Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 740
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(12): e1011839, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38048363

RESUMEN

The fungal Gß-like protein has been reported to be involved in a variety of biological processes, such as mycelial growth, differentiation, conidiation, stress responses and infection. However, molecular mechanisms of the Gß-like protein in regulating fungal development and pathogenicity are largely unknown. Here, we show that the Gß-like protein gene Bcgbl1 in the gray mold fungus Botrytis cinerea plays a pivotal role in development and pathogenicity by regulating the mitogen-activated protein (MAP) kinases signaling pathways. The Bcgbl1 deletion mutants were defective in mycelial growth, sclerotial formation, conidiation, macroconidial morphogenesis, plant adhesion, and formation of infection cushions and appressorium-like structures, resulting in a complete loss of pathogenicity. Bcgbl1 interacted with BcSte50, the adapter protein of the cascade of MAP kinase (MAPK). Bcgbl1 mutants had reduced phosphorylation levels of two MAPKs, namely Bmp1 and Bmp3, thereby reducing infection. However, deletion of Bcgbl1 did not affect the intracellular cAMP level, and exogenous cAMP could not restore the defects. Moreover, Bcgbl1 mutants exhibited defects in cell wall integrity and oxidative stress tolerance. Transcriptional profiling revealed that Bcgbl1 plays a global role in regulation of gene expression upon hydrophobic surface induction. We further uncovered that three target genes encoding the hydrophobic surface binding proteins (HsbAs) contributed to the adhesion and virulence of B. cinerea. Overall, these findings suggest that Bcgbl1 had multiple functions and provided new insights for deciphering the Bcgbl1-mediated network for regulating development and pathogenicity of B. cinerea.


Asunto(s)
Proteínas Fúngicas , Sistema de Señalización de MAP Quinasas , Virulencia/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Botrytis/genética , Regulación Fúngica de la Expresión Génica , Enfermedades de las Plantas/microbiología , Esporas Fúngicas
2.
Proc Natl Acad Sci U S A ; 119(29): e2122420119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858327

RESUMEN

The abLIM1 is a nonerythroid actin-binding protein critical for stable plasma membrane-cortex interactions under mechanical tension. Its depletion by RNA interference results in sparse, poorly interconnected cortical actin networks and severe blebbing of migrating cells. Its isoforms, abLIM-L, abLIM-M, and abLIM-S, contain, respectively four, three, and no LIM domains, followed by a C terminus entirely homologous to erythroid cortex protein dematin. How abLIM1 functions, however, remains unclear. Here we show that abLIM1 is a liquid-liquid phase separation (LLPS)-dependent self-organizer of actin networks. Phase-separated condensates of abLIM-S-mimicking ΔLIM or the major isoform abLIM-M nucleated, flew along, and cross-linked together actin filaments (F-actin) to produce unique aster-like radial arrays and interconnected webs of F-actin bundles. Interestingly, ΔLIM condensates facilitated actin nucleation and network formation even in the absence of Mg2+. Our results suggest that abLIM1 functions as an LLPS-dependent actin nucleator and cross-linker and provide insights into how LLPS-induced condensates could self-construct intracellular architectures of high connectivity and plasticity.


Asunto(s)
Actinas , Proteínas con Dominio LIM , Proteínas de Microfilamentos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Humanos , Proteínas con Dominio LIM/genética , Proteínas con Dominio LIM/metabolismo , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferencia de ARN
3.
J Proteome Res ; 23(1): 344-355, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38113133

RESUMEN

Diabetes mellitus hinders the process of bone regeneration by inhibiting the function of mesenchymal stem cells (MSCs) through elevated glucose levels, thereby impeding osteointegration. The stem cell niche (SCN) plays a crucial role in determining the fate of stem cells by integrating various signals. However, the precise mechanism by which high glucose levels affect the SCN and subsequently influence the function of MSCs remains unclear. In this study, we employed proteomic analysis to identify proteins with altered expression in the extracellular matrix (ECM), aiming to elucidate the underlying mechanism. Three cell supernatants were collected from bone marrow mesenchymal stem cells (BMSCs) or BMSCs stimulated with high glucose (BMSCs+Hg). A total of 590 differentially expressed proteins were identified, which were found to be associated with the ECM, including aging, autophagy, and osteogenic differentiation. The findings of our study indicate that elevated glucose levels exert an influence on the molecular aspects of the SCN, potentially contributing to a better comprehension of the underlying mechanism.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Osteogénesis/genética , Proteómica , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Glucosa/farmacología , Glucosa/metabolismo , Células de la Médula Ósea , Células Cultivadas
4.
EMBO J ; 39(3): e102374, 2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31830314

RESUMEN

Renewal of integumentary organs occurs cyclically throughout an organism's lifetime, but the mechanism that initiates each cycle remains largely unknown. In a miniature pig model of tooth development that resembles tooth development in humans, the permanent tooth did not begin transitioning from the resting to the initiation stage until the deciduous tooth began to erupt. This eruption released the accumulated mechanical stress inside the mandible. Mechanical stress prevented permanent tooth development by regulating expression and activity of the integrin ß1-ERK1-RUNX2 axis in the surrounding mesenchyme. We observed similar molecular expression patterns in human tooth germs. Importantly, the release of biomechanical stress induced downregulation of RUNX2-wingless/integrated (Wnt) signaling in the mesenchyme between the deciduous and permanent tooth and upregulation of Wnt signaling in the epithelium of the permanent tooth, triggering initiation of its development. Consequently, our findings identified biomechanical stress-associated Wnt modulation as a critical initiator of organ renewal, possibly shedding light on the mechanisms of integumentary organ regeneration.


Asunto(s)
Regulación hacia Abajo , Odontogénesis , Vía de Señalización Wnt , Animales , Fenómenos Biomecánicos , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Saco Dental/citología , Saco Dental/metabolismo , Humanos , Integrina beta1/metabolismo , Modelos Biológicos , Cultivo Primario de Células , Porcinos , Porcinos Enanos
5.
Mol Carcinog ; 63(3): 479-493, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38174862

RESUMEN

Cancer-associated fibroblasts (CAFs) represent a major cellular component of the tumor (pre-)metastatic niche and play an essential role in omental dissemination of ovarian cancer. The omentum is rich in adipose, and adipose-derived mesenchymal stem cells (ADSCs) have been identified as a source of CAFs. However, the molecular events driving the phenotype shift of ADSCs remain largely unexplored. In this research, we focus on integrins, transmembrane receptors that have been widely involved in cellular plasticity. We found that integrin α7 (ITGA7) was the only member of the integrin family that positively correlated with both overall survival and progression-free survival in ovarian cancer through GEPIA2. The immunohistochemistry signal of ITGA7 was apparent in the tumor stroma, and a lower omental ITGA7 level was associated with metastasis. Primary ADSCs were isolated from the omentum of patients with ovarian cancer and identified by cellular morphology, biomarkers, and multilineage differentiation. The conditional medium of ovarian cancer cells induced ITGA7 expression decrease and phenotypic changes in ADSCs. Downregulation of ITGA7 in primary omental ADSCs led to decrease in stemness properties and emerge of characteristic morphology and biomarkers of CAFs. Moreover, the conditioned medium of ADSCs with ITGA7 depletion exhibited enhanced abilities to improve the migration and invasion of ovarian cancer cells in vitro. Overall, these findings indicate that loss of ITGA7 may induce the differentiation of ADSCs to CAFs that contribute to a tumor-supportive niche.


Asunto(s)
Antígenos CD , Fibroblastos Asociados al Cáncer , Cadenas alfa de Integrinas , Integrinas , Células Madre Mesenquimatosas , Neoplasias Ováricas , Femenino , Humanos , Fibroblastos Asociados al Cáncer/patología , Proliferación Celular , Células Madre Mesenquimatosas/metabolismo , Biomarcadores , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Tejido Adiposo/metabolismo
6.
J Transl Med ; 22(1): 504, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802944

RESUMEN

BACKGROUND: A former cohort study has raised concern regarding the unanticipated hazard of omeprazole in expediting osteoarthritis (OA) advancement. The precise nature of their causal evidence, however, remains undetermined. The present research endeavors to investigate the underlying causal link between omeprazole and OA through the application of mendelian randomization (MR) analysis. METHODS: The study incorporated the ukb-a-106 and ukb-b-14,486 datasets. The investigation of causal effects employed methodologies such as MR-Egger, Weighted median, Inverse variance weighted (IVW) with multiplicative random effects, and IVW (fixed effects). The IVW approach was predominantly considered for result interpretation. Sensitivity analysis was conducted, encompassing assessments for heterogeneity, horizontal pleiotropy, and the Leave-one-out techniques. RESULTS: The outcomes of the MR analysis indicated a causal relationship between omeprazole and OA, with omeprazole identified as a contributing risk factor for OA development (IVW model: OR = 1.2473, P < 0.01 in ukb-a-106; OR = 1.1288, P < 0.05 in ukb-b-14,486). The sensitivity analysis underscored the robustness and dependability of the above-mentioned analytical findings. CONCLUSION: This study, employing MR, reveals that omeprazole, as an exposure factor, elevates the risk of OA. Considering the drug's efficacy and associated adverse events, clinical practitioners should exercise caution regarding prolonged omeprazole use, particularly in populations with heightened OA risks. Further robust and high-quality research is warranted to validate our findings and guide clinical practice.


Asunto(s)
Bancos de Muestras Biológicas , Análisis de la Aleatorización Mendeliana , Omeprazol , Osteoartritis , Humanos , Omeprazol/efectos adversos , Osteoartritis/genética , Reino Unido/epidemiología , Factores de Riesgo , Femenino , Masculino , Persona de Mediana Edad , Biobanco del Reino Unido
7.
BMC Microbiol ; 24(1): 249, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977999

RESUMEN

Rhodococcus equi (R. equi) is a zoonotic opportunistic pathogen that mainly causes fatal lung and extrapulmonary abscesses in foals and immunocompromised individuals. To date, no commercial vaccine against R. equi exists. We previously screened all potential vaccine candidates from the complete genome of R. equi using a reverse vaccinology approach. Five of these candidates, namely ABC transporter substrate-binding protein (ABC transporter), penicillin-binding protein 2 (PBD2), NlpC/P60 family protein (NlpC/P60), esterase family protein (Esterase), and M23 family metallopeptidase (M23) were selected for the evaluation of immunogenicity and immunoprotective effects in BALB/c mice model challenged with R. equi. The results showed that all five vaccine candidate-immunized mice experienced a significant increase in spleen antigen-specific IFN-γ- and TNF-α-positive CD4 + and CD8 + T lymphocytes and generated robust Th1- and Th2-type immune responses and antibody responses. Two weeks after the R. equi challenge, immunization with the five vaccine candidates reduced the bacterial load in the lungs and improved the pathological damage to the lungs and livers compared with those in the control group. NlpC/P60, Esterase, and M23 were more effective than the ABC transporter and PBD2 in inducing protective immunity against R. equi challenge in mice. In addition, these vaccine candidates have the potential to induce T lymphocyte memory immune responses in mice. In summary, these antigens are effective candidates for the development of protective vaccines against R. equi. The R. equi antigen library has been expanded and provides new ideas for the development of multivalent vaccines.


Asunto(s)
Infecciones por Actinomycetales , Vacunas Bacterianas , Modelos Animales de Enfermedad , Inmunidad Humoral , Ratones Endogámicos BALB C , Rhodococcus equi , Animales , Rhodococcus equi/inmunología , Rhodococcus equi/genética , Ratones , Vacunas Bacterianas/inmunología , Vacunas Bacterianas/administración & dosificación , Infecciones por Actinomycetales/prevención & control , Infecciones por Actinomycetales/inmunología , Infecciones por Actinomycetales/microbiología , Anticuerpos Antibacterianos/sangre , Anticuerpos Antibacterianos/inmunología , Inmunidad Celular , Femenino , Pulmón/microbiología , Pulmón/inmunología , Pulmón/patología , Carga Bacteriana , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/genética , Interferón gamma/inmunología , Interferón gamma/metabolismo
8.
Insect Mol Biol ; 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783592

RESUMEN

Akirin is a nuclear protein that controls development in vertebrates and invertebrates. The function of Akirin has not been assessed in any Coleopteran insects. We found that high levels of akirin transcripts in Henosepilachna vigintioctopunctata, a serious Coleopteran potato defoliator (hereafter Hvakirin), were present at prepupal, pupal and adult stages, especially in larval foregut and fat body. RNA interference (RNAi) targeting Hvakirin impaired larval development. The Hvakirin RNAi larvae arrested development at the final larval instar stage. They remained as stunted larvae, gradually blackened and finally died. Moreover, the remodelling of gut and fat body was inhibited in the Hvakirin depleted larvae. Two layers of cuticles, old and newly formed, were noted in the dsegfp-injected animals. In contrast, only a layer of cuticle was found in the dsakirin-injected beetles, indicating the arrest of larval development. Furthermore, the expression of three transforming growth factor-ß cascade genes (Hvsmox, Hvmyo and Hvbabo), a 20-hydroxyecdysone (20E) receptor gene (HvEcR) and six 20E response genes (HvHR3, HvHR4, HvE75, HvBrC, HvE93 and Hvftz-f1) was significantly repressed, consistent with decreased 20E signalling. Conversely, the transcription of a juvenile hormone (JH) biosynthesis gene (Hvjhamt), a JH receptor gene (HvMet) and two JH response genes (HvKr-h1 and HvHairy) was greatly enhanced. Our findings suggest a critical role of Akirin in larval development in H. vigintioctopunctata.

9.
Opt Lett ; 49(12): 3512-3515, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38875658

RESUMEN

As a non-interference and non-iterative method, annular-illumination quantitative phase imaging based on Kramers-Kronig relations (AIKK) can realize phase measurement with full-angle resolution enhancement under multiple exposures. In order to completely record the object spectrum with a single shot, we proposed a colorful complementary illumination method in the recording process. The angle of this illumination mode is not symmetrical with each other, so the spectrum between the three channels can complement each other to avoid spectrum loss caused by spectrum conjugation. Meanwhile, the three spectral segments of full-angle information spectrum respectively carried by three wavelengths can be recorded. Additionally, the numerical filter is applied to correct the overlapped spectrum in the reconstruction process. Simulation and experimental results show that this method can achieve high spatiotemporal resolution quantitative phase measurement.

10.
Theor Appl Genet ; 137(3): 51, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38369666

RESUMEN

KEY MESSAGE: ClLOX, is located on chromosome 2 and encodes a lipoxygenase gene, which induced watermelon powdery mildew resistance by inhibiting pathogen spread. Powdery mildew is one of the most severe fungal diseases reducing yield and quality of watermelon (Citrullus lanatus L.) and other cucurbit crops. Genes responsible for powdery mildew resistance in watermelon are highly valuable. In this study, we first identified the QTL pm-lox for powdery mildew resistance in watermelon, located within a 0.93 Mb interval of chromosome 2, via XP-GWAS method using two F2 populations. The F2:3 families from one of the F2 populations were then used for fine-mapping the pm-lox locus into a 9,883 bp physical region between 29,581,906 and 29,591,789, containing only two annotated genes. Of these, only ClG42_02g0161300 showed a significant differential expression between the resistant and susceptible lines after powdery mildew inoculation based on RNA sequencing (RNA-seq) and qRT-PCR analysis, and is designated ClLOX. Derived Cleaved Amplified Polymorphic Sequence (dCAPs) markers were developed and validated. In addition, our tests showed that the resistance was anti-spread rather than anti-infection of the pathogen. This study identified a new resistance gene (ClLOX), provided insights into the mechanism of powdery mildew resistance, and developed a molecular marker for watermelon breeding.


Asunto(s)
Ascomicetos , Citrullus , Humanos , Mapeo Cromosómico/métodos , Resistencia a la Enfermedad/genética , Citrullus/genética , Citrullus/microbiología , Ascomicetos/genética , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
11.
Cell Commun Signal ; 22(1): 47, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233863

RESUMEN

BACKGROUND: Omental metastasis is the major cause of ovarian cancer recurrence and shortens patient survival, which can be largely attributed to the dynamic evolution of the fertile metastatic microenvironment driven by cancer cells. Previously, we found that adipose-derived mesenchymal stem cells (ADSCs) undergoing a phenotype shift toward cancer-associated fibroblasts (CAFs) participated in the orchestrated omental premetastatic niche for ovarian cancer. Here, we aim to elucidate the underlying mechanisms. METHODS: Small extracellular vesicles were isolated from ovarian cancer cell lines (ES-2 and its highly metastatic subline, ES-2-HM) and patient ascites using ultracentrifugation. Functional experiments, including Transwell and EdU assays, and molecular detection, including Western blot, immunofluorescence, and RT-qPCR, were performed to investigate the activation of ADSCs in vitro. High-throughput transcriptional sequencing and functional assays were employed to identify the crucial functional molecules inducing CAF-like activation of ADSCs and the downstream effector of miR-320a. The impact of extracellular vesicles and miR-320a-activated ADSCs on tumor growth and metastasis was assessed in subcutaneous and orthotopic ovarian cancer xenograft mouse models. The expression of miR-320a in human samples was evaluated using in situ hybridization staining. RESULTS: Primary human ADSCs cocultured with small extracellular vesicles, especially those derived from ES-2-HM, exhibited boosted migration, invasion, and proliferation capacities and elevated α-SMA and FAP levels. Tumor-derived small extracellular vesicles increased α-SMA-positive stromal cells, fostered omental metastasis, and shortened the survival of mice harboring orthotopic ovarian cancer xenografts. miR-320a was abundant in highly metastatic cell-derived extracellular vesicles, evoked dramatic CAF-like transition of ADSCs, targeted the 3'-untranslated region of integrin subunit alpha 7 and attenuated its expression. miR-320a overexpression in ovarian cancer was associated with omental metastasis and shorter survival. miR-320a-activated ADSCs facilitated tumor cell growth and omental metastasis. Depletion of integrin alpha 7 triggered CAF-like activation of ADSCs in vitro. Video Abstract CONCLUSIONS: miR-320a in small extracellular vesicles secreted by tumor cells targets integrin subunit alpha 7 in ADSCs and drives CAF-like activation, which in turn facilitates omental metastasis of ovarian cancer.


Asunto(s)
Vesículas Extracelulares , Células Madre Mesenquimatosas , MicroARNs , Neoplasias Ováricas , Humanos , Ratones , Animales , Femenino , Recurrencia Local de Neoplasia , Neoplasias Ováricas/patología , Vesículas Extracelulares/metabolismo , Proliferación Celular , Modelos Animales de Enfermedad , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Integrinas/metabolismo , Línea Celular Tumoral , Microambiente Tumoral
12.
Mol Biol Rep ; 51(1): 476, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553573

RESUMEN

Glycosylation modification of proteins is a common post-translational modification that exists in various organisms and has rich biological functions. It is usually catalyzed by multiple glycosyltransferases located in the Golgi apparatus. ß-1,3-N-acetylglucosaminyltransferases (B3GNTs) are members of the glycosyltransferases and have been found to be involved in the occurrence and development of a variety of diseases including autoimmunity diseases, cancers, neurodevelopment, musculoskeletal system, and metabolic diseases. The functions of B3GNTs represent the glycosylation of proteins is a crucial and frequently life-threatening step in progression of most diseases. In this review, we give an overview about the roles of B3GNTs in tumor, nervous system, musculoskeletal and metabolic diseases, describing the recent results about B3GNTs, in order to provide a research direction and exploration value for the prevention, diagnosis and treatment of these diseases.


Asunto(s)
Enfermedades Metabólicas , N-Acetilglucosaminiltransferasas , Humanos , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Glicosilación , Glicosiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional
13.
Arch Insect Biochem Physiol ; 115(1): e22063, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37920138

RESUMEN

Although muscle development has been widely studied in Drosophila melanogaster, it was a great challenge to apply to developmental processes of other insect muscles. This study was focused on the functional characterization of a basic helix-loop-helix transcription factor gene twist in an herbivorous ladybird Henosepilachna vigintioctopunctata. Its transcript (Hvtwist) levels were detected in all developmental stages. RNA interference (RNAi)-aided knockdown of Hvtwist at the penultimate larval instar stage impaired pupation, and caused a deformed adult in the legs. The tarsi were malformed and did not support the bodies in an upright position. The climbing ability was impaired. Moreover, around 50% of the impaired adults had a malformed elytrum. In addition, they consumed less foliage and did not lay eggs. A hematoxylin-eosin staining of the leg demonstrated that the tibial extensor (TE) and the tibial flexor (TF) muscles were originated from the femurs while levator and depressor muscles of the tarsus (TL and TD) were located in the tibia in the control adults, in which tarsal segments were devoid of muscles. RNAi treatment specific to Hvtwist expression markedly impaired TE and TF muscles in the femurs, and prevented the development of TL and TD muscles in the tibia. Therefore, our findings demonstrate Twist plays a vital role in the myogenesis in H. vigintioctopunctata adult legs.


Asunto(s)
Escarabajos , Drosophila melanogaster , Animales , Escarabajos/genética , Larva/genética , Interferencia de ARN , Desarrollo de Músculos
14.
Arch Insect Biochem Physiol ; 115(4): e22111, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38628055

RESUMEN

In insects, the expression of 20E response genes that initiate metamorphosis is triggered by a pulse of 20-hydroxyecdysone (20E). The 20E pulse is generated through two processes: synthesis, which increases its level, and inactivation, which decreases its titer. CYP18A1 functions as an ecdysteroid 26-hydroxylase and plays a role in 20E removal in several representative insects. However, applying 20E degradation activity of CYP18A1 to other insects remains a significant challenge. In this study, we discovered high levels of Hvcyp18a1 during the larval and late pupal stages, particularly in the larval epidermis and fat body of Henosepilachna vigintioctopunctata, a damaging Coleopteran pest of potatoes. RNA interference (RNAi) targeting Hvcyp18a1 disrupted the pupation. Approximately 75% of the Hvcyp18a1 RNAi larvae experienced developmental arrest and remained as stunted prepupae. Subsequently, they gradually turned black and eventually died. Among the Hvcyp18a1-depleted animals that successfully pupated, around half became malformed pupae with swollen elytra and hindwings. The emerged adults from these deformed pupae appeared misshapen, with shriveled elytra and hindwings, and were wrapped in the pupal exuviae. Furthermore, RNAi of Hvcyp18a1 increased the expression of a 20E receptor gene (HvEcR) and four 20E response transcripts (HvE75, HvHR3, HvBrC, and HvαFTZ-F1), while decreased the transcription of HvßFTZ-F1. Our findings confirm the vital role of CYP18A1 in the pupation, potentially involved in the degradation of 20E in H. vigintioctopunctata.


Asunto(s)
Escarabajos , Proteínas de Insectos , Animales , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Escarabajos/genética , Larva/genética , Larva/metabolismo , Insectos/metabolismo , Metamorfosis Biológica , Ecdisterona/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Interferencia de ARN , Pupa/genética , Pupa/metabolismo
15.
Differentiation ; 134: 52-60, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37898102

RESUMEN

Epithelial-mesenchymal interactions occur during tooth development. The dental epithelium (DE) is regarded as the signal center that regulates tooth morphology. However, the mechanism by which DE regulates the differentiation of mesenchyme-derived dental papilla (DP) into odontoblasts remains unclear. Using miniature pigs as a model, we analyzed the expression profiles of the DE and DP during odontoblast differentiation using high-throughput RNA sequencing. The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is one of the most enriched pathways in both DE and DP. The PI3K/AKT pathway was first activated in the inner enamel epithelium but not in the DP on embryonic day 50. This pathway was then activated in the odontoblast layer on embryonic day 60. We showed that AKT activation promoted odontoblast differentiation of DP cells. We further demonstrated that activation of PI3K/AKT signaling in the DE effectively increased the expression levels of AKT and dentin sialophosphoprotein in DP cells. Additionally, we found that DE cells secreted collagen type IV alpha 6 chain (COL4A6) downstream of epithelial AKT signaling to positively regulate mesenchymal AKT levels. Therefore, our data suggest that PI3K/AKT signaling from the DE to the DP promotes odontoblast differentiation via COL4A6 secretion.


Asunto(s)
Odontoblastos , Proteínas Proto-Oncogénicas c-akt , Animales , Porcinos , Odontoblastos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Diferenciación Celular/genética , Epitelio
16.
Parasitol Res ; 123(1): 113, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38273031

RESUMEN

Prohemistomum vivax is a zoonotic small cyathocotylid trematode that inhabits the intestines of fish-eating birds and mammals. Here, we amplified the internal transcribed spacer (ITS) sequence and six mitochondrial protein-coding genes (PCGs) from P. vivax. The ITS region was 1389 base pairs long and had a partial 18S ribosomal RNA gene, a full ITS1, 5.8S rRNA, and ITS2 sequence, and a partial 28S rRNA gene. The ITS region of P. vivax showed a minimum pairwise distance (0.3-0.6%) from the ITS sequences of Cyathocotylidae sp. 1 and 2 metacercariae from Clarias gariepinus. This result suggests that these metacercariae belong to P. vivax metacercariae. We first amplified mitochondrial genes from P. vivax, including cytochrome c oxidase subunit III (cox3) partial sequence; tRNA-His, cytochrome b (cytb), and NADH dehydrogenase subunit 4L (nad4L) complete sequences; and NADH dehydrogenase subunit 4 (nad4), cytochrome c oxidase I (cox1), and NADH dehydrogenase subunit 5 (nad5) partial sequences. P. vivax was most closely related to Cyathocotyle prussica (NC_039780) and Holostephanus sp. (OP082179), with cox1, cox3, and cytb genes conserved among the three trematodes. The ML phylogenetic tree of ITS sequences supports the order Diplostomida, divided into two main clades (the superfamily Diplostomoidea and Schistosomatoidea). The phylogeny of concatenated amino acid sequences of P. vivax six PCGs revealed that diplostomoids and Clinostomum sp. evolved in a clade with Plagiorchiida members, away from Schistosoma species. These results may yield ribosomal and mitochondrial genetic markers for molecular epidemiological investigations of cyathocotylid intestinal flukes.


Asunto(s)
Genes Mitocondriales , Trematodos , Animales , Filogenia , NADH Deshidrogenasa/genética , Trematodos/genética , ARN Ribosómico 28S/genética , Mamíferos
17.
Ecotoxicol Environ Saf ; 275: 116252, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38547731

RESUMEN

BACKGROUND: Phthalates are widely used plasticizers, which were identified as risk factors in the development of many human diseases. However, the effects of phthalates in the periodontitis are unknown. We aimed to investigated the relationship of periodontitis and phthalate exposure as well as the underlying mechanisms. MATERIALS AND METHODS: Univariate and multivariate logistic regressions were employed to evaluate the association between phthalate metabolites and periodontitis. The generalized additive model and piecewise logistic regression were conducted to investigate the dose-response relationship. Cell and animal models were used to explore the role and mechanism of DEHP in the development of periodontitis. Transcriptome sequencing, bioinformatics analysis, western blot, immunofluorescence and mice model of periodontitis were also employed. RESULTS: MEHP (OR 1.14, 95% CI 1.05-1.24), MCPP (OR 1.08, 95% CI 1.00-1.17), MEHHP (OR 1.18, 95% CI 1.08-1.29), MEOHP (OR 1.18, 95% CI 1.07-1.29), MiBP (OR 1.15, 95% CI 1.04-1.28), and MECPP (OR 1.20, 95% CI 1.09-1.32) were independent risk factors. And MEHHP, the metabolite of DEHP, showed the relative most important effects on periodontitis with the highest weight (0.34) among all risk factors assessed. And the increase of inflammation and the activation of NFκB pathway in the periodontitis model mice and cells were observed. CONCLUSION: Exposure to multiple phthalates was positively associated with periodontitis in US adults between 30 and 80 years old. And DEHP aggravated inflammation in periodontitis by activating NFκB pathway.


Asunto(s)
Dietilhexil Ftalato , Contaminantes Ambientales , Periodontitis , Ácidos Ftálicos , Adulto , Humanos , Animales , Ratones , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Exposición a Riesgos Ambientales/análisis , Dietilhexil Ftalato/metabolismo , Ácidos Ftálicos/toxicidad , Ácidos Ftálicos/metabolismo , Periodontitis/inducido químicamente , Inflamación , Contaminantes Ambientales/análisis
18.
Ecotoxicol Environ Saf ; 279: 116471, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38772143

RESUMEN

BACKGROUND: Previous observational studies have indicated associations of physical activity (PA) and air pollution with mortality. A few studies have evaluated air pollution and PA interactions for health. Still, the trade-off between the harmful effects of air pollution exposure and the protective effects of PA remains controversial and unclear. OBJECTIVE: This study aimed to investigate the joint association of air pollution and PA with mortality risks. METHODS: This prospective cohort study included 322,092 participants from 2006 to 2010 and followed up to 2021 in the UK Biobank study. The concentrations of air pollutants (2006-2010), including particulate matter (PM) with diameters <=2.5 mm (PM2.5), <=10 mm (PM10), and between 2.5 and 10 mm (PM2.5-10), and nitrogen oxides (NO2 and NOx) were obtained. Information on PA measured by the International Physical Activity Questionnaire short form (2006-2010) and wrist-worn accelerometer (2013-2015) were collected. All-cause and cause-specific mortalities were recorded. Cox proportional hazard models were used to investigate the associations of air pollution exposure and PA with mortality risks. The additive and multiplicative interactions were also examined. RESULTS: During a mean follow-up of 11.83 years, 16629 deaths were recorded. Compared with participants reporting low PA, higher PA was negatively associated with all-cause [hazard ratio (HR), 0.74; 95% CI, 0.71-0.78], cancer (HR, 0.85; 95% CI, 0.80-0.90), CVD (HR, 0.79; 95% CI, 0.71-0.87), and respiratory disease-specific mortality (HR, 0.51; 95% CI, 0.44-0.60). Exposure to PM2.5 (HR, 1.05; 95% CI, 1.00-1.09) and NOx (HR, 1.06; 95% CI, 1.02-1.10) was connected with increased all-cause mortality risk, and significant PM2.5-associated elevated risks for CVD mortality and NOx-associated elevated risks for respiratory disease mortality were observed. No obvious interaction between PA and PM2.5 or NOx exposure was detected. CONCLUSIONS: Our study provides additional evidence that higher PA and lower air pollutant levels are independently connected with reduced mortality risk. The benefits of PA are not significantly affected by long-term air pollution exposure, indicating PA can be recommended to prevent mortality regardless of air pollution levels. Our findings highlight the importance of public health policies and interventions facilitating PA and reducing air pollution in reducing mortality risks and maximizing health benefits. Future investigation is urgently needed to identify these findings in areas with severe air pollution conditions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ejercicio Físico , Material Particulado , Humanos , Estudios Prospectivos , Contaminación del Aire/efectos adversos , Contaminación del Aire/estadística & datos numéricos , Masculino , Persona de Mediana Edad , Reino Unido , Femenino , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/efectos adversos , Material Particulado/análisis , Material Particulado/efectos adversos , Anciano , Bancos de Muestras Biológicas , Mortalidad/tendencias , Medición de Riesgo , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/efectos adversos , Adulto , Enfermedades Cardiovasculares/mortalidad , Modelos de Riesgos Proporcionales , Biobanco del Reino Unido
19.
Ecotoxicol Environ Saf ; 273: 116128, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387144

RESUMEN

BACKGROUND: Low-dose ionizing radiation-induced protection and damage are of great significance among radiation workers. We aimed to study the role of glutathione S-transferase Pi (GSTP1) in low-dose ionizing radiation damage and clarify the impact of ionizing radiation on the biological activities of cells. RESULTS: In this study, we collected peripheral blood samples from healthy adults and workers engaged in radiation and radiotherapy and detected the expression of GSTP1 by qPCR. We utilized γ-rays emitted from uranium tailings as a radiation source, with a dose rate of 14 µGy/h. GM12878 cells subjected to this radiation for 7, 14, 21, and 28 days received total doses of 2.4, 4.7, 7.1, and 9.4 mGy, respectively. Subsequent analyses, including flow cytometry, MTS, and other assays, were performed to assess the ionizing radiation's effects on cellular biological functions. In peripheral blood samples collected from healthy adults and radiologic technologist working in a hospital, we observed a decreased expression of GSTP1 mRNA in radiation personnel compared to the healthy controls. In cultured GM12878 cells exposed to low-dose ionizing radiation from uranium tailings, we noted significant changes in cell morphology, suppression of proliferation, delay in cell cycle progression, and increased apoptosis. These effects were partially reversed by overexpression of GSTP1. Moreover, low-dose ionizing radiation increased GSTP1 gene methylation and downregulated GSTP1 expression. Furthermore, low-dose ionizing radiation affected the expression of GSTP1-related signaling molecules. CONCLUSIONS: This study shows that low-dose ionizing radiation damages GM12878 cells and affects their proliferation, cell cycle progression, and apoptosis. In addition, GSTP1 plays a modulating role under low-dose ionizing radiation damage conditions. Low-dose ionizing radiation affects the expression of Nrf2, JNK, and other signaling molecules through GSTP1.


Asunto(s)
Gutatión-S-Transferasa pi , Uranio , Adulto , Humanos , Gutatión-S-Transferasa pi/genética , Radiación Ionizante , Rayos gamma/efectos adversos , Apoptosis
20.
Ecotoxicol Environ Saf ; 270: 115848, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38134636

RESUMEN

PURPOSE: Prolonged exposure to low dose-rate radiation (LDRR) is of growing concern to public health. Recent evidences indicates that LDRR causes deleterious health effects and is closely related to miRNAs. The aim of our study is to investigate the relationship between miRNAs and DNA damage caused by LDRR. MATERIALS AND METHODS: In this study, we irradiated C57BL/6J mice with 12.5µGy/h dose of γ ray emitted from uranium ore for 8 h a day for 120 days at a total dose of 12 mGy, and identified differentially expressed miRNAs from the mice long-term exposed to LDRR through isolating serum RNAs, constructing small RNA library, Illumina sequencing. To further investigate the role of differential miRNA under LDRR,we first built DNA damage model in Immortal B cells irradiated with 12.5µGy/h dose of γ ray for 28 days at a total dose of 9.4 mGy. Then, we chose the highly conserved miR-181c-3p among 12 miRNA and its mechanism in alleviating DNA damage induced by LDRR was studied by transfection, quantitative PCR, luciferase assay, and Western blot. RESULTS AND CONCLUSIONS: We have found that 12 differentially expressed miRNAs including miR-181c-3p in serum isolated from irradiated mice. Analysis of GO and KEGG indicated that target genes of theses 12 miRNA enriched in pathways related to membrane, protein binding and cancer. Long-term exposure to LDRR induced upregulation of gamma-H2A histone family member X (γ-H2AX) expression, a classical biomarker for DNA damage in B cells. miR-181c-3p inhibited Leukemia inhibitory factor (LIF) expression via combining its 3'UTR. LIF, MDM2, p53, and p-p53-s6 were upregulated after exposure to LDRR. In irradiated B cells, Transfection of miR-181c-3p reduced γ-H2AX expression and suppressed LIF and MDM2 protein levels, whereas p-p53-s6 expression was increased. As expected, the effect of LIF inhibition on irradiated B cells was similar to miR-181c-3p overexpression. Our results suggest that LDRR alters miRNA expression and induces DNA damage. Furthermore, miR-181c-3p can alleviate LDRR-induced DNA damage via the LIF/MDM2/p-p53-s6 pathway in human B lymphocytes. This could provide the basis for prevention and treatment of LDRR injury.


Asunto(s)
MicroARNs , Proteína p53 Supresora de Tumor , Humanos , Ratones , Animales , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Ratones Endogámicos C57BL , MicroARNs/genética , MicroARNs/metabolismo , Linfocitos B
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA