RESUMEN
Antimicrobial resistance (AMR) has led to a marked reduction in the effectiveness of many antibiotics, representing a substantial and escalating concern for global health. Particularly alarming is resistance in Gram-negative bacteria due to the scarcity of therapeutic options for treating infections caused by these pathogens. This challenge is further compounded by the rising incidence of resistance to colistin, an antibiotic traditionally considered a last resort for the treatment of multi-drug resistant (MDR) Gram-negative bacterial infections. In this study, we demonstrate that adjuvants restore colistin sensitivity in vivo. We previously reported that the salicylanilide kinase inhibitor IMD-0354, which was originally developed to inhibit the human kinase IKKß in the NFκB pathway, is a potent colistin adjuvant. Subsequent analog synthesis using an amide isostere approach led to the creation of a series of novel benzimidazole compounds with enhanced colistin adjuvant activity. Herein, we demonstrate that both IMD-0354 and a lead benzimidazole effectively restore colistin susceptibility in mouse models of highly colistin-resistant Klebsiella pneumoniae and Acinetobacter baumannii-induced peritonitis. These novel adjuvants show low toxicity in vivo, significantly reduce bacterial load, and prevent dissemination that could otherwise result in systemic infection.
Asunto(s)
Antibacterianos , Colistina , Farmacorresistencia Bacteriana Múltiple , Pruebas de Sensibilidad Microbiana , Animales , Colistina/farmacología , Ratones , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Acinetobacter baumannii/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Bencimidazoles/farmacología , Adyuvantes Farmacéuticos/farmacología , Humanos , BenzamidasRESUMEN
Carbohydrates are intriguing biomolecules possessing diverse biological activities, including immune stimulating capability. However, their biomedical applications have been limited by their complex and heterogeneous structures. In this study, we have utilized a self-assembling glycopeptide conjugate (GPC) system to produce uniform nanoribbons appending homogeneous oligosaccharides with multivalency. This system successfully translates the nontrivial structural differences of oligomannoses into varied binding affinities to C-type lectin receptors (CLRs). We have shown that GPCs could promote the CLR-mediated endocytosis of ovalbumin (OVA) antigen, and two mannotriose-modified peptides F3m2 and F3m5 exhibit potent activity in inducing antigen-presenting cell maturation, as indicated by increased CD86 and MHCII expression. In vivo studies demonstrated that GPCs, combined with OVA antigen, significantly enhanced OVA-specific antibody production. Specifically, F3m2 and F3m5 exhibited the highest immunostimulatory effects, eliciting both Th1- and Th2-biased immune responses and promoting differentiation of CD4+ and CD8+ â T cells. These findings highlight the potential of GPCs as vaccine adjuvants, and showcase their versatility in exploiting the biological functions of carbohydrates.
Asunto(s)
Células Dendríticas , Glicopéptidos , Animales , Ratones , Glicopéptidos/metabolismo , Adyuvantes Inmunológicos/farmacología , Antígenos/metabolismo , Carbohidratos/química , Ovalbúmina/química , Ratones Endogámicos C57BLRESUMEN
Itaconate is an important antimicrobial and immunoregulatory metabolite involved in host-pathogen interactions. A key mechanistic action of itaconate is through the covalent modification of cysteine residues via Michael addition, resulting in "itaconation". However, it is unclear whether itaconate has other regulatory mechanisms. In this work, we discovered a novel type of post-translational modification by promiscuous antibody enrichment and data analysis with the open-search strategy and further confirmed it as the lysine "itaconylation". We showed that itaconylation and its precursor metabolite itaconyl-CoA undergo significant upregulation upon lipopolysaccharides (LPS) stimulation in RAW264.7 macrophages. Quantitative proteomics identified itaconylation sites in multiple functional proteins, including glycolytic enzymes and histones, some of which were confirmed by synthetic peptide standards. The discovery of lysine itaconylation opens up new areas for studying how itaconate participates in immunoregulation via protein post-translational modification.
Asunto(s)
Lisina , Succinatos , Lisina/metabolismo , Succinatos/química , Acilación , Histonas/metabolismo , Procesamiento Proteico-PostraduccionalRESUMEN
This study aims to propose a multifrequency time-difference algorithm using spectral constraints. Based on the knowledge of tissue spectrum in the imaging domain, the fraction model was used in conjunction with the finite element method (FEM) to approximate a conductivity distribution. Then a frequency independent parameter (volume or area fraction change) was reconstructed which made it possible to simultaneously employ multifrequency time-difference boundary voltage data and then reduce the degrees of freedom of the reconstruction problem. Furthermore, this will alleviate the illness of the EIT inverse problem and lead to a better reconstruction result. The numerical validation results suggested that the proposed time-difference fraction reconstruction algorithm behaved better than traditional damped least squares algorithm (DLS) especially in the noise suppression capability. Moreover, under the condition of low signal-to-noise ratio, the proposed algorithm had a more obvious advantage in reconstructions of targets shape and position. This algorithm provides an efficient way to simultaneously utilize multifrequency measurement data for time-difference EIT, and leads to a more accurate reconstruction result. It may show us a new direction for the development of time-difference EIT algorithms in the case that the tissue spectrums are known.
Asunto(s)
Algoritmos , Impedancia Eléctrica , Procesamiento de Imagen Asistido por Computador , Tomografía , Simulación por Computador , Humanos , Fantasmas de ImagenRESUMEN
BACKGROUND: Head movement interferences are a common problem during prolonged dynamic brain electrical impedance tomography (EIT) clinical monitoring. Head movement interferences mainly originate from body movements of patients and nursing procedures performed by medical staff, etc. These body movements will lead to variation in boundary voltage signals, which affects image reconstruction. METHODS: This study employed a data preprocessing method based on wavelet decomposition to inhibit head movement interferences in brain EIT data. Mixed Gaussian models were applied to describe the distribution characteristics of brain EIT data. We identified head movement signal through the differences in distribution characteristics of corresponding wavelet decomposition coefficients between head movement artifacts and normal signals, and then managed the contaminated data with improved on-line wavelet processing methods. RESULTS: To validate the efficacy of the method, simulated signal experiments and human data experiments were performed. In the simulation experiment, the simulated movement artifact was significantly reduced and data quality was improved with indicators' increase in PRD and correlation coefficient. Human data experiments demonstrated that this method effectively suppressed head movement in signals and reduce artifacts resulting from head movement artifacts in images. CONCLUSION: In this paper, we proposed an on-line strategy to manage the head movement interferences from the brain EIT data based on the distribution characteristics of wavelet coefficients. Our strategy is capable of reducing the movement interference in the data and improving the reconstructed images. This work would improve the clinical practicability of brain EIT and contribute to its further promotion.
Asunto(s)
Artefactos , Encéfalo/diagnóstico por imagen , Movimientos de la Cabeza , Procesamiento de Imagen Asistido por Computador/métodos , Tomografía , Análisis de Ondículas , Impedancia Eléctrica , Humanos , Fantasmas de ImagenRESUMEN
BACKGROUND: Electrical impedance tomography (EIT) is a noninvasive, radiation-free, and low-cost imaging modality for monitoring the conductivity distribution inside a patient. Nowadays, time-difference EIT (tdEIT) is used extensively as it has fast imaging speed and can reflect the dynamic changes of diseases, which make it attractive for a number of medical applications. Moreover, modeling errors are compensated to some extent by subtraction of voltage measurements collected before and after the change. However, tissue conductivity varies with frequency and tdEIT does not efficiently exploit multi-frequency information as it only uses measurements associated with a single frequency. METHODS: This paper proposes a tdEIT algorithm that imposes spectral constraints on the framework of the linear least squares problem. Simulation and phantom experiments are conducted to compare the proposed spectral constraints algorithm (SC) with the damped least squares algorithm (DLS), which is a stable tdEIT algorithm used in clinical practice. The condition number and rank of the matrices needing inverses are analyzed, and image quality is evaluated using four indexes. The possibility of multi-tissue imaging and the influence of spectral errors are also explored. RESULTS: Significant performance improvement is achieved by combining multi-frequency and time-difference information. The simulation results show that, in one-step iteration, both algorithms have the same condition number and rank, but SC effectively reduces image noise by 20.25% compared to DLS. In addition, deformation error and position error are reduced by 8.37% and 7.86%, respectively. In two-step iteration, the rank of SC is greatly increased, which suggests that more information is employed in image reconstruction. Image noise is further reduced by an average of 32.58%, and deformation error and position error are also reduced by 20.20% and 31.36%, respectively. The phantom results also indicate that SC has stronger noise suppression and target identification abilities, and this advantage is more obvious with iteration. The results of multi-tissue imaging show that SC has the unique advantage of automatically extracting a single tissue to image. CONCLUSIONS: SC enables tdEIT to utilize multi-frequency information in cases where the spectral constraints are known and then provides higher quality images for applications.
Asunto(s)
Algoritmos , Tomografía/métodos , Impedancia Eléctrica , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen , Factores de TiempoRESUMEN
BACKGROUND: Electrode disconnection is a common occurrence during long-term monitoring of brain electrical impedance tomography (EIT) in clinical settings. The data acquisition system suffers remarkable data loss which results in image reconstruction failure. The aim of this study was to: (1) detect disconnected electrodes and (2) account for invalid data. METHODS: Weighted correlation coefficient for each electrode was calculated based on the measurement differences between well-connected and disconnected electrodes. Disconnected electrodes were identified by filtering out abnormal coefficients with discrete wavelet transforms. Further, previously valid measurements were utilized to establish grey model. The invalid frames after electrode disconnection were substituted with the data estimated by grey model. The proposed approach was evaluated on resistor phantom and with eight patients in clinical settings. RESULTS: The proposed method was able to detect 1 or 2 disconnected electrodes with an accuracy of 100%; to detect 3 and 4 disconnected electrodes with accuracy of 92 and 84% respectively. The time cost of electrode detection was within 0.018 s. Further, the proposed method was capable to compensate at least 60 subsequent frames of data and restore the normal image reconstruction within 0.4 s and with a mean relative error smaller than 0.01%. CONCLUSIONS: In this paper, we proposed a two-step approach to detect multiple disconnected electrodes and to compensate the invalid frames of data after disconnection. Our method is capable of detecting more disconnected electrodes with higher accuracy compared to methods proposed in previous studies. Further, our method provides estimations during the faulty measurement period until the medical staff reconnects the electrodes. This work would improve the clinical practicability of dynamic brain EIT and contribute to its further promotion.
Asunto(s)
Encéfalo/fisiología , Procesamiento de Imagen Asistido por Computador , Tomografía/instrumentación , Artefactos , Impedancia Eléctrica , Electrodos , Humanos , Factores de Tiempo , Análisis de OndículasRESUMEN
Increasing antimicrobial resistance, coupled with the absence of new antibiotics, has led physicians to rely on colistin, a polymyxin with known nephrotoxicity, as the antibiotic of last resort for the treatment of infections caused by Gram-negative bacteria. One approach to increasing antibiotic efficacy and thereby reducing dosage is the use of small-molecule potentiators that augment antibiotic activity. We recently identified the aporphine alkaloid (±)-variabiline, which lowers the minimum inhibitory concentration of colistin in Acinetobacter baumannii and Klebsiella pneumoniae. Herein, we report the first total synthesis of (±)-variabiline to confirm structure and activity, the resolution, and evaluation of both enantiomers as colistin potentiators, and a structure-activity relationship study that identifies more potent variabiline derivatives. Preliminary mechanistic studies indicate that (±)-variabiline and its derivatives potentiate colistin by targeting the Gram-negative outer membrane.
Asunto(s)
Acinetobacter baumannii , Alcaloides , Aporfinas , Colistina/farmacología , Klebsiella pneumoniae , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Alcaloides/farmacologíaRESUMEN
Targeted degradation of proteins has emerged as a powerful method for modulating protein homeostasis. Identification of suitable degraders is essential for achieving effective protein degradation. Here, we present a non-covalent degrader construction strategy, based on a modular supramolecular co-assembly system consisting of two self-assembling peptide ligands that bind cell membrane receptors and the protein of interest simultaneously, resulting in targeted protein degradation. The developed lysosome-targeting co-assemblies (LYTACAs) can induce lysosomal degradation of extracellular protein IL-17A and membrane protein PD-L1 in several scavenger receptor A-expressing cell lines. The IL-17A-degrading co-assembly has been applied in an imiquimod-induced psoriasis mouse model, where it decreases IL-17A levels in the skin lesion and alleviates psoriasis-like inflammation. Extending to asialoglycoprotein receptor-related protein degradation, LYTACAs have demonstrated the versatility and potential in streamlining degraders for extracellular and membrane proteins.
Asunto(s)
Psoriasis , Piel , Animales , Ratones , Piel/patología , Interleucina-17/metabolismo , Proteolisis , Psoriasis/metabolismo , Receptores Depuradores/metabolismo , Proteínas de la Membrana/metabolismo , Lisosomas/metabolismo , Modelos Animales de EnfermedadRESUMEN
Introduction: This study aimed to investigate the relationships between perceived teacher-student relationship, growth mindset, student engagement, and foreign language enjoyment (FLE) among Chinese English learners. Methods: A total of 413 Chinese EFL learners participated in the study and completed self-report measures for perceived teacher-student relationship, growth mindset, student engagement in foreign language learning, and FLE. Confirmatory factor analysis was employed to assess the validity of the scales. Structural equation modeling was used to test the hypothesized model. Results: The partial mediation model demonstrated the best fit to the data. The results indicated that perceived teacher-student relationship had a direct impact on student engagement. FLE directly influenced student engagement, while growth mindset indirectly affected student engagement through the mediation of FLE. Discussion: The findings suggest that fostering positive teacher-student relationships and promoting a growth mindset can enhance FLE, leading to increased levels of student engagement. These results emphasize the importance of considering both the interpersonal dynamics between teachers and students and the role of mindset in foreign language learning.
RESUMEN
Multidrug resistant (MDR) bacterial infections have become increasingly common, leading clinicians to rely on last-resort antibiotics such as colistin. However, the utility of colistin is becoming increasingly compromised as a result of increasing polymyxin resistance. Recently we discovered that derivatives of the eukaryotic kinase inhibitor meridianin D abrogate colistin resistance in several Gram-negative species. A subsequent screen of three commercial kinase inhibitor libraries led to the identification of several scaffolds that potentiate colistin activity, including 6-bromoindirubin-3'-oxime, which potently suppresses colistin resistance in Klebsiella pneumoniae. Herein we report the activity of a library of 6-bromoindirubin-3'-oxime analogs and identify four derivatives that show equal or increased colistin potentiation activity compared to the parent compound.
RESUMEN
Antibiotic tolerance within a biofilm community presents a serious public health challenge. Here, we report the identification of a 2-aminoimidazole derivative that inhibits biofilm formation by two pathogenic Gram-positive bacteria, Streptococcus mutans and Staphylococcus aureus. In S. mutans, the compound binds to VicR, a key response regulator, at the N-terminal receiver domain, and concurrently inhibits expression of vicR and VicR-regulated genes, including the genes that encode the key biofilm matrix producing enzymes, Gtfs. The compound inhibits S. aureus biofilm formation via binding to a Staphylococcal VicR homolog. In addition, the inhibitor effectively attenuates S. mutans virulence in a rat model of dental caries. As the compound targets bacterial biofilms and virulence through a conserved transcriptional factor, it represents a promising new class of anti-infective agents that can be explored to prevent or treat a host of bacterial infections. IMPORTANCE Antibiotic resistance is a major public health issue due to the growing lack of effective anti-infective therapeutics. New alternatives to treat and prevent biofilm-driven microbial infections, which exhibit high tolerance to clinically available antibiotics, are urgently needed. We report the identification of a small molecule that inhibits biofilm formation by two important pathogenic Gram-positive bacteria, Streptococcus mutans and Staphylococcus aureus. The small molecule selectively targets a transcriptional regulator leading to attenuation of a biofilm regulatory cascade and concurrent reduction of bacterial virulence in vivo. As the regulator is highly conserved, the finding has broad implication for the development of antivirulence therapeutics that selectively target biofilms.
Asunto(s)
Antiinfecciosos , Caries Dental , Infecciones Estafilocócicas , Ratas , Animales , Virulencia , Staphylococcus aureus/genética , Caries Dental/tratamiento farmacológico , Caries Dental/prevención & control , Biopelículas , Antibacterianos/metabolismo , Antiinfecciosos/farmacología , Infecciones Estafilocócicas/tratamiento farmacológico , Streptococcus mutans/metabolismoRESUMEN
As learner burnout and disengagement affect the functioning and performance of college learners and can also influence future career-related well-being, they can be an issue for higher education organizations. Conversely, the discipline of language education has experienced an emotional turn, primarily triggered by Positive Psychology, and the scholars and students have been affected by various emotions. One of the seldom mentioned constructive emotions concerning learners' disengagement and burnout is enjoyment in learning a foreign language, as has been demonstrated by literature reviews. It is important to note that this review helps scholastic institutions and policymakers in the scholastic community to take into consideration the role of constructive emotions, specifically enjoyment, and their constructive influence on language education in diminishing learners' challenges in the learning process.
RESUMEN
Multidrug-resistant bacterial infections have become a global threat. We recently disclosed that the known IKK-ß inhibitor IMD-0354 and subsequent analogues abrogate colistin resistance in several Gram-negative strains. Herein, we report the activity of a second-generation library of IMD-0354 analogues incorporating a benzimidazole moiety as an amide isostere. We identified several analogues that show increased colistin potentiation activity against Gram-negative bacteria.
Asunto(s)
Colistina , Salicilanilidas , Antibacterianos/farmacología , Bencimidazoles/farmacología , Colistina/farmacología , Pruebas de Sensibilidad MicrobianaRESUMEN
Polysaccharides are a class of carbohydrates that play pivotal roles in living systems such as being chemical messengers in many vital biological pathways. However, the complexity and heterogeneity of these natural structures have posed daunting challenges on their production, characterization, evaluation, and applications. While there have been various types of synthetic skeletons that could mimic some biological aspects of polysaccharides, a safer and more easily accessed system is still desired to avoid the unnatural components and difficulties in modifying the structures. In this work, conveniently accessible self-assembling glycopeptide conjugates are developed, where the natural O-glycosidic linkages and phosphoryl modifications assist the self-assembly and concurrently reduce the risk of toxicity. The generated nanoparticles in aqueous solution offer a multivalent display of structurally controllable carbohydrates as mimics of polysaccharides, among which a mannosylated version exhibits immunostimulatory effects in both cellular assays and vaccination of mice. The obtained results demonstrate the potential of this glycopeptide conjugate-derived platform in exploiting the intriguing properties of carbohydrates in a more structurally maneuverable fashion.
RESUMEN
Oxidation of docosahexaenoate (DHA)-containing phospholipids in the cell plasma membrane leads to release of the α,ß-unsaturated aldehyde 4-hydroxy-7-oxo-5-heptenoic acid (HOHA) lactone which is capable of inducing retinal pigmented epithelial (RPE) cell dysfunction. Previously, HOHA lactone was shown to induce apoptosis and angiogenesis, and to activate the alternative complement pathway. RPE cells metabolize HOHA lactone through enzymatic conjugation with glutathione (GSH). Competing with this process is the adduction of HOHA lactone to protein lysyl residues generating 2-(ω-carboxyethyl)pyrrole (CEP) derivatives that have pathological relevance to age-related macular degeneration (AMD). We now find that HOHA lactone induces mitochondrial dysfunction. It decreases ATP levels, mitochondrial membrane potentials, enzymatic activities of mitochondrial complexes, depletes GSH and induces oxidative stress in RPE cells. The present study confirmed that pyridoxamine and other primary amines, which have been shown to scavenge γ-ketoaldehydes formed by carbohydrate or lipid peroxidation, are ineffective for scavenging the α,ß-unsaturated aldehydes. Histidyl hydrazide (HH), that has both hydrazide and imidazole nucleophile functionalities, is an effective scavenger of HOHA lactone and it protects ARPE-19 cells against HOHA lactone-induced cytotoxicity. The HH α-amino group is not essential for this electrophile trapping activity. The Nα-acyl L-histidyl hydrazide derivatives with 2- to 7-carbon acyl groups with increasing lipophilicities are capable of maintaining the effectiveness of HH in protecting ARPE-19 cells against HOHA lactone toxicity, which potentially has therapeutic utility for treatment of age related eye diseases.
Asunto(s)
Lactonas , Epitelio Pigmentado de la Retina , Células Epiteliales , Lactonas/metabolismo , Lactonas/toxicidad , Mitocondrias , Estrés Oxidativo , Epitelio Pigmentado de la Retina/metabolismoRESUMEN
OBJECTIVE: Electrode detachment may occur during dynamic brain electrical impedance tomography (EIT) measurements. After the faulty electrodes have been reset, EIT can restore to steady monitoring but the corrupted data, which will challenge interpretation of the results, are notoriously difficult to recover. APPROACH: Here, a piecewise processing method (PPM) is introduced to manage the erroneous EIT data after reattachment of faulty electrodes. In the PPM, we define the three phases before, during and after reconnection of the faulty electrode as PI, PII and PIII, respectively. Using this definition, an empirical mode decomposition-based interpolation method is introduced to compensate the corrupted data in PII, using the valid measurements in PI and PIII. Then, the compensated data in PII are spliced at the end of PI. Thus, there will be a surge at the junction of PII and PIII due to the changes in contact state of the repositioned electrodes. Finally, to ensure all the EIT data are obtained under constant electrode settings, we calculate the above changes and eliminate them from the data after PII. To verify the performance of the PPM, experiments based on head models, with anatomical structures and with human subjects were conducted. Metrics including permutation entropy (PE) and image correlation (IC) were proposed to measure the stability of the signal and the quality of the reconstructed EIT images, respectively. MAIN RESULTS: The results demonstrated that the PE of the processed data was reduced to 0.25 and the IC improved to 0.78. SIGNIFICANCE: Without iterative calculations the PPM could efficiently manage the erroneous EIT data after reattachment of the faulty electrodes.
Asunto(s)
Encéfalo/diagnóstico por imagen , Errores Médicos , Tomografía/instrumentación , Impedancia Eléctrica , Electrodos , Entropía , Análisis de Elementos Finitos , Humanos , Procesamiento de Imagen Asistido por ComputadorRESUMEN
OBJECTIVE: This study investigated the feasibility of electrical impedance tomography (EIT) for monitoring the deterioration of ischemic lesion after the onset of stroke. APPROACH: Fifteen rats were randomly distributed into two groups: rats operated to establish a right middle cerebral artery occlusion (MCAO) (n = 10), and sham-operated rats (n = 5). Then, the operated rats were kept 2 h under anesthesia for EIT monitoring. Subsequently, descriptive statistical analysis was performed on whole-brain resistivity changes, and repeated-measures analysis of variance (ANOVA) on the average resistivity variation index. Additionally, pathological examinations were performed after 6 h of infarction. MAIN RESULTS: The results obtained showed that ischemic damage developed in the right corpus striatum of the rats with MCAO, whereas the brains of the sham group showed no anomalies. The descriptive statistical analysis revealed that the whole-brain resistivity changes after 30, 60, 90, and 120 min of infarction were 0.063 ± 0.038, 0.097 ± 0.046, 0.141 ± 0.062, and 0.204 ± 0.092 for the rats with MCAO and 0.029 ± 0.021, 0.002 ± 0.002, 0.017 ± 0.011, and -0.001 ± 0.011 for the sham-operated rats, respectively. The repeated-measures ANOVA revealed that the right MCAO model resulted in a significant impedance increase in the right hemisphere, which continued to increase over time after infarction. SIGNIFICANCE: The overall study results indicate that EIT facilitates monitoring of local impedance variations caused by MCAO and may be a solution for real-time monitoring of intracranial pathological changes in ischemic stroke patients.
Asunto(s)
Infarto de la Arteria Cerebral Media/diagnóstico por imagen , Monitorización Neurofisiológica/métodos , Tomografía/métodos , Animales , Encéfalo/patología , Impedancia Eléctrica , Infarto de la Arteria Cerebral Media/patología , Masculino , Ratas Sprague-DawleyRESUMEN
PURPOSE: The trans-ocular barrier is a key factor limiting the therapeutic efficacy of triamcinolone acetonide. We developed a poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) surface modified respectively with 2-hydroxypropyl-ß-cyclodextrin (2-HP-ß-CD), chitosan oligosaccharide and trehalose. Determination of the drug/nanoparticles interactions, characterization of the nanoparticles, in vivo ocular compatibility tests, comparisons of their corneal permeability and their pharmacokinetics in aqueous humor were carried out. METHODS: All PLGA NPs were prepared by the single emulsion and evaporation method and the drug-nanoparticle interaction was studied. The physiochemical features and in vitro corneal permeability of NPs were characterized while the aqueous humor pharmacokinetics was performed to evaluate in vivo corneal permeability of NPs. Ocular compatibility of NPs was investigated through Draize and histopathological test. RESULTS: The PLGA NPs with lactide/glycolide ratio of 50:50 and small particle size (molecular weight 10 kDa) achieved optimal drug release and corneal permeability. Surface modification with different oligosaccharides resulted in uniform particle sizes and similar drug-nanoparticle interactions, although 2-HP-ß-CD/PLGA NPs showed the highest entrapment efficiency. In vitro evaluation and aqueous humor pharmacokinetics further revealed that 2-HP-ß-CD/PLGA NPs had greater trans-ocular permeation and retention compared to chitosan oligosaccharide/PLGA and trehalose/PLGA NPs. No ocular irritation in vivo was detected after applying modified/unmodified PLGA NPs to rabbit's eyes. CONCLUSION: 2-HP-ß-CD/PLGA NPs are a promising nanoplatform for localized ocular drug delivery through topical administration.
Asunto(s)
2-Hidroxipropil-beta-Ciclodextrina/química , Córnea/metabolismo , Portadores de Fármacos/química , Membranas Artificiales , Nanopartículas/química , Oligosacáridos/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Animales , Liberación de Fármacos , Tamaño de la Partícula , Permeabilidad , ConejosRESUMEN
Electrical impedance tomography (EIT) is a non-invasive and real-time imaging method that has the potential to be used for monitoring intracerebral hemorrhage (ICH). Recent studies have proposed that ischemia secondary to ICH occurs simultaneously in the brain. Real-time monitoring of the development of hemorrhage and risk of secondary ischemia is crucial for clinical intervention. However, few studies have explored the performance of EIT monitoring in cases where hemorrhage and secondary ischemia exist. When these lesions get close to each other, or their conductivity and volume changes differ greatly, it becomes challenging for dynamic EIT algorithms to simultaneously reconstruct subtle injuries. To address this, an iterative damped least-squares (IDLS) algorithm is proposed in this study. The quality of the IDLS algorithm was assessed using blur radius and temporal response during computer simulation and a phantom 3D head-shaped model where bidirectional disturbance targets were simulated. The results showed that the IDLS algorithm enhanced contrast and concurrently reconstructed bidirectional disturbance targets in images. Moreover, it showed superior performance in decreasing the blur radius and was time cost-effective. With further improvement, the IDLS algorithm has the potential to be used for monitoring the development of hemorrhage and risk of ischemia secondary to ICH. Graphical abstract (a) and (b) are simulation images of bidirectional disturbance targets with different change ratios of volume (Vr) and conductivity (σr) based on the damped least-squares (DLS) algorithm and iterative damped least-squared (IDLS) algorithm, respectively. (c) shows the performance metrics of blur radius and temporal response with different volume ratio (corresponding to Vr). (d) shows the performance metrics of blur radius and temporal response with different conductivity change percentage (corresponding to σr).