Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(1): 76-93.e22, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32931733

RESUMEN

Mitochondria, which play central roles in immunometabolic diseases, have their own genome. However, the functions of mitochondria-located noncoding RNAs are largely unknown due to the absence of a specific delivery system. By circular RNA (circRNA) expression profile analysis of liver fibroblasts from patients with nonalcoholic steatohepatitis (NASH), we observe that mitochondrial circRNAs account for a considerable fraction of downregulated circRNAs in NASH fibroblasts. By constructing mitochondria-targeting nanoparticles, we observe that Steatohepatitis-associated circRNA ATP5B Regulator (SCAR), which is located in mitochondria, inhibits mitochondrial ROS (mROS) output and fibroblast activation. circRNA SCAR, mediated by PGC-1α, binds to ATP5B and shuts down mPTP by blocking CypD-mPTP interaction. Lipid overload inhibits PGC-1α by endoplasmic reticulum (ER) stress-induced CHOP. In vivo, targeting circRNA SCAR alleviates high fat diet-induced cirrhosis and insulin resistance. Clinically, circRNA SCAR is associated with steatosis-to-NASH progression. Collectively, we identify a mitochondrial circRNA that drives metaflammation and serves as a therapeutic target for NASH.


Asunto(s)
Mitocondrias/genética , ATPasas de Translocación de Protón Mitocondriales/genética , ARN Circular/genética , Animales , Línea Celular , Dieta Alta en Grasa , Estrés del Retículo Endoplásmico/fisiología , Fibroblastos/metabolismo , Fibroblastos/patología , Expresión Génica/genética , Humanos , Resistencia a la Insulina , Hígado/patología , Cirrosis Hepática/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , ATPasas de Translocación de Protón Mitocondriales/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , ARN Circular/metabolismo , Especies Reactivas de Oxígeno , Transcriptoma/genética
2.
Cell ; 180(6): 1081-1097.e24, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32142650

RESUMEN

Understanding molecular mechanisms that dictate B cell diversity is important for targeting B cells as anti-cancer treatment. Through the single-cell dissection of B cell heterogeneity in longitudinal samples of patients with breast cancer before and after neoadjuvant chemotherapy, we revealed that an ICOSL+ B cell subset emerges after chemotherapy. Using three immunocompetent mouse models, we recapitulated the subset switch of human tumor-infiltrating B cells during chemotherapy. By employing B-cell-specific deletion mice, we showed that ICOSL in B cells boosts anti-tumor immunity by enhancing the effector to regulatory T cell ratio. The signature of ICOSL+ B cells is imprinted by complement-CR2 signaling, which is triggered by immunogenic cell death. Moreover, we identified that CD55, a complement inhibitory protein, determines the opposite roles of B cells in chemotherapy. Collectively, we demonstrated a critical role of the B cell subset switch in chemotherapy response, which has implications in designing novel anti-cancer therapies. VIDEO ABSTRACT.


Asunto(s)
Linfocitos B/inmunología , Neoplasias de la Mama/inmunología , Ligando Coestimulador de Linfocitos T Inducibles/metabolismo , Animales , Antineoplásicos/metabolismo , Linfocitos B/metabolismo , Antígenos CD55/inmunología , Antígenos CD55/metabolismo , Línea Celular Tumoral , Proteínas del Sistema Complemento/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Ligando Coestimulador de Linfocitos T Inducibles/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Complemento 3d/inmunología , Receptores de Complemento 3d/metabolismo , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología
3.
Nat Immunol ; 22(7): 865-879, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34140678

RESUMEN

Reduced infiltration of anti-tumor lymphocytes remains a major cause of tumor immune evasion and is correlated with poor cancer survival. Here, we found that upregulation of regulator of G protein signaling (RGS)1 in helper TH1 cells and cytotoxic T lymphocytes (CTLs) reduced their trafficking to and survival in tumors and was associated with shorter survival of patients with breast and lung cancer. RGS1 was upregulated by type II interferon (IFN)-signal transducer and activator of transcription (STAT)1 signaling and impaired trafficking of circulating T cells to tumors by inhibiting calcium influx and suppressing activation of the kinases ERK and AKT. RGS1 knockdown in adoptively transferred tumor-specific CTLs significantly increased their infiltration and survival in breast and lung tumor grafts and effectively inhibited tumor growth in vivo, which was further improved when combined with programmed death ligand (PD-L)1 checkpoint inhibition. Our findings reveal RGS1 is important for tumor immune evasion and suggest that targeting RGS1 may provide a new strategy for tumor immunotherapy.


Asunto(s)
Neoplasias de la Mama/metabolismo , Carcinoma Ductal de Mama/metabolismo , Quimiotaxis de Leucocito , Linfocitos Infiltrantes de Tumor/metabolismo , Proteínas RGS/metabolismo , Subgrupos de Linfocitos T/metabolismo , Animales , Apoptosis , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Neoplasias de la Mama/terapia , Carcinoma Ductal de Mama/inmunología , Carcinoma Ductal de Mama/patología , Carcinoma Ductal de Mama/terapia , Línea Celular Tumoral , Quimiocinas/metabolismo , Técnicas de Cocultivo , Citotoxicidad Inmunológica , Femenino , Humanos , Inmunoterapia Adoptiva , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/trasplante , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Microscopía Fluorescente , Microscopía por Video , Proteínas RGS/genética , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/trasplante , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Células TH1/inmunología , Células TH1/metabolismo , Factores de Tiempo , Imagen de Lapso de Tiempo , Células Tumorales Cultivadas , Escape del Tumor
4.
Nat Immunol ; 19(10): 1112-1125, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30224822

RESUMEN

Activation-induced cell death (AICD) of T lymphocytes can be exploited by cancers to escape immunological destruction. We demonstrated that tumor-specific cytotoxic T lymphocytes (CTLs) and type 1 helper T (TH1) cells, rather than type 2 helper T cells and regulatory T cells, were sensitive to AICD in breast and lung cancer microenvironments. NKILA, an NF-κB-interacting long noncoding RNA (lncRNA), regulates T cell sensitivity to AICD by inhibiting NF-κB activity. Mechanistically, calcium influx in stimulated T cells via T cell-receptor signaling activates calmodulin, thereby removing deacetylase from the NKILA promoter and enhancing STAT1-mediated transcription. Administering CTLs with NKILA knockdown effectively inhibited growth of breast cancer patient-derived xenografts in mice by increasing CTL infiltration. Clinically, NKILA overexpression in tumor-specific CTLs and TH1 cells correlated with their apoptosis and shorter patient survival. Our findings underscore the importance of lncRNAs in determining tumor-mediated T cell AICD and suggest that engineering lncRNAs in adoptively transferred T cells might provide a novel antitumor immunotherapy.


Asunto(s)
Carcinoma/inmunología , ARN Largo no Codificante/inmunología , Linfocitos T Citotóxicos/inmunología , Células TH1/inmunología , Escape del Tumor/genética , Animales , Apoptosis/inmunología , Neoplasias de la Mama/genética , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Carcinoma/genética , Carcinoma/patología , Femenino , Xenoinjertos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Masculino , Ratones Endogámicos NOD , Ratones SCID , ARN Largo no Codificante/genética
5.
Proc Natl Acad Sci U S A ; 121(22): e2318412121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38781205

RESUMEN

Lysosomes are central players in cellular catabolism, signaling, and metabolic regulation. Cellular and environmental stresses that damage lysosomal membranes can compromise their function and release toxic content into the cytoplasm. Here, we examine how cells respond to osmotic stress within lysosomes. Using sensitive assays of lysosomal leakage and rupture, we examine acute effects of the osmotic disruptant glycyl-L-phenylalanine 2-naphthylamide (GPN). Our findings reveal that low concentrations of GPN rupture a small fraction of lysosomes, but surprisingly trigger Ca2+ release from nearly all. Chelating cytoplasmic Ca2+ makes lysosomes more sensitive to GPN-induced rupture, suggesting a role for Ca2+ in lysosomal membrane resilience. GPN-elicited Ca2+ release causes the Ca2+-sensor Apoptosis Linked Gene-2 (ALG-2), along with Endosomal Sorting Complex Required for Transport (ESCRT) proteins it interacts with, to redistribute onto lysosomes. Functionally, ALG-2, but not its ESCRT binding-disabled ΔGF122 splice variant, increases lysosomal resilience to osmotic stress. Importantly, elevating juxta-lysosomal Ca2+ without membrane damage by activating TRPML1 also recruits ALG-2 and ESCRTs, protecting lysosomes from subsequent osmotic rupture. These findings reveal that Ca2+, through ALG-2, helps bring ESCRTs to lysosomes to enhance their resilience and maintain organelle integrity in the face of osmotic stress.


Asunto(s)
Calcio , Complejos de Clasificación Endosomal Requeridos para el Transporte , Lisosomas , Presión Osmótica , Lisosomas/metabolismo , Humanos , Calcio/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Membranas Intracelulares/metabolismo , Células HeLa , Canales de Potencial de Receptor Transitorio/metabolismo , Canales de Potencial de Receptor Transitorio/genética , Proteínas de Unión al Calcio , Proteínas Reguladoras de la Apoptosis
6.
Nature ; 583(7814): 133-138, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32528174

RESUMEN

Neutrophil extracellular traps (NETs), which consist of chromatin DNA filaments coated with granule proteins, are released by neutrophils to trap microorganisms1-3. Recent studies have suggested that the DNA component of NETs (NET-DNA) is associated with cancer metastasis in mouse models4-6. However, the functional role and clinical importance of NET-DNA in metastasis in patients with cancer remain unclear. Here we show that NETs are abundant in the liver metastases of patients with breast and colon cancers, and that serum NETs can predict the occurrence of liver metastases in patients with early-stage breast cancer. NET-DNA acts as a chemotactic factor to attract cancer cells, rather than merely acting as a 'trap' for them; in several mouse models, NETs in the liver or lungs were found to attract cancer cells to form distant metastases. We identify the transmembrane protein CCDC25 as a NET-DNA receptor on cancer cells that senses extracellular DNA and subsequently activates the ILK-ß-parvin pathway to enhance cell motility. NET-mediated metastasis is abrogated in CCDC25-knockout cells. Clinically, we show that the expression of CCDC25 on primary cancer cells is closely associated with a poor prognosis for patients. Overall, we describe a transmembrane DNA receptor that mediates NET-dependent metastasis, and suggest that targeting CCDC25 could be an appealing therapeutic strategy for the prevention of cancer metastasis.


Asunto(s)
Neoplasias de la Mama/patología , ADN/metabolismo , Trampas Extracelulares/genética , Proteínas de la Membrana/metabolismo , Metástasis de la Neoplasia/genética , Metástasis de la Neoplasia/patología , Neutrófilos/metabolismo , Actinina/metabolismo , Animales , Línea Celular Tumoral , Movimiento Celular , Femenino , Humanos , Hígado/patología , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/secundario , Proteínas de la Membrana/genética , Ratones , Pronóstico , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
7.
PLoS Pathog ; 18(9): e1010824, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36067270

RESUMEN

Nuclear entry represents the final and decisive infection step for most DNA viruses, although how this is accomplished by some viruses is unclear. Polyomavirus SV40 transports from the cell surface through the endosome, the endoplasmic reticulum, and the cytosol from where it enters the nucleus to cause infection. Here we elucidate the nuclear entry mechanism of SV40. Our results show that cytosol-localized SV40 is targeted to the nuclear envelope by directly engaging Nesprin-2 of the linker of nucleoskeleton and cytoskeleton (LINC) nuclear membrane complex. Additionally, we identify the NUP188 subunit of the nuclear pore complex (NPC) as a new Nesprin-2-interacting partner. This physical proximity positions the NPC to capture SV40 upon release from Nesprin-2, enabling the channel to facilitate nuclear translocation of the virus. Strikingly, SV40 disassembles during nuclear entry, generating a viral genome-VP1-VP3 subcomplex that efficiently crosses the NPC to enter the nucleus. Our results reveal how two major nuclear membrane protein complexes are exploited to promote targeting and translocation of a virus into the nucleus.


Asunto(s)
Poro Nuclear , Virus , Núcleo Celular/metabolismo , Citoesqueleto/metabolismo , Membrana Nuclear/metabolismo , Matriz Nuclear
8.
Biotechnol Bioeng ; 121(3): 835-852, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38151887

RESUMEN

Animal models are routinely employed to assess the treatments for human cancer. However, due to significant differences in genetic backgrounds, traditional animal models are unable to meet bioresearch needs. To overcome this restriction, researchers have generated and optimized immunodeficient mice, and then engrafted human genes, cells, tissues, or organs in mice so that the responses in the model mice could provide a more reliable reference for treatments. As a bridge connecting clinical application and basic research, humanized mice are increasingly used in the preclinical evaluation of cancer treatments, particularly after gene interleukin 2 receptor gamma mutant mice were generated. Human cancer models established in humanized mice support exploration of the mechanism of cancer occurrence and provide an efficient platform for drug screening. However, it is undeniable that the further application of humanized mice still faces multiple challenges. This review summarizes the construction approaches for humanized mice and their existing limitations. We also report the latest applications of humanized mice in preclinical evaluation for the treatment of cancer and point out directions for future optimization of these models.


Asunto(s)
Neoplasias , Ratones , Humanos , Animales , Modelos Animales de Enfermedad , Neoplasias/terapia
9.
Biomacromolecules ; 25(2): 1330-1339, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38254252

RESUMEN

The design of imaging agents with a high fluorine content is necessary for overcoming the challenges of low sensitivity in 19F magnetic resonance imaging (MRI)-based molecular imaging. Chemically self-assembled nanorings (CSANs) provide a strategy to increase the fluorine content through multivalent display. We previously reported an 19F NMR-based imaging tracer, in which case a CSAN-compatible epidermal growth factor receptor (EGFR)-targeting protein E1-dimeric dihydrofolate (E1-DD) was bioconjugated to a highly fluorinated peptide. Despite good 19F NMR performance in aqueous solutions, a limited signal was observed in cell-based 19F NMR using this monomeric construct, motivating further design. Here, we design several new E1-DD proteins bioconjugated to peptides of different fluorine contents. Flow cytometry analysis was used to assess the effect of variable fluorinated peptide sequences on the cellular binding characteristics. Structure-optimized protein, RTC-3, displayed an optimal spectral performance with high affinity and specificity for EGFR-overexpressing cells. To further improve the fluorine content, we next engineered monomeric RTC-3 into CSAN, η-RTC-3. With an approximate eightfold increase in the fluorine content, multivalent η-RTC-3 maintained high cellular specificity and optimal 19F NMR spectral behavior. Importantly, the first cell-based 19F NMR spectra of η-RTC-3 were obtained bound to EGFR-expressing A431 cells, showing a significant amplification in the signal. This new design illustrated the potential of multivalent fluorinated CSANs for future 19F MRI molecular imaging applications.


Asunto(s)
Flúor , Imagen por Resonancia Magnética , Flúor/química , Espectroscopía de Resonancia Magnética , Proteínas , Péptidos , Receptores ErbB/metabolismo
10.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38475041

RESUMEN

The choice of torque curve in lower-limb enhanced exoskeleton robots is a key problem in the control of lower-limb exoskeleton robots. As a human-machine coupled system, mapping from sensor data to joint torque is complex and non-linear, making it difficult to accurately model using mathematical tools. In this research study, the knee torque data of an exoskeleton robot climbing up stairs were obtained using an optical motion-capture system and three-dimensional force-measuring tables, and the inertial measurement unit (IMU) data of the lower limbs of the exoskeleton robot were simultaneously collected. Nonlinear approximations can be learned using machine learning methods. In this research study, a multivariate network model combining CNN and LSTM was used for nonlinear regression forecasting, and a knee joint torque-control model was obtained. Due to delays in mechanical transmission, communication, and the bottom controller, the actual torque curve will lag behind the theoretical curve. In order to compensate for these delays, different time shifts of the torque curve were carried out in the model-training stage to produce different control models. The above model was applied to a lightweight knee exoskeleton robot. The performance of the exoskeleton robot was evaluated using surface electromyography (sEMG) experiments, and the effects of different time-shifting parameters on the performance were compared. During testing, the sEMG activity of the rectus femoris (RF) decreased by 20.87%, while the sEMG activity of the vastus medialis (VM) increased by 17.45%. The experimental results verify the effectiveness of this control model in assisting knee joints in climbing up stairs.


Asunto(s)
Dispositivo Exoesqueleto , Robótica , Humanos , Torque , Extremidad Inferior , Articulación de la Rodilla
11.
J Stroke Cerebrovasc Dis ; 33(6): 107727, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641218

RESUMEN

BACKGROUND: F-actin is involved in the progression of ischemic stroke and is associated with the disruption of the blood-brain barrier. In this article, we evaluated serum F-actin as a biomarker in stroke severity and early neurological deterioration (END) in acute ischemic stroke. METHODS: In this study, serum F-actin was measured in consecutively collected 140 AIS patients and 144 healthy controls matched in gender and age by ELISA. Early neurological deterioration (END) was defined as the deterioration of neurological dysfunction within 72 hours of admission, with an increase of ≥ 4 points in the NIHSS score. Severe stroke was defined as a NIHSS score>8 at admission. RESULTS: The serum F-actin level in AIS was significantly higher than healthy controls (p = 0.041). In large-artery atherosclerosis stroke and cardioembolic stroke, serum F-actin were significantly higher than that in small artery occlusion stroke (padjust = 0.019, padjust < 0.001, respectively).F-actin level above the critical value (>1.37 µg/L) was significantly associated with severe stroke (OR, 3.015; 95 %CI, 1.014-8.963; p = 0.047) . In addition, elevated level of F-actin was significantly associated with END (OR, 1.323; 95 % CI, 1.001-1.747, p = 0.049). When the level of F-actin was above the critical value (>2.17 µg/L), its association with END remained significant (OR, 6.303; 95 %CI, 2.160-18.394; p < 0.001) . CONCLUSION: F-actin is an important blood biomarker in the early stage of AIS, and high levels of F-actin are valuable in determining the severity of stroke and predicting early neurological deterioration.


Asunto(s)
Actinas , Biomarcadores , Accidente Cerebrovascular Isquémico , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Actinas/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Evaluación de la Discapacidad , Progresión de la Enfermedad , Accidente Cerebrovascular Isquémico/sangre , Accidente Cerebrovascular Isquémico/diagnóstico , Valor Predictivo de las Pruebas , Pronóstico , Factores de Riesgo , Índice de Severidad de la Enfermedad , Factores de Tiempo , Regulación hacia Arriba
12.
Anal Chem ; 95(14): 6071-6079, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37000984

RESUMEN

Accurate temperature measurement via magnetic resonance is valuable for both in vitro and in vivo analysis of local tissue for evaluating disease pathology and medical interventions. 1H MRI-based thermometry is used clinically but is susceptible to error from magnetic field drift and low sensitivity in fatty tissue and requires a reference for absolute temperature determination. As an alternative, perfluorotributylamine (PFTBA), a perfluorocarbon liquid for 19F MRI thermometry, is based on chemical shift responsiveness and approaches the sensitivity of 1H MRI thermometry agents; however, environmental persistence, greenhouse gas concerns, and multiple resonances which can lead to MRI artifacts indicate a need for alternative sensors. Using a 19F NMR-based structure-property study of synthetic organofluorine molecules, this research develops new organofluorine liquids with improved temperature responsiveness, high signal, and reduced nonmagnetically equivalent fluorine resonances. Environmental degradation analysis using reverse-phase HPLC and quantitative 19F NMR demonstrates a rapid degradation profile mediated via the aryl fluorine core of temperature sensors. Our findings show that our lead liquid temperature sensor, DD-1, can be made in high yield in a single step and possesses an improved responsiveness over our prior work and an 83% increase in aqueous thermal responsiveness over PFTBA. Degradation studies indicate robust degradation with half-lives of less than two hours under photolysis conditions for the parent compound and formation of other fluorinated products. The improved performance of DD-1 and its susceptibility to environmental degradation highlight a new lead fluorous liquid for thermometry applications.


Asunto(s)
Espectroscopía de Resonancia Magnética , Flúor/química , Termometría , Espectroscopía de Resonancia Magnética/métodos , Temperatura , Relación Estructura-Actividad , Fotoquímica/métodos
13.
Anal Chem ; 95(51): 18850-18858, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38091507

RESUMEN

The development of chiral alignment media for measuring anisotropic NMR parameters provides an opportunity to determine the absolute configuration of chiral molecules without the need for derivatization. However, chiral alignment media with a high and robust enantiodiscriminating property for a wide range of chiral molecules are still scarce. In this study, we synthesized cholesterol-end-functionalized helical polyisocyanides from a chiral monomer using a cholesterol-based alkyne-Pd(II) initiator. These stereoregular polyisocyanides form stable and weak anisotropic lyotropic liquid crystals (LLCs) in dichloromethane systems, exhibiting highly optical activities in both single left- and right-handed helices. The preparation process of the media was straightforward, and the aligning property of the LLCs could be controlled by adjusting the concentration and temperature. Using the chiral polyisocyanides, we extracted the residual dipolar coupling for an enantiomeric pair of isopinocampheol (IPC), as well as a number of pharmaceutical molecules, demonstrating excellent enantiodiscriminating properties for a broad range of chiral compounds.

14.
Bioconjug Chem ; 34(8): 1477-1485, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37523271

RESUMEN

The design of imaging agents with high fluorine content is essential for overcoming the challenges associated with signal detection limits in 19F MRI-based molecular imaging. In addition to perfluorocarbon and fluorinated polymers, fluorinated peptides offer an additional strategy for creating sequence-defined 19F magnetic resonance imaging (MRI) imaging agents with a high fluorine signal. Our previously reported unstructured trifluoroacetyllysine-based peptides possessed good physiochemical properties and could be imaged at high magnetic field strength. However, the low detection limit motivated further improvements in the fluorine content of the peptides as well as removal of nonspecific cellular interactions. This research characterizes several new highly fluorinated synthetic peptides composed of highly fluorinated amino acids. 19F NMR analysis of peptides TB-1 and TB-9 led to highly overlapping, intense fluorine resonances and acceptable aqueous solubility. Flow cytometry analysis and fluorescence microscopy further showed nonspecific binding could be removed in the case of TB-9. As a preliminary experiment toward developing molecular imaging agents, a fluorinated EGFR-targeting peptide (KKKFFKK-ßA-YHWYGYTPENVI) and an EGFR-targeting protein complex E1-DD bioconjugated to TB-9 were prepared. Both bioconjugates maintained good 19F NMR performance in aqueous solution. While the E1-DD-based imaging agent will require further engineering, the success of cell-based 19F NMR of the EGFR-targeting peptide in A431 cells supports the potential use of fluorinated peptides for molecular imaging.


Asunto(s)
Flúor , Imagen por Resonancia Magnética , Flúor/química , Espectroscopía de Resonancia Magnética , Péptidos , Receptores ErbB
15.
Cell Mol Neurobiol ; 43(2): 683-696, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35556192

RESUMEN

At present, the diagnosis of ischemic stroke mainly depends on neuroimaging technology, but it still has many limitations. Therefore, it is very important to find new biomarkers of ischemic stroke. Recently, ß-actin has attracted extensive attention as a biomarker of a variety of cancers. Although several recent studies have been investigating its role in ischemic stroke and other cerebrovascular diseases, the understanding of this emerging biomarker in neurology is still limited. We examined human and preclinical studies to gain a comprehensive understanding of the literature on the subject. Most relevant literatures focus on preclinical research, and pay more attention to the role of ß-actin in the process of cerebral ischemia, but some recent literatures reported that in human studies, serum ß-actin increased significantly in the early stage of acute cerebral ischemia. This review will investigate the basic biology of ß-actin, pay attention to the potential role of serum ß-actin as an early diagnostic blood biomarker of ischemic stroke, and explore its potential mechanism in ischemic stroke and new strategies for stroke treatment in the future.


Asunto(s)
Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Actinas , Biomarcadores
16.
J Nanobiotechnology ; 21(1): 112, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-36978072

RESUMEN

Residual lesions in the tumor bed have been a challenge for conventional white-light breast-conserving surgery. Meanwhile, lung micro-metastasis also requires improved detection methods. Intraoperative accurate identification and elimination of microscopic cancer can improve surgery prognosis. In this study, a smart fibronectin-targeting and metalloproteinase-activatable imaging probe CREKA-GK8-QC is developed. CREKA-GK8-QC possesses an average diameter of 21.7 ± 2.5 nm, excellent MMP-9 protein responsiveness and no obvious cytotoxicity. In vivo experiments demonstrate that NIR-I fluorescence imaging of CREKA-GK8-QC precisely detects orthotopic breast cancer and micro-metastatic lesions (nearly 1 mm) of lungs with excellent imaging contrast ratio and spatial resolution. More notably, fluorescence image-guided surgery facilitates complete resection and avoids residual lesions in the tumor bed, improving survival outcomes. We envision that our newly developed imaging probe shows superior capacity for specific and sensitive targeted imaging, as well as providing guidance for accurate surgical resection of breast cancer.


Asunto(s)
Neoplasias de la Mama , Cirugía Asistida por Computador , Femenino , Humanos , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/cirugía , Neoplasias de la Mama/patología , Fibronectinas , Colorantes Fluorescentes/metabolismo , Metaloproteasas , Imagen Óptica/métodos , Cirugía Asistida por Computador/métodos
17.
Angew Chem Int Ed Engl ; 62(15): e202300773, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36806846

RESUMEN

Tricrilactones A-H (1-8), a new family of oligomeric 10-membered macrolides featuring collectively five unique ring skeletons, were isolated from a hitherto unexplored fungus, Trichocladium crispatum. Compounds 1 and 7 contain two unconventional bridged (aza)tricyclic core skeletons, 2, 3, 5, and 6 share an undescribed tetracyclic 9/5/6/6 ring system, 4 bears an uncommon 9/5/6/10/3-fused pentacyclic architecture, and 8 is a dimer bridged by an unexpected C-C linkage. Their structures, including absolute configurations, were elucidated by spectroscopic analysis, quantum chemical calculations, and X-ray diffraction analysis. Importantly, the absolute configuration of the highly flexible side chain of 1 was resolved by the asymmetric synthesis of its four stereoisomers. The intermediate-trapping and isotope labeling experiments facilitated the proposal of the biosynthetic pathway for these macrolides. In addition, their antiosteoporosis effects were evaluated in vivo (zebrafish).


Asunto(s)
Chaetomium , Macrólidos , Animales , Estructura Molecular , Macrólidos/química , Pez Cebra , Antibacterianos/farmacología
18.
Environ Microbiol ; 24(4): 1703-1713, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34390610

RESUMEN

The biological pump plays a vital role in exporting organic particles into the deep ocean for long-term carbon sequestration. However, much remains unknown about some of its key microbial players. In this study, Labyrinthulomycetes protists (LP) were used to understand the significance of heterotrophic microeukaryotes in the transport of particulate organic matter from the surface to the dark ocean. Unlike the sharp vertical decrease of prokaryotic biomass, the LP biomass only slightly decreased with depth and eventually exceeded prokaryotic biomass in the bathypelagic layer. Sequencing identified high diversity of the LP communities with a dominance of Aplanochytrium at all depths. Notably, ASVs that were observed in the surface layer comprised ~20% of ASVs and ~60% of sequences in each of the deeper (including bathypelagic) layers, suggesting potential vertical export of the LP populations to the deep ocean. Further analyses of the vertical patterns of the 50 most abundant ASVs revealed niche partitioning of LP phylotypes in the pelagic ocean, including those that could decompose organic detritus and/or facilitate the formation of fast-sinking particles. Overall, this study presents several lines of evidence that the LP can be an important component of the biological pump through their multiple ecotypes in the pelagic ocean.


Asunto(s)
Agua de Mar , Estramenopilos , Procesos Heterotróficos , Proteínas de Transporte de Membrana , Océanos y Mares
19.
Anal Chem ; 94(9): 3782-3790, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35191677

RESUMEN

Temperature can affect many biological and chemical processes within a body. During in vivo measurements, varied temperature can impact the accurate quantification of additional abiotic factors such as oxygen. During magnetic resonance imaging (MRI) measurements, the temperature of the sample can increase with the absorption of radiofrequency energy, which needs to be well-regulated for thermal therapies and long exposure. To address this potentially confounding effect, temperature can be probed intentionally using reporter molecules to determine the temperature in vivo. This work describes a combined experimental and computational approach for the design of fluorinated molecular temperature sensors with the potential to improve the accuracy and sensitivity of 19F MRI-based temperature monitoring. These fluorinated sensors are being developed to overcome the temperature sensitivity and tissue limitations of the proton resonance frequency (10 × 10-3 ppm °C-1), a standard parameter used for temperature mapping in MRI. Here, we develop (perfluoro-[1,1'-biphenyl]-4,4'-diyl)bis((heptadecafluorodecyl)sulfane), which has a nearly 2-fold increase in temperature responsiveness, compared to the proton resonance frequency and the 19F MRI temperature sensor perfluorotributylamine, when tested under identical NMR conditions. While 19F MRI is in the early stages of translation into clinical practice, development of alternative sensors with improved diagnostic abilities will help advance the development and incorporation of fluorine magnetic resonance techniques for clinical use.


Asunto(s)
Flúor , Imagen por Resonancia Magnética , Flúor/química , Espectroscopía de Resonancia Magnética , Azufre , Temperatura
20.
Small ; 18(22): e2200277, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35306734

RESUMEN

Droplet impact is a ubiquitous phenomenon in nature, daily life, and industrial processes. It is thus crucial to tune the impact outcomes for various applications. As a special outcome of droplet impact, the bouncing of droplets keeps the form of the droplets after the impact and minimizes the energy loss during the impact, being beneficial in many applications. A unified understanding of droplet bouncing is in high demand for effective development of new techniques to serve applications. This review shows the fundamentals, regulations, and applications of millimeter-sized droplet bouncing on solid surfaces and same/miscible liquids (liquid pool and another droplet). Regulation methods and current applications are summarized, and potential directions are proposed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA