Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 237
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 20(4): e1012123, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38607975

RESUMEN

RAB GTPases (RABs) control intracellular membrane trafficking with high precision. In the present study, we carried out a short hairpin RNA (shRNA) screen focused on a library of 62 RABs during infection with porcine reproductive and respiratory syndrome virus 2 (PRRSV-2), a member of the family Arteriviridae. We found that 13 RABs negatively affect the yield of PRRSV-2 progeny virus, whereas 29 RABs have a positive impact on the yield of PRRSV-2 progeny virus. Further analysis revealed that PRRSV-2 infection transcriptionally regulated RAB18 through RIG-I/MAVS-mediated canonical NF-κB activation. Disrupting RAB18 expression led to the accumulation of lipid droplets (LDs), impaired LDs catabolism, and flawed viral replication and assembly. We also discovered that PRRSV-2 co-opts chaperone-mediated autophagy (CMA) for lipolysis via RAB18, as indicated by the enhanced associations between RAB18 and perlipin 2 (PLIN2), CMA-specific lysosomal associated membrane protein 2A (LAMP2A), and heat shock protein family A (Hsp70) member 8 (HSPA8/HSC70) during PRRSV-2 infection. Knockdown of HSPA8 and LAMP2A impacted on the yield of PRRSV-2 progeny virus, implying that the virus utilizes RAB18 to promote CMA-mediated lipolysis. Importantly, we determined that the C-terminal domain (CTD) of HSPA8 could bind to the switch II domain of RAB18, and the CTD of PLIN2 was capable of associating with HSPA8, suggesting that HSPA8 facilitates the interaction between RAB18 and PLIN2 in the CMA process. In summary, our findings elucidate how PRRSV-2 hijacks CMA-mediated lipid metabolism through innate immune activation to enhance the yield of progeny virus, offering novel insights for the development of anti-PRRSV-2 treatments.


Asunto(s)
Autofagia Mediada por Chaperones , Virus del Síndrome Respiratorio y Reproductivo Porcino , Porcinos , Animales , Lipólisis , Regulación hacia Arriba , Proteínas de Unión al GTP rab/genética , Proteínas de Membrana de los Lisosomas , ARN Interferente Pequeño
2.
EMBO Rep ; 24(7): e56212, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37154297

RESUMEN

A previous genome-wide association study (GWAS) revealed an association of the noncoding SNP rs1663689 with susceptibility to lung cancer in the Chinese population. However, the underlying mechanism is unknown. In this study, using allele-specific 4C-seq in heterozygous lung cancer cells combined with epigenetic information from CRISPR/Cas9-edited cell lines, we show that the rs1663689 C/C variant represses the expression of ADGRG6, a gene located on a separate chromosome, through an interchromosomal interaction of the rs1663689 bearing region with the ADGRG6 promoter. This reduces downstream cAMP-PKA signaling and subsequently tumor growth both in vitro and in xenograft models. Using patient-derived organoids, we show that rs1663689 T/T-but not C/C-bearing lung tumors are sensitive to the PKA inhibitor H89, potentially informing therapeutic strategies. Our study identifies a genetic variant-mediated interchromosomal interaction underlying ADGRG6 regulation and suggests that targeting the cAMP-PKA signaling pathway may be beneficial in lung cancer patients bearing the homozygous risk genotype at rs1663689.


Asunto(s)
Estudio de Asociación del Genoma Completo , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/genética , Pulmón , Receptores Acoplados a Proteínas G/genética , Regulación de la Expresión Génica
3.
Nano Lett ; 24(4): 1176-1183, 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38240634

RESUMEN

Metal oxide semiconductor (MOS)-based complementary thin-film transistor (TFT) circuits have broad application prospects in large-scale flexible electronics. To simplify circuit design and increase integration density, basic complementary circuits require both p- and n-channel transistors based on an individual semiconductor. However, until now, no MOSs that can simultaneously show p- and n-type conduction behavior have been reported. Herein, we demonstrate for the first time that Cu-doped SnO (Cu:SnO) with HfO2 capping can be employed for high-performance p- and n-channel TFTs. The interstitial Cu+ can induce an n-doping effect while restraining electron-electron scatterings by removing conduction band minimum degeneracy. As a result, the Cu3 atom %:SnO TFTs exhibit a record high electron mobility of 43.8 cm2 V-1 s-1. Meanwhile, the p-channel devices show an ultrahigh hole mobility of 2.4 cm2 V-1 s-1. Flexible complementary logics are then established, including an inverter, NAND gates, and NOR gates. Impressively, the inverter exhibits an ultrahigh gain of 302.4 and excellent operational stability and bending reliability.

4.
Funct Integr Genomics ; 24(1): 30, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38358412

RESUMEN

LTBP1 is closely related to TGF-ß1 function as an essential component, which was unclear in gastric cancer (GC). Harbin Medical University (HMU)-GC cohort and The Cancer Genome Atlas (TCGA) dataset were combined to form a training cohort to calculate the connection between LTBP1 mRNA expression, prognosis and clinicopathological features. The training cohort was also used to verify the biological function of LTBP1 and its relationship with immune microenvironment and chemosensitivity. In the tissue microarrays (TMAs), immunohistochemical (IHC) staining was performed to observe LTBP1 protein expression. The correlation between LTBP1 protein expression level and prognosis was also analyzed, and a nomogram model was constructed. Western blotting (WB) was used in cell lines to assess LTBP1 expression. Transwell assays and CCK-8 were employed to assess LTBP1's biological roles. In compared to normal gastric tissues, LTBP1 expression was upregulated in GC tissues, and high expression was linked to a bad prognosis for GC patients. Based on a gene enrichment analysis, LTBP1 was primarily enriched in the TGF-ß and EMT signaling pathways. Furthermore, high expression of LTBP1 in the tumor microenvironment was positively correlated with an immunosuppressive response. We also found that LTBP1 expression (p = 0.006) and metastatic lymph node ratio (p = 0.044) were independent prognostic risk factors for GC patients. The prognostic model combining LTBP1 expression and lymph node metastasis ratio reliably predicted the prognosis of GC patients. In vitro proliferation and invasion of MKN-45 GC cells were inhibited and their viability was decreased by LTBP1 knockout. LTBP1 plays an essential role in the development and progression of GC, and is a potential prognostic biomarker and therapeutic target for GC.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Pronóstico , Transición Epitelial-Mesenquimal , Línea Celular , Metástasis Linfática , Microambiente Tumoral , Proteínas de Unión a TGF-beta Latente/genética
5.
J Virol ; 97(9): e0060123, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37676001

RESUMEN

Canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018) was recently isolated from a child with pneumonia. This novel human pathogen resulted from cross-species transmission of a canine coronavirus. It has been known that CCoV-HuPn-2018 uses aminopeptidase N (APN) from canines, felines, and porcines, but not humans, as functional receptors for cell entry. The molecular mechanism of cell entry in CCoV-HuPn-2018 remains poorly understood. In this study, we demonstrated that among the nine APN orthologs tested, the APN of the Mexican free-tailed bat could also efficiently support CCoV-HuPn-2018 spike (S) protein-mediated entry, raising the possibility that bats may also be an alternative host epidemiologically important for the transmission of this virus. The glycosylation at residue N747 of canine APN is critical for its receptor activity. The gain of glycosylation at the corresponding residues in human and rabbit APNs converted them to functional receptors for CCoV-HuPn-2018. Interestingly, the CCoV-HuPn-2018 spike protein pseudotyped virus infected multiple human cancer cell lines in a human APN-independent manner, whereas sialic acid appeared to facilitate the entry of the pseudotyped virus into human cancer cells. Moreover, while host cell surface proteases trypsin and TMPRSS2 did not promote the entry of CCoV-HuPn-2018, endosomal proteases cathepsin L and B are required for the entry of CCoV-HuPn-2018 in a pH-dependent manner. IFITMs and LY6E are host restriction factors for the CCoV-HuPn-2018 entry. Our results thus suggest that CCoV-HuPn-2018 has not yet evolved to be an efficient human pathogen. Collectively, this study helps us understand the cell tropism, receptor usage, cross-species transmission, natural reservoir, and pathogenesis of this potential human coronavirus. IMPORTANCE Viral entry is driven by the interaction between the viral spike protein and its specific cellular receptor, which determines cell tropism and host range and is the major constraint to interspecies transmission of coronaviruses. Aminopeptidase N (APN; also called CD13) is a cellular receptor for HCoV-229E, the newly discovered canine coronavirus-human pneumonia-2018 (CCoV-HuPn-2018), and many other animal alphacoronaviruses. We examined the receptor activity of nine APN orthologs and found that CCoV-HuPn-2018 utilizes APN from a broad range of animal species, including bats but not humans, to enter host cells. To our surprise, we found that CCoV-HuPn-2018 spike protein pseudotyped viral particles successfully infected multiple human hepatoma-derived cell lines and a lung cancer cell line, which is independent of the expression of human APN. Our findings thus provide mechanistic insight into the natural hosts and interspecies transmission of CCoV-HuPn-2018-like coronaviruses.


Asunto(s)
Antígenos CD13 , Infecciones por Coronavirus , Glicoproteína de la Espiga del Coronavirus , Internalización del Virus , Animales , Perros , Humanos , Conejos , Antígenos CD13/metabolismo , Quirópteros/virología , Coronavirus/fisiología , Neumonía , Glicoproteína de la Espiga del Coronavirus/metabolismo
6.
Cell Biochem Funct ; 42(4): e4059, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38773900

RESUMEN

Cerebral ischemic stroke remains a leading cause of mortality and morbidity worldwide. Toll-like receptor 4 (TLR4) has been implicated in neuroinflammatory responses poststroke, particularly in the infiltration of immune cells and polarization of macrophages. This study aimed to elucidate the impact of TLR4 deficiency on neutrophil infiltration and subsequent macrophage polarization after middle cerebral artery occlusion (MCAO), exploring its role in stroke prognosis. The objective was to investigate how TLR4 deficiency influences neutrophil behavior poststroke, its role in macrophage polarization, and its impact on stroke prognosis using murine models. Wild-type and TLR4-deficient adult male mice underwent MCAO induction, followed by various analyses, including flow cytometry to assess immune cell populations, bone marrow transplantation experiments to evaluate TLR4-deficient neutrophil behaviors, and enzyme-linked immunosorbent assay and Western blot analysis for cytokine and protein expression profiling. Neurobehavioral tests and infarct volume analysis were performed to assess the functional and anatomical prognosis poststroke. TLR4-deficient mice exhibited reduced infarct volumes, increased neutrophil infiltration, and reduced M1-type macrophage polarization post-MCAO compared to wild-type mice. Moreover, the depletion of neutrophils reversed the neuroprotective effects observed in TLR4-deficient mice, suggesting the involvement of neutrophils in mediating TLR4's protective role. Additionally, N1-type neutrophils were found to promote M1 macrophage polarization via neutrophil gelatinase-associated lipocalin (NGAL) secretion, a process blocked by TLR4 deficiency. The study underscores the protective role of TLR4 deficiency in ischemic stroke, delineating its association with increased N2-type neutrophil infiltration, diminished M1 macrophage polarization, and reduced neuroinflammatory responses. Understanding the interplay between TLR4, neutrophils, and macrophages sheds light on potential therapeutic targets for stroke management, highlighting TLR4 as a promising avenue for intervention in stroke-associated neuroinflammation and tissue damage.


Asunto(s)
Macrófagos , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Receptor Toll-Like 4 , Animales , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/deficiencia , Ratones , Masculino , Macrófagos/metabolismo , Macrófagos/inmunología , Pronóstico , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/metabolismo , Infarto de la Arteria Cerebral Media/patología , Neutrófilos/metabolismo , Neutrófilos/inmunología
7.
Blood Purif ; 53(4): 288-300, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37972579

RESUMEN

INTRODUCTION: This study aimed to evaluate the characteristics and prognostic factors for coronavirus disease 2019 (COVID-19) patients on maintenance hemodialysis (HD). METHODS: All admitted HD patients who were infected with SARS-CoV-2 from December 1, 2022, to January 31, 2023, were included. Patients with pneumonia were further classified into the mild, moderate, severe, and critical illness. Clinical symptoms, laboratory results, radiologic findings, treatment, and clinical outcomes were collected. Independent risk factors for progression to critical disease and in-hospital mortality were determined by the multivariate regression analysis. The receiver operating characteristic analysis with the area under the curve was used to evaluate the predictive performance of developing critical status and in-hospital mortality. RESULTS: A total of 182 COVID-19 patients with HD were included, with an average age of the 61.55 years. Out of the total, 84 (46.1%) patients did not have pneumonia and 98 (53.8%) patients had pneumonia. Among patients with pneumonia, 48 (49.0%) had moderate illness, 26 (26.5%) severe illness, and 24 (24.5%) critical illness, respectively. Elder age [HR (95% CI): 1.07 (1.01-1.13), p <0.01], increased levels of lactate dehydrogenase (LDH) [1.01 (1.003-1.01), p <0.01], and C-reactive protein (CRP) [1.01 (1.00-1.01), p = 0.04] were risk factors for developing critical illness. Elder age [1.11 (1.03-1.19), p = 0.01], increased procalcitonin (PCT) [1.07 (1.02-1.12), p = 0.01], and LDH level [1.004 (1-1.01), p = 0.03] were factors associated with increased risk of in-hospital mortality. CONCLUSION: Age, CRP, PCT, and LDH can be used to predict negative clinical outcomes for HD patients with COVID-19 pneumonia.


Asunto(s)
COVID-19 , Neumonía , Humanos , Anciano , Persona de Mediana Edad , SARS-CoV-2 , COVID-19/complicaciones , COVID-19/terapia , Pronóstico , Enfermedad Crítica , Estudios Retrospectivos , Proteína C-Reactiva/análisis , China/epidemiología
8.
BMC Nephrol ; 25(1): 47, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38311719

RESUMEN

BACKGROUND: Chronic inflammation, reflected by an increased blood C-reactive protein (CRP) level, is common in patients with chronic kidney disease (CKD) and is involved in the development of renal anemia. This systematic review aims to investigate the impacts of CRP on the efficacy of hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) in the treatment of renal anemia in patients with CKD. METHODS: We conducted a comprehensive search of electronic databases including Pubmed, Web of Science, Embase, Cochrane Library, CNKI, Wanfang, and the International Clinical Trials Registry Platform (ICTRP), from their inception to May 19, 2022. We systematically reviewed evidence from randomized controlled trials using HIF-PHIs for renal anemia treatment. The mean difference (MD) in changes in hemoglobin concentration (∆Hb) before and after treatment served as the meta-analysis outcome, utilizing a random-effects model. We compared groups with CRP levels greater than or equal to the upper limit of normal (ULN) and less than the ULN. Additionally, further analysis was conducted in the CRP ≥ ULN group comparing HIF-PHIs and erythropoiesis-stimulating agents (ESA). RESULTS: A total of 7 studies from 6 publications were included in the analysis. In the comparison between the CRP ≥ ULN group and the CRP < ULN group, 524 patients from 4 studies were incorporated into the analysis. All patients received roxadustat as the primary intervention. The pooled results revealed no significant difference in ΔHb between patients with CRP ≥ ULN and CRP < ULN at baseline (Mean Difference: 0.00, 95% Confidence Interval: -0.32 to 0.33, P = 0.99). Moreover, within the CRP ≥ ULN group, three studies involving 1399 patients compared the efficacy of roxadustat and erythropoiesis-stimulating agents (ESAs). The results indicated no significant difference in ΔHb between patients treated with ESAs and HIF-PHIs (Mean Difference: 0.24, 95% Confidence Interval: -0.08 to 0.56, P = 0.14). In terms of medication dosage, an increase in ESA dose over time was observed across various studies, particularly evident in the CRP ≥ ULN group, while the dose of roxadustat remains constant over time and is not influenced by the baseline levels of CRP. CONCLUSIONS: Our systematic review demonstrates that roxadustat exhibits similar efficacy across different CRP levels. Moreover, within the CRP ≥ ULN group, roxadustat can maintain efficacy comparable to ESA without the necessity for dose escalation. TRIAL REGISTRATION: CRD42023396704.


Asunto(s)
Anemia , Hematínicos , Isoquinolinas , Insuficiencia Renal Crónica , Humanos , Anemia/tratamiento farmacológico , Anemia/etiología , Proteína C-Reactiva , Enfermedad Crónica , Glicina/análogos & derivados , Hematínicos/uso terapéutico , Isoquinolinas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/tratamiento farmacológico
9.
BMC Pulm Med ; 24(1): 177, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38622607

RESUMEN

OBJECTIVES: Silicosis people are at high risk of developing pulmonary tuberculosis. Whether silica exposure increases the likelihood of latent tuberculosis infection (LTBI) was not well understood, and potential factors involved in LTBI risk among silicosis people were not evaluated before. Thus, LTBI among silicosis people and potential risk factors for LTBI among silicosis people were evaluated in this study. METHODS: A cross-sectional study was undertaken for 130 miner workers with silicosis. The QFT-GIT was performed for LTBI detection. RESULTS: The LTBI was high to 31.6% (36/114) for silicosis participants, and 13.1% (13/99) had a history of tuberculosis. Drinking was associated with LTBI risk (OR = 6.92, 95%CI, 1.47-32.66, P = 0.015). Meanwhile, tunneling work was associated with an increased risk of LTBI compared with other mining occupations (OR = 3.91,95%CI,1.20-12.70, P = 0.024). CONCLUSIONS: The LTBI rate of silicosis participants was high and more than 10% had a history of tuberculosis. Drinking alcohol and tunneling were independent risk factors for LTBI in silicosis participants.


Asunto(s)
Tuberculosis Latente , Silicosis , Tuberculosis , Humanos , Tuberculosis Latente/epidemiología , Tuberculosis Latente/diagnóstico , Estudios Transversales , Factores de Riesgo , China/epidemiología , Silicosis/epidemiología , Ensayos de Liberación de Interferón gamma , Prueba de Tuberculina
10.
Chem Biodivers ; : e202400977, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38837616

RESUMEN

Two previously uncharacterized compounds, an aconitine-type C19-diterpenoid alkaloid (1) and a napelline-type diterpenoid alkaloid C20-diterpenoid alkaloid (2), as well as ten known compounds (3-12), were isolated from Aconitum pendulum. Their structures were elucidated based on spectroscopic data, including 1D and 2D NMR, IR, HR-ESI-MS, and single-crystal X-ray diffraction analysis. The anti-insecticidal activities of these compounds were evaluated by contact toxicity tests against two-spotted spider mites, and compounds 1, 2, and 9 showed moderate contact toxicity, with LC50 values of 0.86±0.09, 0.95±0.23, and 0.89±0.19 mg/mL, respectively. This study highlights the potential use of diterpenoid alkaloids as natural plant-derived pesticides for the management of plant pests.

11.
Nano Lett ; 23(14): 6664-6672, 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37432041

RESUMEN

Atomically thin monolayer two-dimensional (2D) semiconductors with natural immunity to short channel effects are promising candidates for sub-10 nm very large-scale integration technologies. Herein, the ultimate limit in optoelectronic performances of monolayer WSe2 field-effect transistors (FETs) is examined by constructing a sloping channel down to 6 nm. Using a simple scaling method compatible with current micro/nanofabrication technologies, we achieve a record high saturation current up to 1.3 mA/µm at room temperature, surpassing any reported monolayer 2D semiconductor transistors. Meanwhile, quasi-ballistic transport in WSe2 FETs is first demonstrated; the extracted high saturation velocity of 4.2 × 106 cm/s makes it suitable for extremely sensitive photodetectors. Furthermore, the photoresponse speed can be improved by reducing channel length due to an electric field-assisted detrapping process of photogenerated carriers in localized states. As a result, the sloping-channel device exhibits a faster response, higher detectivity, and additional polarization resolution ability compared to planar micrometer-scale devices.

12.
J Virol ; 96(22): e0151322, 2022 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-36314820

RESUMEN

Viral infection activates the type I interferons (IFNs) and cellular antiviral responses. Eukaryotic initiation factor 4A-III (eIF4A3) has been shown to promote influenza A virus (IAV) replication by promoting viral mRNA splicing and spliced mRNA nuclear export. Here, we identified eIF4A3 as a negative regulator of virus-triggered type I IFN induction. Our study found that eIF4A3 promoted multiple RNA viruses' replication by binding to IFN regulatory factor 3 (IRF3) and impaired the interaction between tank-binding kinase 1 (TBK1) and IRF3, leading to attenuation of the phosphorylation of IRF3 by TBK1, the formation of IRF3 dimer, and the nuclear translocation of IRF3. This impaired its biological functions in the nucleus, which blocked IRF3 binding to interferon-stimulated response element (ISRE) and the interaction of IRF3 and CBP/p300, resulting in inhibiting the transcription of IFN-ß and downstream IFN-stimulated genes (ISGs), thereby impairing innate antiviral immune responses against RNA viruses. These findings reveal a previously unknown function of eIF4A3 in host innate immunity and establish a mechanistic link between eIF4A3 and IRF3 activation that expands potential therapeutic strategies for viral infectious diseases. IMPORTANCE Production of type I IFN is pivotal for the cellular antiviral immunity. Virus infection leads to the activation of transcription factor IRF3 and subsequent production of type I IFN to eliminate viral infection. Thus, the regulation of IRF3 activity is an important way to affect type I IFN production. IRF3 activation requires phosphorylation, dimerization, and nuclear translocation. Here, we first reported that eIF4A3, a member of DEAD box family, served as a negative regulator of antiviral innate immune responses by inhibiting IRF3 activation. Mechanistically, eIF4A3 binds to IRF3 to impair the recruitment of IRF3 by TBK1, which is independent of eIF4A3 ATP binding, ATPase, and RNA helicase activities. Our study delineates a common mechanism of eIF4A3 promoting replication of different RNA viruses and provides important insights into the negative regulation of host antiviral innate immune responses against virus infections.


Asunto(s)
ARN Helicasas DEAD-box , Factor 4A Eucariótico de Iniciación , Inmunidad Innata , Virus de la Influenza A , Interferón Tipo I , Virosis , Humanos , ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Virus de la Influenza A/genética , Virus de la Influenza A/fisiología , Factor 3 Regulador del Interferón/metabolismo , Interferón Tipo I/metabolismo , Fosforilación , ARN Mensajero/metabolismo , Transducción de Señal , Virosis/inmunología , Replicación Viral
13.
Int J Clin Oncol ; 28(9): 1158-1165, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37318644

RESUMEN

BACKGROUND: Long-term outcome of patients with locally advanced gastric cancer (LAGC) who achieved a pathological complete response (pCR) was scarcely discussed, and never had the factors affecting the prognosis of pCR patients been investigated. METHODS: We retrospectively reviewed all patients who achieved a pCR to neoadjuvant chemotherapy (NAC) in Jinling Hospital. The 3- and 5-year overall survival (OS) and progression-free survival (PFS) were calculated with the Kaplan-Meier method. Meanwhile, univariate and multivariate COX regression analysis was applied to identify prognostic factors affecting patients' survival. RESULTS: A total of 37 consecutive LAGC patients with pCR were included. The 3- and 5-year OS rates were 88.8% and 78.6%, and the 3- and 5-year PFS rates were 86.5% and 75.8%. In the multivariate COX model, NAC duration of more than 3 cycles (HR 0.11 [0.02-0.62], P = 0.013) and poorly differentiated tumor at diagnosis (HR 0.17 [0.03-0.95], P = 0.043) were detected as protective factors for patients OS. Whereas for PFS, NAC duration (HR 0.12 [0.02-0.67], P = 0.015) was the only protective factor confirmed, with tumor differentiation at diagnosis exhibiting marginal significance (HR 0.21 [0.04-1.09], P = 0.063). CONCLUSIONS: Patients with LAGC who achieved a pCR displayed favorable long-term survival outcome, especially those with adequate cycles (≥ 3) of NAC. Besides, poor differentiation at diagnosis might also predict the better OS when pCR achieved.


Asunto(s)
Neoplasias Primarias Secundarias , Neoplasias Gástricas , Humanos , Terapia Neoadyuvante , Estadificación de Neoplasias , Neoplasias Gástricas/tratamiento farmacológico , Estudios Retrospectivos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Pronóstico
14.
World J Surg Oncol ; 21(1): 69, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36855132

RESUMEN

INTRODUCTION: Inflammatory myofibroblastic tumour (IMT) of the common bile duct (CBD) is an extremely rare low-grade malignancy with various biological behaviours and a lack of specific clinical and histopathological features. Preoperative and intraoperative diagnosis are challenging, and a diagnostic delay may increase surgical complexity. CASE PRESENTATION: We present the case of a 34-year-old male with no relevant medical history who presented with jaundice of 20 days of evolution. Histology and immunohistochemistry confirmed the diagnosis of an IMT with anaplastic lymphoma kinase (ALK)-1 expression. In addition, a review of the relevant literature revealed 13 published reports of biliary IMTs. The clinical history and histopathological features in these 13 cases were compared with those in our case to provide a comprehensive overview of the clinical manifestations and histopathological features of the disease. CONCLUSION: IMT of the CBD is an extremely rare low-grade malignancy that mainly occurs in middle-aged female patients. The main clinical manifestation is monosymptomatic jaundice. The reported tumours originated in the middle and lower segments of the CBD, with an average size of approximately 3.5 cm × 3.0 cm and tumour cells expressing smooth muscle actin (SMA), vimentin and ALK. Abnormal ALK expression and ALK gene rearrangement represent potential histopathological and differential diagnoses. A clear diagnosis by preoperative biopsy and intraoperative frozen section examination is critical and can significantly reduce surgical trauma. The prognosis is good, and very few patients experience recurrence or distant metastasis.


Asunto(s)
Neoplasias del Conducto Colédoco , Adulto , Humanos , Masculino , Biopsia , Conducto Colédoco/cirugía , Diagnóstico Tardío , Diagnóstico Diferencial
15.
World J Surg Oncol ; 21(1): 327, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37833728

RESUMEN

BACKGROUND: Follicular dendritic cell sarcoma (FDCS) is a rare, low-to-moderate-grade malignant tumor, which occurs in the dendritic cells of the germinal center. Pancreatic FDCS (PFDCS) is extremely rare, with only a few reported cases. Presently, the etiology and pathogenesis of pancreatic FDCS are still unclear, and the clinical symptoms and signs as well as the laboratory diagnosis lack specificity. Although PFDCS presents better histological and morphological characteristics and a distinct immunophenotype, it can be easily missed and/or misdiagnosed if it occurs outside the node. Lymph node FDCS are easier to diagnose because of the rarity of fusiform cell tumors in lymph nodes. CASE DEMONSTRATION: Herein, we reported a 67-year-old female patient with upper-left abdominal pain without obvious cause and was admitted for treatment. A computed tomography (CT) scan revealed a cystic solid mass in the pancreatic tail toward the greater curvature of the stomach, with an obvious enhancement of the cyst wall in enhanced scanning. Subsequently, the patient underwent surgical resection and the resected sample was sent for pathological biopsy. According to the results, the pathology was consistent with the histological morphology and immunohistochemical characteristics of FDCS, and the Epstein-Barr virus (EBV)-encoded RNA was negative for in situ hybridization. Three months post-resection, the patient returned to the hospital for chemotherapy. This case report is aimed to improve the clinical recognition of FDCS. CONCLUSION: Pancreatic FDCS is a rare disease. Herein, we have reported a case of pancreatic FDCS and analyzed its clinical and pathological features and differential diagnosis to improve the understanding of FDCS.


Asunto(s)
Sarcoma de Células Dendríticas Foliculares , Infecciones por Virus de Epstein-Barr , Femenino , Humanos , Anciano , Sarcoma de Células Dendríticas Foliculares/cirugía , Sarcoma de Células Dendríticas Foliculares/diagnóstico , Herpesvirus Humano 4 , Páncreas/patología , Ganglios Linfáticos/patología
16.
Pestic Biochem Physiol ; 196: 105586, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37945223

RESUMEN

Pyriproxyfen is a juvenile hormone analogue. The physiological effects of its low-concentration drift during the process of controlling agricultural and forestry pests on non-target organisms in the ecological environment are unpredictable, especially the effects on organs that play a key role in biological function are worthy of attention. The silk gland is an important organ for silk-secreting insects. Herein, we studied the effects of trace pyriproxyfen on autophagy and apoptosis of the silk gland in the lepidopteran model insect, Bombyx mori (silkworm). After treating fifth instar silkworm larvae with pyriproxyfen for 24 h, we found significant shrinkage, vacuolization, and fragmentation in the posterior silk gland (PSG). In addition, the results of autophagy-related genes of ATG8 and TUNEL assay also demonstrated that autophagy and apoptosis in the PSG of the silkworm was induced by pyriproxyfen. RNA-Seq results showed that pyriproxyfen treatment resulted in the activation of juvenile hormone signaling pathway genes and inhibition of 20-hydroxyecdysone (20E) signaling pathway genes. Among the 1808 significantly differentially expressed genes, 796 were upregulated and 1012 were downregulated. Among them, 30 genes were identified for autophagy-related signaling pathways, such as NOD-like receptor signaling pathway and mTOR signaling pathway, and 30 genes were identified for apoptosis-related signaling pathways, such as P53 signaling pathway and TNF signaling pathway. Further qRT-PCR and in vitro gland culture studies showed that the autophagy-related genes Atg5, Atg6, Atg12, Atg16 and the apoptosis-related genes Aif, Dronc, Dredd, and Caspase1 were responsive to the treatment of pyriproxyfen, with transcription levels up-regulated from 24 to 72 h. In addition, ATG5, ATG6, and Dronc genes had a more direct response to pyriproxyfen treatment. These results suggested that pyriproxyfen treatment could disrupt the hormone regulation in silkworms, promoting autophagy and apoptosis in the PSG. This study provides more evidence for the research on the damage of juvenile hormone analogues to non-target organisms or organs in the environment, and provides reference information for the scientific and rational use of juvenile hormone pesticides.


Asunto(s)
Bombyx , Animales , Bombyx/fisiología , Seda/genética , Seda/metabolismo , Seda/farmacología , Apoptosis , Larva/metabolismo , Autofagia , Hormonas Juveniles/farmacología , Hormonas Juveniles/metabolismo , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo
17.
Anal Chem ; 94(49): 16997-17002, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36453024

RESUMEN

The resolving power of multiple dimensional liquid chromatography (mD-LC) is multiplicative as it adds dimensions. However, the issue in creating a preparative mD-LC system is that the higher the dimensionality, the more complicated the system configuration. Thus, we presented a new configuration of preparative mD-LC using one set of LC modules and trapping array-based multiple heart-cut interfaces. A preparative two-dimensional liquid chromatography (2D-LC) separation of herbal medicine formulation produced 40 compounds with a purity of >90%. During the separation process, the interface stores the fractions and allocates positions for the fractions from a different dimension; LC draws the fraction from the interface, makes nD separation, and sends isolated fractions to the interface. By repeating this process, we achieved variable dimensionality of LC separations. We also presented a preparative 3D-LC separation of herbal medicines to validate the principle of "less configuration and more dimensionality". Thus, we can explore the higher dimensional preparative separations. The developed preparative mD-LC displayed exceptional power in the isolation of various compounds and has great potential in the application of natural products.


Asunto(s)
Productos Biológicos , Cromatografía Líquida de Alta Presión/métodos , Cromatografía Liquida/métodos
18.
J Virol ; 95(16): e0076021, 2021 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-34037418

RESUMEN

Pseudorabies virus (PRV) is the causative pathogen of Aujeszky's disease in pigs. Although vaccination is currently applied to prevent the morbidity of PRV infection, new applications are urgently needed to control this infectious disease. Poly(ADP-ribose) polymerase 1 (PARP1) functions in DNA damage repair. We report here that pharmacological and genetic inhibition of PARP1 significantly influenced PRV replication. Moreover, we demonstrate that inhibition of PARP1 induced DNA damage response and antiviral innate immunity. Mechanistically, PARP1 inhibition-induced DNA damage response resulted in the release of double-stranded DNA (dsDNA) into the cytosol, where dsDNA interacted with cyclic GMP-AMP (cGAMP) synthase (cGAS). cGAS subsequently catalyzed cGAMP production to activate the STING/TBK1/IRF3 innate immune signaling pathway. Furthermore, challenge of mice with PARP1 inhibitor stimulated antiviral innate immunity and protected mice from PRV infection in vivo. Our results demonstrate that PARP1 inhibitors may be used as a new strategy to prevent Aujeszky's disease in pigs. IMPORTANCE Aujeszky's disease is a notifiable infectious disease of pigs and causes economic losses worldwide in the pig industry. The causative pathogen is PRV, which is a member of the subfamily Alphaherpesvirinae of the family Herpesviridae. PRV has a wide range of hosts, such as ruminants, carnivores, and rodents. More seriously, recent reports suggest that PRV can cause human endophthalmitis and encephalitis, which indicates that PRV may be a potential zoonotic pathogen. Although vaccination is currently the major strategy used to control the disease, new applications are also urgently needed for the pig industry and public health. We report here that inhibition of PARP1 induces DNA damage-induced antiviral innate immunity through the cGAS-STING signaling pathway. Therefore, PARP1 is a therapeutic target for PRV infection as well as alphaherpesvirus infection.


Asunto(s)
Antivirales/inmunología , Daño del ADN/inmunología , Inmunidad Innata/efectos de los fármacos , Poli(ADP-Ribosa) Polimerasa-1/antagonistas & inhibidores , Seudorrabia/tratamiento farmacológico , Animales , Antivirales/farmacología , Línea Celular , Herpesvirus Suido 1/efectos de los fármacos , Herpesvirus Suido 1/fisiología , Humanos , Proteínas de la Membrana/metabolismo , Ratones , Nucleotidiltransferasas/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Seudorrabia/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Porcinos , Replicación Viral/efectos de los fármacos
19.
J Transl Med ; 20(1): 197, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35509079

RESUMEN

BACKGROUND: N6-methyladenosine (m6A) RNA methylation plays a critical role in key genetic events for various cancers; yet, how m6A functions within the tumor microenvironment (TME) remains to be elucidated. METHODS: A total of 65,362 single cells from single-cell RNA-seq data derived from 33 CRC tumor samples were analyzed by nonnegative matrix factorization (NMF) for 23 m6A RNA methylation regulators. CRC and Immunotherapy cohorts from public repository were used to determine the prognosis and immune response of TME clusters. RESULTS: The fibroblasts, macrophages, T and B cells were respectively grouped into 4 to 5 subclusters and then classified according to various biological processes and different marker genes. Furthermore, it revealed that the m6A RNA methylation regulators might be significantly related to the clinical and biological features of CRC, as well as the pseudotime trajectories of main TME cell types. Bulk-seq analysis suggested that these m6A-mediated TME cell subclusters had significant prognostic value for CRC patients and distinguished immune response for patients who underwent ICB therapy, especially for the CAFs and macrophages. Notably, CellChat analysis revealed that RNA m6A methylation-associated cell subtypes of TME cells manifested diverse and extensive interaction with tumor epithelial cells. Further analysis showed that ligand-receptor pairs, including MIF - (CD74 + CXCR4), MIF - (CD74 + CD44), MDK-NCL and LGALS9 - CD45, etc. mediated the communication between m6A associated subtypes of TME cells and tumor epithelial cells. CONCLUSIONS: Taken together, our study firstly revealed the m6A methylation mediated intercellular communication of the tumor microenvironment in the regulation of tumor growth and antitumor immunomodulatory processes.


Asunto(s)
Neoplasias Colorrectales , Microambiente Tumoral , Adenosina/análogos & derivados , Biomarcadores de Tumor/genética , Comunicación Celular , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/terapia , Humanos , Inmunoterapia , ARN/metabolismo
20.
PLoS Pathog ; 16(3): e1008429, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32208449

RESUMEN

Chromatin dynamics regulated by epigenetic modification is crucial in genome stability and gene expression. Various epigenetic mechanisms have been identified in the pathogenesis of human diseases. Here, we examined the effects of ten epigenetic agents on pseudorabies virus (PRV) infection by using GFP-reporter assays. Inhibitors of bromodomain protein 4 (BRD4), which receives much more attention in cancer than viral infection, was found to exhibit substantial anti-viral activity against PRV as well as a range of DNA and RNA viruses. We further demonstrated that BRD4 inhibition boosted a robust innate immune response. BRD4 inhibition also de-compacted chromatin structure and induced the DNA damage response, thereby triggering the activation of cGAS-mediated innate immunity and increasing host resistance to viral infection both in vitro and in vivo. Mechanistically, the inhibitory effect of BRD4 inhibition on viral infection was mainly attributed to the attenuation of viral attachment. Our findings reveal a unique mechanism through which BRD4 inhibition restrains viral infection and points to its potent therapeutic value for viral infectious diseases.


Asunto(s)
Proteínas de Ciclo Celular/inmunología , Daño del ADN/inmunología , Virus ADN/inmunología , Inmunidad Innata , Proteínas Nucleares/inmunología , Virus ARN/inmunología , Factores de Transcripción/inmunología , Células A549 , Animales , Chlorocebus aethiops , Infecciones por Virus ADN/inmunología , Perros , Femenino , Células HEK293 , Células HeLa , Humanos , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH , Células RAW 264.7 , Infecciones por Virus ARN/inmunología , Porcinos , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA