Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 268
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(3): e2207080119, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36623198

RESUMEN

The electrochemical conversion of waste nitrate (NO3-) to valuable ammonia (NH3) is an economical and environmentally friendly technology for sustainable NH3 production. It is beneficial for environmental nitrogen pollution management and is also an appealing alternative to the current Haber-Bosch process for NH3 production. However, owing to the competing hydrogen evolution reaction, it is necessary to design highly efficient and stable electrocatalysts with high selectivity. Herein, we report a rational design of Fe nanoparticles wrapped in N-doped carbon (Fe@N10-C) as a high NH3 selective and efficient electrocatalyst using a metal-organic framework precursor. We constructed a catalyst with new active sites by doping with nitrogen, which activated neighboring carbon atoms and enhanced metal-to-carbon electron transfer, resulting in high catalytic activity. These doped N sites play a key role in the NO3- electroreduction. As a result, the Fe@N10-C nanoparticles with optimal doping of N demonstrated remarkable performance, with a record-high NO3- removal capacity of 125.8 ± 0.5 mg N gcat-1 h-1 and nearly 100 % (99.7 ± 0.1%) selectivity. The catalyst also delivers an impressive NH3 production rate of 2647.7 µg h-1 cm-2 and high faradaic efficiency of 91.8 ± 0.1%. This work provides a new route for N-doped carbon-iron catalysis application and paves the way for addressing energy and environmental issues.

2.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101982

RESUMEN

Ammonia (NH3) is an ideal carbon-free power source in the future sustainable hydrogen economy for growing energy demand. The electrochemical nitrate reduction reaction (NO3-RR) is a promising approach for nitrate removal and NH3 production at ambient conditions, but efficient electrocatalysts are lacking. Here, we present a metal-organic framework (MOF)-derived cobalt-doped Fe@Fe2O3 (Co-Fe@Fe2O3) NO3-RR catalyst for electrochemical energy production. This catalyst has a nitrate removal capacity of 100.8 mg N gcat-1 h-1 and an ammonium selectivity of 99.0 ± 0.1%, which was the highest among all reported research. In addition, NH3 was produced at a rate of 1,505.9 µg h-1 cm-2, and the maximum faradaic efficiency was 85.2 ± 0.6%. Experimental and computational results reveal that the high performance of Co-Fe@Fe2O3 results from cobalt doping, which tunes the Fe d-band center, enabling the adsorption energies for intermediates to be modulated and suppressing hydrogen production. Thus, this study provides a strategy in the design of electrocatalysts in electrochemical nitrate reduction.

3.
Proc Natl Acad Sci U S A ; 119(29): e2123450119, 2022 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858301

RESUMEN

Efficient n = O bond activation is crucial for the catalytic reduction of nitrogen compounds, which is highly affected by the construction of active centers. In this study, n = O bond activation was achieved by a single-atom catalyst (SAC) with phosphorus anchored on a Co active center to form intermediate N-species for further hydrogenation and reduction. Unique phosphorus-doped discontinuous active sites exhibit better n = O activation performance than conventional N-cooperated single-atom sites, with a high Faradic efficiency of 92.0% and a maximum ammonia yield rate of 433.3 µg NH4·h-1·cm-2. This approach of constructing environmental sites through heteroatom modification significantly improves atom efficiency and will guide the design of future functional SACs with wide-ranging applications.

4.
Anal Chem ; 96(10): 4023-4030, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38412242

RESUMEN

Fluorescent DNA nanosensors have been widely used due to their unique advantages, among which the near-infrared (NIR) imaging mode can provide deeper penetration depth and lower biological background for the nanosensors. However, efficient NIR quenchers require ingenious design, complex synthesis, and modification, which severely limit the development of NIR DNA nanosensors. Label-free strategies based on G-quadruplex (G4) and NIR G4 dyes were first introduced into in situ extracellular imaging, and a novel NIR sensing strategy for the specific detection of extracellular targets is proposed. The strategy avoids complex synthesis and site-specific modification by controlling the change of the NIR signal through the formation of a G4 nanostructure. A light-up NIR DNA nanosensor based on potassium ion (K+)-sensitive G4 chain PS2.M was constructed to verify the strategy. PS2.M forms a stable G4 nanostructure in the presence of K+ and activates the NIR G4 dye CSTS, thus outputting NIR signals. The nanosensor can rapidly respond to K+ with a linear range of 5-50 mM and has good resistance to interference. The nanosensor with cholesterol can provide feedback on the changes in extracellular K+ concentration in many kinds of cells, serving as a potential tool for the study of diseases such as epilepsy and cancer, as well as the development of related drugs. The strategy can be potentially applied to the NIR detection of a variety of extracellular targets with the help of functional DNAs such as aptamer and DNAzyme.


Asunto(s)
Colorantes Fluorescentes , Nanoestructuras , Colorantes Fluorescentes/química , ADN/química , Potasio/química
5.
Mol Carcinog ; 63(4): 772-784, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38289159

RESUMEN

Intrahepatic cholangiocarcinoma (ICC) is a high-grade malignant digestive system tumor with an insidious onset and unfavorable prognosis. Liensinine, a small molecule derived from plants, has been proven to have significant tumor suppressor activity in other cancers. However, there are no reports on whether liensinine can inhibit the proliferation or metastasis of ICC. This study aimed to explore the tumor-suppressive activity of liensinine in ICC and its underlying mechanisms. The phenotypic changes in ICC cells were monitored in vitro using cell function tests. Western blot and immunofluorescence analyses verified the efficacy of liensinine. Tumor-bearing nude mice were used to explore the effect of liensinine on tumors and its toxicity and side effects in vivo. Liensinine suppressed ICC cell proliferation and arrested the cell cycle at the G1 phase. The epithelial-mesenchymal transition (EMT) of ICC cells was also inhibited, thereby restraining their invasion and migration of tumor cells. In addition, this study found that the potential mechanism of liensinine inhibiting EMT may be via suppression of the TGF-ß1/P-smad3 signaling pathway through hypoxia-inducible factor 1 alpha (HIF-1a). In vivo experiments showed that liensinine inhibited the growth of Hucc-T1 transplanted tumors in nude mice. Liensinine restrained the proliferation of ICC cells and suppressed EMT in ICC via the HIF-1a-mediated TGF-ß1/P-smad3 signaling pathway.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Isoquinolinas , Fenoles , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Ratones Desnudos , Transducción de Señal , Colangiocarcinoma/metabolismo , Neoplasias de los Conductos Biliares/metabolismo , Conductos Biliares Intrahepáticos/metabolismo , Conductos Biliares Intrahepáticos/patología , Transición Epitelial-Mesenquimal , Movimiento Celular , Línea Celular Tumoral
6.
FASEB J ; 37(5): e22920, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37078546

RESUMEN

The locus coeruleus (LC), enriched in vesicular glutamate transporter 2 (VGlut2) neurons, is a potential homeostasis-regulating hub. However, the identity of melanocortin-4 receptor (MC4R) neurons in the paraventricular nucleus (PVN) of the hypothalamus, PVNVGlut2::MC4R and LCVGlut2::MC4R regulation of body weight, and axonal projections of LCVGlut2 neurons remain unclear. Conditional knockout of MC4R in chimeric mice was used to confirm the effects of VGlut2. Interscapular brown adipose tissue was injected with pseudorabies virus to study the central nervous system projections. We mapped the LCVGlut2 circuitry. Based on the Cre-LoxP recombination system, specific knockdown of MC4R in VGlut2 neurons resulted in weight gain in chimeric mice. Adeno-associated virus-mediated knockdown of MC4R expression in the PVN and LC had potential superimposed effects on weight gain, demonstrating the importance of VGlut2 neurons. Unlike these wide-ranging efferent projections, the PVN, hypothalamic arcuate nucleus, supraoptic nucleus of the lateral olfactory tegmental nuclei, and nucleus tractus solitarius send excitatory projections to LCVGlut2 neurons. The PVN → LC glutamatergic MC4R long-term neural circuit positively affected weight management and could help treat obesity.


Asunto(s)
Núcleo Hipotalámico Paraventricular , Receptor de Melanocortina Tipo 4 , Ratones , Animales , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo , Peso Corporal , Núcleo Hipotalámico Paraventricular/metabolismo , Neuronas/metabolismo , Aumento de Peso
7.
Cell Commun Signal ; 22(1): 50, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38233928

RESUMEN

AIMS: Neutrophil extracellular traps (NETs) have been implicated in thrombotic diseases. There is no definitive explanation for how NETs form during acute ischemic strokes (AIS). The purpose of our study was to investigate the potential mechanism and role of NETs formation in the AIS process. METHODS: As well as 45 healthy subjects, 45 patients with AIS had ELISA tests performed to detect NET markers. Expression of high-mobility group box 1 (HMGB1) on platelet microvesicles (PMVs) was analyzed by flow cytometry in healthy subjects and AIS patients' blood samples. We established middle cerebral artery occlusion (MCAO) mice model to elucidate the interaction between PMPs and NETs. RESULTS: A significant elevation in NET markers was found in patient plasma in AIS patients, and neutrophils generated more NETs from patients' neutrophils. HMGB1 expression was upregulated on PMVs from AIS patients and induced NET formation. NETs enhanced Procoagulant activity (PCA) through tissue factor and via platelet activation. Targeting lactadherin in genetical and in pharmacology could regulate the formation of NETs in MCAO model. CONCLUSIONS: NETs mediated by PMVs derived HMGB1 exacerbate thrombosis and brain injury in AIS. Video Abstract.


Asunto(s)
Lesiones Encefálicas , Trampas Extracelulares , Proteína HMGB1 , Accidente Cerebrovascular Isquémico , Trombosis , Animales , Ratones , Humanos , Trampas Extracelulares/metabolismo , Proteína HMGB1/metabolismo , Trombosis/metabolismo , Neutrófilos , Lesiones Encefálicas/metabolismo
8.
J Org Chem ; 89(12): 8861-8870, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38845104

RESUMEN

A straightforward synthesis of substituted ß-aminoamides from α-arylamino-ß-hydroxyacrylamides, α-arylamino-ß-oxoamides, or their tautomeric mixture has been described. The (E)-enol triflate intermediates are readily generated in situ from these substrates in the presence of triflic anhydride (Tf2O) and triethylamine (Et3N) in a chemoselective manner and undergo triflic acid (TfOH)-promoted cyclization and ring-opening reactions with alcohols to deliver the desired products. The one-pot two-step synthetic protocol features the use of readily available starting materials, mild reaction conditions, high chemoselectivity, operational simplicity, and a wide range of synthetic potential of the products.

9.
Environ Sci Technol ; 58(3): 1589-1600, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38154035

RESUMEN

Hydroxymethanesulfonate (HMS) has been found to be an abundant organosulfur aerosol compound in the Beijing-Tianjin-Hebei (BTH) region with a measured maximum daily mean concentration of up to 10 µg per cubic meter in winter. However, the production medium of HMS in aerosols is controversial, and it is unknown whether chemical transport models are able to capture the variations of HMS during individual haze events. In this work, we modify the parametrization of HMS chemistry in the nested-grid GEOS-Chem chemical transport model, whose simulations provide a good account of the field measurements during winter haze episodes. We find the contribution of the aqueous aerosol pathway to total HMS is about 36% in winter in Beijing, due primarily to the enhancement effect of the ionic strength on the rate constants of the reaction between dissolved formaldehyde and sulfite. Our simulations suggest that the HMS-to-inorganic sulfate ratio will increase from the baseline of 7% to 13% in the near future, given the ambitious clean air and climate mitigation policies for the BTH region. The more rapid reductions in emissions of SO2 and NOx compared to NH3 alter the atmospheric acidity, which is a critical factor leading to the rising importance of HMS in particulate sulfur species.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Beijing , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , Monitoreo del Ambiente , China , Aerosoles/análisis , Agua
10.
Cell Mol Life Sci ; 80(7): 186, 2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37344704

RESUMEN

Mammalian cardiomyocytes (CMs) undergo maturation during postnatal heart development to meet the increased demands of growth. Here, we found that omentin-1, an adipokine, facilitates CM cell cycle arrest and metabolic maturation. Deletion of omentin-1 causes mouse heart enlargement and dysfunction in adulthood and CM maturation retardation in juveniles, including delayed cell cycle arrest and reduced fatty acid oxidation. Through RNA sequencing, molecular docking analysis, and proximity ligation assays, we found that omentin-1 regulates CM maturation by interacting directly with bone morphogenetic protein 7 (BMP7). Omentin-1 prevents BMP7 from binding to activin type II receptor B (ActRIIB), subsequently decreasing the downstream pathways mothers against DPP homolog 1 (SMAD1)/Yes-associated protein (YAP) and p38 mitogen-activated protein kinase (p38 MAPK). In addition, omentin-1 is required and sufficient for the maturation of human embryonic stem cell-derived CMs. Together, our findings reveal that omentin-1 is a pro-maturation factor for CMs that is essential for postnatal heart development and cardiac function maintenance.


Asunto(s)
Proteína Morfogenética Ósea 7 , Miocitos Cardíacos , Animales , Humanos , Ratones , Proteína Morfogenética Ósea 7/metabolismo , Puntos de Control del Ciclo Celular , Diferenciación Celular , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
11.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34385320

RESUMEN

Nitrate, a widespread contaminant in natural water, is a threat to ecological safety and human health. Although direct nitrate removal by electrochemical methods is efficient, the development of low-cost electrocatalysts with high reactivity remains challenging. Herein, bifunctional single-atom catalysts (SACs) were prepared with Cu or Fe active centers on an N-doped or S, N-codoped carbon basal plane for N2 or NH4+ production. The maximum nitrate removal capacity was 7,822 mg N ⋅ g-1 Fe, which was the highest among previous studies. A high ammonia Faradic efficiency (78.4%) was achieved at a low potential (-0.57 versus reversible hydrogen electrode), and the nitrogen selectivity was 100% on S-modified Fe SACs. Theoretical and experimental investigations of the S-doping charge-transfer effect revealed that strong metal-support interactions were beneficial for anchoring single atoms and enhancing cyclability. S-doping altered the coordination environment of single-atom centers and created numerous defects with higher conductivity, which played a key role in improving the catalyst activity. Moreover, interactions between defects and single-atom sites improved the catalytic performance. Thus, these findings offer an avenue for high active SAC design.

12.
Sensors (Basel) ; 24(3)2024 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-38339555

RESUMEN

The zero-velocity update (ZUPT) algorithm is a pivotal advancement in pedestrian navigation accuracy, utilizing foot-mounted inertial sensors. Its key issue hinges on accurately identifying periods of zero-velocity during human movement. This paper introduces an innovative adaptive sliding window technique, leveraging the Fourier Transform to precisely isolate the pedestrian's gait frequency from spectral data. Building on this, the algorithm adaptively adjusts the zero-velocity detection threshold in accordance with the identified gait frequency. This adaptation significantly refines the accuracy in detecting zero-velocity intervals. Experimental evaluations reveal that this method outperforms traditional fixed-threshold approaches by enhancing precision and minimizing false positives. Experiments on single-step estimation show the adaptability of the algorithm to motion states such as slow, fast, and running. Additionally, the paper demonstrates pedestrian trajectory localization experiments under a variety of walking conditions. These tests confirm that the proposed method substantially improves the performance of the ZUPT algorithm, highlighting its potential for pedestrian navigation systems.

13.
Sensors (Basel) ; 24(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732987

RESUMEN

Full waveform inversion (FWI) is recognized as a leading data-fitting methodology, leveraging the detailed information contained in physical waveform data to construct accurate, high-resolution velocity models essential for crosshole surveys. Despite its effectiveness, FWI is often challenged by its sensitivity to data quality and inherent nonlinearity, which can lead to instability and the inadvertent incorporation of noise and extraneous data into inversion models. To address these challenges, we introduce the scale-aware edge-preserving FWI (SAEP-FWI) technique, which integrates a cutting-edge nonlinear anisotropic hybrid diffusion (NAHD) filter within the gradient computation process. This innovative filter effectively reduces noise while simultaneously enhancing critical small-scale structures and edges, significantly improving the fidelity and convergence of the FWI inversion results. The application of SAEP-FWI across a variety of experimental and authentic crosshole datasets clearly demonstrates its effectiveness in suppressing noise and preserving key scale-aware and edge-delineating features, ultimately leading to clear inversion outcomes. Comparative analyses with other FWI methods highlight the performance of our technique, showcasing its ability to produce images of notably higher quality. This improvement offers a robust solution that enhances the accuracy of subsurface imaging.

14.
Int J Cancer ; 153(6): 1172-1181, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37260277

RESUMEN

Information regarding the impact of the coronavirus disease 2019 (COVID-19) pandemic on cervical cancer in mainland China is lacking. We explored its impact on the hospital attendance of patients with primary cervical cancer. We included 1918 patients with primary cervical cancer who initially attended Harbin Medical University Cancer Hospital between January 23, 2019, and January 23, 2021. Attendance decreased by 31%, from 1135 in 2019 to 783 in 2020, mainly from January to June (𝜒2 = 73.362, P < .001). The percentage of patients detected by screening decreased from 12.1% in January-June 2019 to 5.8% in January-June 2020 (𝜒2 = 7.187, P = .007). Patients with stage I accounted for 28.4% in 2020 significantly lower than 36.6% in 2019 (𝜒2 = 14.085, P < .001), and patients with stage III accounted for 27.1% in 2020 significantly higher than 20.5% in 2019 (𝜒2 = 11.145, P < .001). Waiting time for treatment was extended from 8 days (median) in January-June and July-December 2019 to 16 days in January-June (𝜒2 = 74.674, P < .001) and 12 days in July-December 2020 (𝜒2 = 37.916, P < .001). Of the 179 patients who delayed treatment, 164 (91.6%) were for the reasons of the healthcare providers. Compared to 2019, the number of patients in Harbin or non-Harbin in Heilongjiang Province and outside the province decreased, and cross-regional medical treatment has been hindered. The COVID-19 pandemic has negatively impacted cervical cancer patient attendance at the initial phase. These results are solid evidence that a strategy and mechanism for the effective attendance of cervical cancer patients in response to public health emergencies is urgently needed.


Asunto(s)
COVID-19 , Neoplasias del Cuello Uterino , Femenino , Humanos , COVID-19/epidemiología , Pandemias , Neoplasias del Cuello Uterino/epidemiología , Neoplasias del Cuello Uterino/terapia , China/epidemiología , Hospitales Universitarios
15.
Cancer Sci ; 114(12): 4717-4731, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37778742

RESUMEN

To investigate the potential of the gut microbiome as a biomarker for predicting the early recurrence of HBV-related hepatocellular carcinoma (HCC), we enrolled 124 patients diagnosed with HBV-associated HCC and 82 HBV-related hepatitis, and 86 healthy volunteers in our study, collecting 292 stool samples for 16S rRNA sequencing and 35 tumor tissue samples for targeted metabolomics. We performed an integrated bioinformatics analysis of gut microbiome and tissue metabolome data to explore the gut microbial-liver metabolite axis associated with the early recurrence of HCC. We constructed a predictive model based on the gut microbiota and validated its efficacy in the temporal validation cohort. Dialister, Veillonella, the Eubacterium coprostanoligenes group, and Lactobacillus genera, as well as the Streptococcus pneumoniae and Bifidobacterium faecale species, were associated with an early recurrence of HCC. We also found that 23 metabolites, including acetic acid, glutamate, and arachidonic acid, were associated with the early recurrence of HCC. A comprehensive analysis of the gut microbiome and tissue metabolome revealed that the entry of gut microbe-derived acetic acid into the liver to supply energy for tumor growth and proliferation may be a potential mechanism for the recurrence of HCC mediated by gut microbe. We constructed a nomogram to predict early recurrence by combining differential microbial species and clinical indicators, achieving an AUC of 78.0%. Our study suggested that gut microbes may serve as effective biomarkers for predicting early recurrence of HCC, and the gut microbial-tumor metabolite axis may explain the potential mechanism by which gut microbes promote the early recurrence of HCC.


Asunto(s)
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patología , Microbioma Gastrointestinal/genética , Virus de la Hepatitis B/genética , Neoplasias Hepáticas/patología , ARN Ribosómico 16S/genética , Biomarcadores , Acetatos
16.
Anal Chem ; 95(15): 6261-6270, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37013351

RESUMEN

In this work, by fully exploring the stimulus response of the guest-functionalized infinite coordination polymers (ICPs), a double-ratio colorimetric and fluorometric dual mode assay and multi-responsive coffee ring chips for point-of-use analysis of phosphate ions (Pi) were proposed. First, the complex host-guest interactions were rationally designed to obtain Au/Lum/RhB@Ag-DMcT ICPs. The composite ICPs exhibited a purple-blue color resulted from the modulated localized surface plasmon resonance (LSPR) of the Au core, and a blue fluorescence color stemmed from the unique aggregation-induced-emission (AIE) of Luminol (Lum) and the aggregation-caused-quenching (ACQ) of rhodamine B (RhB). With the presence of Pi, the host-guest interactions of the shell within Au/Lum/RhB@Ag-DMcT ICPs were interrupted to release Au core, Lum, and RhB in a dispersed state. Consequently, the color of the solution changed to purple-red (the mixed color of the Au core and RhB guest), and the fluorescence color turned to orange-red (AIE of Lum decreased, while the ACQ of RhB recovered). This constituted the sensing mechanism for dual-mode Pi assay with the double ratiometric response. Second, during the stimulus response, the surface wettability/size/amount of Au/Lum/RhB@Ag-DMcT ICPs simultaneously altered. These changes were reflected in the form of the coffee ring deposition pattern variances on the glass substrate and served as signal readouts for the exploration of multi-responsive coffee ring chips for the first time. Quantitative Pi detection with high accuracy and reliability in real samples was thereby realized, which offered an opportunity for the point-of-use analysis of Pi in resources-limited areas in a high-throughput fashion.

17.
Small ; 19(26): e2207195, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36971278

RESUMEN

Improving local bone mineral density (BMD) at fracture-prone sites of bone is a clinical concern for osteoporotic fracture prevention. In this study, a featured radial extracorporeal shock wave (rESW) responsive nano-drug delivery system (NDDS) is developed for local treatment. Based on a mechanic simulation, a sequence of hollow zoledronic acid (ZOL)-contained nanoparticles (HZNs) with controllable shell thickness that predicts various mechanical responsive properties is constructed by controlling the deposition time of ZOL and Ca2+ on liposome templates. Attributed to the controllable shell thickness, the fragmentation of HZNs and the release of ZOL and Ca2+ can be precisely controlled with the intervention of rESW. Furthermore, the distinct effect of HZNs with different shell thicknesses on bone metabolism after fragmentation is verified. In vitro co-culture experiments demonstrate that although HZN2 does not have the strongest osteoclasts inhibitory effect, the best pro-osteoblasts mineralization results are achieved via maintaining osteoblast-osteoclast (OB-OC) communication. In vivo, the HZN2 group also shows the strongest local BMD enhancement after rESW intervention and significantly improves bone-related parameters and mechanical properties in the ovariectomy (OVX)-induced osteoporosis (OP) rats. These findings suggest that an adjustable and precise rESW-responsive NDDS can effectively improve local BMD in OP therapy.


Asunto(s)
Osteoporosis , Fracturas Osteoporóticas , Femenino , Ratas , Animales , Osteoclastos , Fracturas Osteoporóticas/metabolismo , Liberación de Fármacos , Huesos , Osteoporosis/tratamiento farmacológico , Osteoporosis/prevención & control , Osteoporosis/metabolismo , Osteoblastos , Ácido Zoledrónico/metabolismo , Ácido Zoledrónico/farmacología , Ácido Zoledrónico/uso terapéutico
18.
Opt Express ; 31(5): 8453-8464, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36859960

RESUMEN

Large-scale, and high-throughput produced devices with strong ultrabroadband absorption and high angular tolerance are in demand for applications such as thermal imaging, energy harvesting, and radiative cooling. Despite long-standing efforts in design and fabrication, it has been challenging to achieve all these desired properties simultaneously. Here, we create a metamaterial-based infrared absorber fabricated from thin films of epsilon-near-zero (ENZ) materials grown on metal-coated patterned silicon substrates that exhibit ultrabroadband infrared absorption in both p- and s-polarization at angles ranging from 0° to 40°. The results show that the structured multilayered ENZ films exhibit high absorption (> 0.9) covering the entire 8∼14 µm wavelengths. In addition, the structured surface can be realized via scalable, low-cost methods on large-area substrates. Overcoming the limitations on angular and polarized response improves performance for applications such as thermal camouflage, radiative cooling for solar cell, thermal image and et., al.

19.
Opt Express ; 31(26): 44588-44602, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38178526

RESUMEN

Event-based structured light (SL) systems leverage bio-inspired event cameras, which are renowned for their low latency and high dynamics, to drive progress in high-speed structured light systems. However, existing event-based structured light methods concentrate on the independent construction of either time-domain or space-domain features for stereo matching, ignoring the spatio-temporal consistency towards depth. In this work, we build an event-based SL system that consists of a laser point projector and an event camera, and we devise a spatial-temporal coding strategy that realizes depth encoding in dual domains through a single shot. To exploit the spatio-temporal synergy, we further present STEM, a novel Spatio-Temporal Enhanced Matching approach for 3D reconstruction. STEM is comprised of two parts, the spatio-temporal enhancing (STE) algorithm and the spatio-temporal matching (STM) algorithm. Specifically, STE integrates the dual-domain information to increase the saliency of the temporal coding, providing a more robust basis for matching. STM is a stereo matching algorithm explicitly tailored to the unique characteristics of event data modality, which computes the disparity via a meticulously designed hybrid cost function. Experimental results demonstrate the superior performance of our proposed method, achieving a reconstruction rate of 16 fps and a low root mean square error of 0.56 mm at a distance of 0.72 m.

20.
Toxicol Appl Pharmacol ; 462: 116415, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36754215

RESUMEN

Breast cancer is the globally most common malignant tumor and the biggest threat to women. Even though the diagnosis and treatment of breast cancer are progressing continually, a large number of breast cancer patients eventually develop a metastatic tumor, especially triple-negative breast cancer (TNBC). Recently, metal ion homeostasis and ion signaling pathway have become important targets for cancer therapy. In this study, We analyzed the effects and mechanisms of isopimaric acid (IPA), an ion channel regulator, on the proliferation and metastasis of breast cancer cells (4 T1, MDA-MB-231and MCF-7) by cell functional assay, flow cytometry, western blot, proteomics and other techniques in vitro and in vivo. Results found that IPA significantly inhibited the proliferation and metastasis of breast cancer cells (especially 4 T1). Further studies on the anti-tumor mechanism of IPA suggested that IPA might affect EMT and Wnt signaling pathways by targeting mitochondria oxidative phosphorylation and Ca2+ signaling pathways, and then inducing breast cancer cell cycle arrest and apoptosis. Our research reveals the therapeutic value of IPA in breast cancer and provides a theoretical basis for the new treatment of breast cancer.


Asunto(s)
Calcio , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Calcio/metabolismo , Fosforilación Oxidativa , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Vía de Señalización Wnt , Proliferación Celular , Canales Iónicos/metabolismo , Línea Celular Tumoral , Apoptosis , Movimiento Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA