxicity of MPs/NPs by forming heteroaggregates at the alveolar-capillary interface. These findings may provide novel insights into understanding the health impact of MPs and NPs on the respiratory system.
Asunto(s)
Contaminantes Ambientales , Surfactantes Pulmonares , Contaminantes Químicos del Agua , Animales , Ratones , Microplásticos , Plásticos , PolipropilenosRESUMEN
Tear film lipid layer (TFLL) is the outmost layer of the tear film. It plays a crucial role in stabilizing the tear film by reducing surface tension and retarding evaporation of the aqueous layer. Dysfunction of the TFLL leads to dysfunctional tear syndrome, with dry eye disease (DED) being the most prevalent eye disease, affecting 10%-30% of the world population. To date, except for treatments alleviating dry eye symptoms, effective therapeutic interventions in treating DED are still lacking. Therefore, there is an urgent need to understand the biophysical properties of the TFLL with the long-term goal to develop translational solutions in effectively managing DED. Here, we studied the composition-function correlations of an artificial TFLL, under physiologically relevant conditions, using a novel experimental methodology called constrained drop surfactometry. This artificial TFLL was composed of 40% behenyl oleate and 40% cholesteryl oleate, representing the most abundant wax ester and cholesteryl ester in the natural TFLL, respectively, and 15% phosphatidylcholine and 5% palmitic-acid-9-hydroxy-stearic-acid (PAHSA), which represent the two predominant polar lipid classes in the natural TFLL. Our study suggests that the major biophysical function of phospholipids in the TFLL is to reduce the surface tension, whereas the primary function of PAHSA is to optimize the rheological properties of the TFLL. These findings have novel implications in better understanding the physiological and biophysical functions of the TFLL and may offer new translational insight to the treatment of DED.
Asunto(s)
Lípidos , Lágrimas , Reología , Propiedades de Superficie , Tensión SuperficialRESUMEN
With an increasing prevalence of electronic cigarette (e-cigarette) use, especially among youth, there is an urgent need to better understand the biological risks and pathophysiology of health conditions related to e-cigarettes. A majority of e-cigarette aerosols are in the submicron size and would deposit in the alveolar region of the lung, where they must first interact with the endogenous pulmonary surfactant. To date, little is known whether e-cigarette aerosols have an adverse impact on the pulmonary surfactant. We have systematically studied the effect of individual e-cigarette ingredients on an animal-derived clinical surfactant preparation, bovine lipid extract surfactant, using a combination of biophysical and analytical techniques, including in vitro biophysical simulations using constrained drop surfactometry, molecular imaging with atomic force microscopy, chemical assays using carbon nuclear magnetic resonance and circular dichroism, and in silico molecular dynamics simulations. All data collectively suggest that flavorings used in e-cigarettes, especially menthol, play a predominant role in inhibiting the biophysical function of the surfactant. The mechanism of biophysical inhibition appears to involve menthol interactions with both phospholipids and hydrophobic proteins of the natural surfactant. These results provide novel insights into the understanding of the health impact of e-cigarettes and may contribute to better regulation of e-cigarette products.
Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Surfactantes Pulmonares , Aerosoles , Animales , Bovinos , Mentol , Surfactantes Pulmonares/metabolismo , TensoactivosRESUMEN
The hydrophobicity of nanoparticles (NPs) is one of the most important physicochemical properties that determines their agglomeration state under various environmental conditions. When studying nano-bio interactions, it is found that the hydrophobicity of NPs plays a predominant role in mediating the biological response and toxicity of the NPs. Although many methods have been developed to qualitatively or quantitatively determine hydrophobicity, there is not yet a scientific consensus on the standard of characterizing the hydrophobicity of NPs. We have developed a novel optical method, called the maximum particle dispersion (MPD), for quantitatively characterizing the hydrophobicity of NPs. The principle of measurement of the MPD method lies in the control of the aggregation state of the NPs via manipulating the van der Waals interactions between NPs across a dispersion liquid. We have scrutinized the mechanism of the MPD method using a combination of dynamic light scattering and atomic force microscopy and further verified the MPD method using a completely independent dye adsorption method. The MPD method demonstrated great promise to be developed into an easy-to-use and cost-effective method for quantitatively characterizing the hydrophobicity of NPs.
Asunto(s)
Nanopartículas , Adsorción , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía de Fuerza Atómica/métodos , Nanopartículas/química , Tamaño de la PartículaRESUMEN
Significant strides toward producing biochemical fuels have been achieved by mimicking natural oxidative and photosynthetic phosphorylation. Here, different from these strategies, we explore boric acid as a fuel for tuneable synthesis of energy-storing molecules in a cell-like supramolecular architecture. Specifically, a proton locked in boric acid is released in a modulated fashion by the choice of polyols. As a consequence, controlled proton gradients across the lipid membrane are established to drive ATP synthase embedded in the biomimetic architecture, which facilitates tuneable ATP production. This strategy paves a unique route to achieve highly efficient bioenergy conversion, holding broad applications in synthesis and devices that require biochemical fuels.
Asunto(s)
Adenosina Trifosfato/química , Ácidos Bóricos/química , Colorantes Fluorescentes/química , Lípidos de la Membrana/química , Proteínas Recombinantes de Fusión/química , Dimiristoilfosfatidilcolina/química , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Conformación Molecular , Oxidación-Reducción , Fosfatidilgliceroles/química , Fotofosforilación , ProtonesRESUMEN
A compound droplet is composed of a traditional pendant drop (PD) or sessile drop (SD) sharing the interface with an immiscible phase of comparable sizes, which could be a solid particle, a gas bubble, or most often another droplet of an immiscible liquid. Over the past decade, the study of compound droplets has attracted increasing attention because of extensive applications in many research fields, such as complex fluids, microfluidics, foam and emulsion, and biomedical applications. Among all technical difficulties in characterizing compound droplets, a central problem in surface science is the prediction of its equilibrium shape, which requires knowledge of complicated boundary conditions. Existing dimensionless groups, such as the Bond number traditionally used to evaluate the shape of PDs and SDs, largely fail in predicting the shape of compound droplets. Here, we propose an alternative Bond number, termed the Neumann number, to characterize the shape of compound droplets. Using three dimensionless groups, that is, the Neumann number, the Bond number, and the Worthington number, we have quantitatively predicted and analyzed the shape of traditional PDs/SDs and various compound droplets, including a PD with a spherical particle suspending at the drop apex, a SD with its apex disturbed by a vertical cylinder, and a spherical SD (no gravity) with its apex disturbed by a fluid lens. It is found that the Neumann number can be readily adapted to quantitatively predict and analyze the shape of PDs/SDs and compound droplets.
RESUMEN
A proton gradient across a lipid membrane is required for the production of biochemical fuel. Much effort has been devoted to reactions involving proton production in biomimetic assembled architectures under mild conditions. Herein, we explored thiol-based self-assembled monolayer chemistry on a naked gold surface for the production of biochemical fuel. Protons are generated when alkanethiols self-assemble on a gold surface, and the proton yield can be tuned by the choice of thiol and by variation of the procedure used for the deposition of gold. Consequently, the proton gradient across a lipid membrane above the gold surface can be modulated to vary the production rate of biochemical fuel performed by lipid-embedded motor proteins. Our work presents evidence that a simple and efficient abiotic chemical reaction in a well-defined biohybrid system can convert unnatural chemicals, namely alkanethiols, into bioenergy molecules, a finding that has a great potential in biofuel-driven catalysis and devices.
RESUMEN
Multiple-enzyme-involving cascade reactions that yield bioenergy are necessary in natural oxidative phosphorylation. However, in vitro applications are hampered by the sensitivity of catalytic activity to environmental adaptation. Herein, we explore nanozyme-catalyzed cascade reactions in an assembled hybrid architecture for mitochondria-mimicking oxidative phosphorylation. Hollow silica microspheres containing trapped gold nanoparticles were synthesized to promote two enzyme-like catalytic reactions that transform glucose into gluconic acid in the presence of oxygen. The resulting transmembrane proton gradient drives natural ATP synthase reconstituted on the surface to convert ADP and inorganic phosphate into ATP. The assembled architecture possesses high activity for oxidative phosphorylation, comparable to that of natural mitochondria. This study provides a new natural-artificial hybrid prototype for exploring bioenergy supply systems and holds great promise for ATP-powered bioapplications.
Asunto(s)
Mitocondrias/metabolismo , Fosforilación Oxidativa , CatálisisRESUMEN
A natural-artificial hybrid system was constructed to enhance photophosphorylation. The system comprises chloroplasts modified with optically matched quantum dots (chloroplast-QD) with a large Stokes shift. The QDs possess a unique optical property and transform ultraviolet light into available and highly effective red light for use by chloroplasts. This favorable feature enables photosystemâ II contained within the hybrid system to split more water and produce more protons than chloroplasts would otherwise do on their own. Consequently, a larger proton gradient is generated and photophosphorylation is improved. At optimal efficiency activity increased by up to 2.3 times compared to pristine chloroplasts. Importantly, the degree of overlap between emission of the QDs and absorption of chloroplasts exerts a strong influence on the photophosphorylation efficiency. The chloroplast-QD hybrid presents an efficient solar energy conversion route, which involves a rational combination of a natural system and an artificial light-harvesting nanomaterial.
Asunto(s)
Adenosina Trifosfato/biosíntesis , Cloroplastos/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Puntos Cuánticos/metabolismo , Semiconductores , Adenosina Trifosfato/química , Cloroplastos/química , Luz , Fenómenos Ópticos , Fosforilación , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/química , Puntos Cuánticos/químicaRESUMEN
Tunable supramolecular assembly has found various applications in biomedicine, molecular catalysis, optoelectronics, and nanofabrication. Unlike traditional covalent conjugation, non-covalent introduction of a photoswitchable moiety enables reversible photomodulation of non-photosensitive dipeptide supramolecular assembly. Under light illumination, a long-lived photoacid generator releases a proton and mediates the dissociation of dipeptide-based organogel, thereby resulting in sol formation. Under darkness, the photoswitchable moiety entraps a proton, resulting in gel regeneration. Furthermore, accompanying the isothermal recycled gel-sol transition in a spatially controlled manner, renewable patterns are spontaneously fabricated. This new concept of light-controlled phase transition of amino acid-based supramolecular assemblies will open up the possibility of wide applications.
RESUMEN
Enhancing solar energy conversion efficiency is very important for developing renewable energy, protecting the environment, and producing agricultural products. Efficient enhancement of photophosphorylation is demonstrated by coupling artificial photoacid generators (PAGs) with chloroplasts. The encapsulation of small molecular long-lived PAGs in the thylakoid lumen is improved greatly by ultrasonication. Under visible-light irradiation, a fast intramolecular photoreaction of the PAG occurs and produces many protons, remarkably enhancing the proton gradient inâ situ. Consequently, compared to pure chloroplasts, the assembled natural-artificial hybrid demonstrates approximately 3.9 times greater adenosine triphosphate (ATP) production. This work will provide new opportunities for constructing enhanced solar energy conversion systems.
Asunto(s)
Adenosina Trifosfato/metabolismo , Cloroplastos/metabolismo , Benzopiranos/química , Benzopiranos/metabolismo , Indoles/química , Indoles/metabolismo , Luz , Microscopía Confocal , Nitrocompuestos/química , Nitrocompuestos/metabolismo , Fotofosforilación , Energía SolarRESUMEN
Morchella importuna polysaccharide (MIP) has been proven to have obvious hypoglycemic effects on mice with type 2 diabetes (T2DM). This study looked at the functional and rheological characteristics of MIP, and investigated the effects of MIP on the human fecal microbiota through in vitro fermentation experiments. The outcomes demonstrate the excellent oil-holding capacity, emulsifying, foaming, and rheological characteristics of MIP. After salivary gastrointestinal digestion, the Mw of MIP decreased from 398.2 kDa and 21.5 kDa to 21.9 kDa and 11.7 kDa. By 16S rRNA sequencing of bacteria fermented in vitro, it was found that MIP did not improve the richness and diversity of intestinal microorganisms, but it may exert an anti-T2DM function by significantly increasing the relative abundance of Firmicutes and promoting Ruminococcaceae_UCG_014, Bacteroides, and Blautia proliferation. Escherichia-Shigella could also be inhibited to improve the intestinal microenvironment. In addition, the fermentation of MIP increased the total short-chain fatty acid (SCFA) concentration from 3.23 mmol/L to 39.12 mmol/L, and the propionic acid content increased significantly. In summary, MIP has excellent processing performance and is expected to exert potential anti-T2DM activity through the human intestinal microbiota, which has broad market prospects.
RESUMEN
Purpose: A majority of in vitro models were incapable of reproducing the evaporation resistance of tear film lipid layer (TFLL) in vivo. The purpose of this research is to develop a novel in vitro model to study the effect of TFLL on water evaporation. Methods: A ventilated, closed-chamber, droplet evaporimeter with a constant surface area has been invented to study the evaporation resistance of TFLL. This evaporimeter ensures a rigorous control of environmental conditions, including the temperature, relative humidity, airflow rate, surface area, and surface pressure, thus allowing for reproducible water evaporation measurements over a time period of only 5 minutes. The volumetric evaporation rate of this droplet evaporimeter is less than 2.7 µL/min, comparable to the basal tear production of healthy adults. Together with direct film imaging using atomic force microscopy (AFM), we have studied the effect of a model TFLL on water evaporation, as a function of the lipid composition and surface pressure. Results: A model TFLL composed of 40% wax esters, 40% cholesteryl esters, and 20% polar lipids was capable of reducing the water evaporation rate by 11% at surface pressure 47 mN/m. AFM revealed that the model TFLL at high surface pressures consists of discrete droplets/aggregates of the nonpolar lipids residing atop a polar lipid monolayer with phase separation. Conclusions: The TFLL may resist water evaporation with a combined mechanism by increasing film compactness of the polar lipid film at the air-water surface, and, to a lesser extent, by increasing film thickness of the nonpolar lipid film.
Asunto(s)
Lípidos , Agua , Humanos , Adulto , Ésteres del Colesterol , LágrimasRESUMEN
HYPOTHESIS: Almost all Langmuir-Blodgett (LB) films were prepared with the classical Langmuir film balance, developed more than a century ago. To date, the success of the classical Langmuir film balance and the LB transfer technique is primarily restricted to the study of self-assembled monolayers at the air-water surface. It is challenging to study self-assembled monolayers at the oil-water interface, since the Langmuir film balance requires stacked oil and water layers. We hypothesize that a newly developed experimental method, called constrained drop surfactometry (CDS), is capable of preparing and characterizing LB films from the oil-water interface. EXPERIMENTS: We have developed a novel droplet-based LB transfer technique capable of preparing LB films from the oil-water interface. In conjunction with atomic force microscopy, we have demonstrated the capacity of the CDS in studying a natural pulmonary surfactant film self-assembled at the perfluorocarbon-water interface, and have compared to the LB films prepared from the air-water surface using the classical Langmuir film balance. FINDINGS: Our findings have demonstrated a novel paradigm for studying self-assembled monolayers and for preparing LB films from the oil-water interface. The CDS holds great promise for expanding the applicability of the traditional LB transfer technique from the air-water surface to the oil-water interface.
Asunto(s)
Propiedades de Superficie , Microscopía de Fuerza AtómicaRESUMEN
Purpose: The biophysical roles of Meibomian lipids (MLs) played in health and meibomian gland dysfunction (MGD) are still unclear. The purpose of this research is to establish the composition-structure-functional correlations of the ML film (MLF) using Soat1-null mice and comprehensive in vitro biophysical simulations. Methods: MLs were extracted from tarsal plates of wild type (WT) and Soat1 knockout (KO) mice. The chemical composition of ML samples was characterized using liquid chromatography - mass spectrometry. Comprehensive biophysical studies of the MLFs, including their dynamic surface activity, interfacial rheology, evaporation resistance, and ultrastructure and topography, were performed with a novel experimental methodology called the constrained drop surfactometry. Results: Soat1 inactivation caused multiple alternations in the ML profile. Compared to their WT siblings, the MLs of KO mice were completely devoid of cholesteryl esters (CEs) longer than C18 to C20, but contained 7 times more free cholesterol (Chl). Biophysical assays consistently suggested that the KO-MLF became stiffer than that of WT mice, revealed by reduced film compressibility, increased elastic modulus, and decreased loss tangent, thus causing more energy loss per blinking cycle of the MLF. Moreover, the KO mice showed thinning of their MLF, and reduced evaporation resistance. Conclusions: These findings delineated the composition-structure-functional correlations of the MLF and suggested a potential biophysical function of long-chain CEs in optimizing the surface activity, interfacial rheology, and evaporation resistance of the MLF. This study may provide novel implications to pathophysiological and translational understanding of MGD and dry eye disease.
Asunto(s)
Síndromes de Ojo Seco , Disfunción de la Glándula de Meibomio , Animales , Ratones , Espectrometría de Masas , Glándulas Tarsales , Lágrimas/químicaRESUMEN
Mounting data suggest that environmental pollution due to airborne fine particles (AFPs) increases the occurrence and severity of respiratory virus infection in humans. However, it is unclear whether and how interactions with AFPs alter viral infection and distribution. We report synergetic effects between various AFPs and the H1N1 virus, regulated by physicochemical properties of the AFPs. Unlike infection caused by virus alone, AFPs facilitated the internalization of virus through a receptor-independent pathway. Moreover, AFPs promoted the budding and dispersal of progeny virions, likely mediated by lipid rafts in the host plasma membrane. Infected animal models demonstrated that AFPs favored penetration of the H1N1 virus into the distal lung, and its translocation into extrapulmonary organs including the liver, spleen, and kidney, thus causing severe local and systemic disorders. Our findings revealed a key role of AFPs in driving viral infection throughout the respiratory tract and beyond. These insights entail stronger air quality management and air pollution reduction policies.