RESUMEN
This study uses real-time monitoring, at microsecond time scales, with a charge-sensing particle detector to investigate the evaporation and fission processes of methanol/micrometer-sized polystyrene beads (PS beads) droplets and bacterial particles droplets generated via electrospray ionization (ESI) under elevated temperatures. By incrementally raising capillary temperatures, the solvent, such as methanol on 0.75 µm PS beads, experiences partial evaporation. Further temperature increase induces fission, and methanol molecules continue to evaporate until PS ions are detected after this range. Similar partial evaporation is observed on 3 µm PS beads. However, the shorter period of the fission temperature range is necessary compared to 0.75 µm PS beads. For the spherical-shaped bacterium, Staphylococcus aureus, the desolvation process shows a similar fission period as compared to 0.75 µm PS beads. Comparably, the rod-shaped bacteria, Escherichia coli EC11303, and E. coli strain W have shorter fission periods than S. aureus. This research provides insights into the evaporation and fission mechanisms of ESI droplets containing different sizes and shapes of micrometer-sized particles, contributing to a better understanding of gaseous macroion formation.
Asunto(s)
Escherichia coli , Poliestirenos , Espectrometría de Masa por Ionización de Electrospray , Staphylococcus aureus , Poliestirenos/química , Escherichia coli/química , Tamaño de la Partícula , Temperatura , Volatilización , Metanol/química , MicroesferasRESUMEN
Germplasm resources are the source of herbal medicine production. The cultivation of superior germplasm resources helps to resolve the conflict between long-term population persistence and growing market demand by consistently producing materials with high quality. The fern species Cibotium barometz is the original plant of cibotii rhizoma ("Gouji"), a traditional Chinese medicine used in the therapy of pain, weakness, and numbness in the lower extremities. Long-history medicinal use has caused serious wild population decline in China. Without sufficient understanding of the species and lineage diversity of Cibotium, it is difficult to propose a targeted conservation scheme at present, let alone select high-quality germplasm resources. In order to fill such a knowledge gap, this study sampled C. barometz and relative species throughout their distribution in China, performed genome skimming to obtain plastome data, and conducted phylogenomic analyses. We constructed a well-supported plastome phylogeny of Chinese Cibotium, which showed that three species with significant genetic differences are distributed in China, namely C. barometz, C. cumingii, and C. sino-burmaense sp. nov., a cryptic species endemic to NW Yunnan and adjacent regions of NE Myanmar. Moreover, our results revealed two differentiated lineages of C. barometz distributed on the east and west sides of a classic phylogeographic boundary that was probably shaped by monsoons and landforms. We also evaluated the resolution of nine traditional barcode loci and designed five new DNA barcodes based on the plastome sequence that can distinguish all these species and lineages of Chinese Cibotium accurately. These novel findings on a genetic basis will guide conservation planners and medicinal plant breeders to build systematic conservation plans and exploit the germplasm resources of Cibotium in China.