Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Annu Rev Biochem ; 91: 599-628, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35287475

RESUMEN

In the decade since the discovery of the innate immune cyclic GMP-AMP synthase (cGAS)-2'3'-cyclic GMP-AMP (cGAMP)-stimulator of interferon genes (STING) pathway, its proper activation and dysregulation have been rapidly implicated in many aspects of human disease. Understanding the biochemical, cellular, and regulatory mechanisms of this pathway is critical to developing therapeutic strategies that either harness it to boost defense or inhibit it to prevent unwanted inflammation. In this review, we first discuss how the second messenger cGAMP is synthesized by cGAS in response to double-stranded DNA and cGAMP's subsequent activation of cell-type-dependent STING signaling cascades with differential physiological consequences. We then review how cGAMP as an immunotransmitter mediates tightly controlled cell-cell communication by being exported from producing cells and imported into responding cells via cell-type-specific transporters. Finally, we review mechanisms by which thecGAS-cGAMP-STING pathway responds to different sources of mislocalized double-stranded DNA in pathogen defense, cancer, and autoimmune diseases.


Asunto(s)
Proteínas de la Membrana , Nucleótidos Cíclicos , ADN/genética , Humanos , Inmunidad Innata/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/genética , Nucleotidiltransferasas/genética
2.
Cell ; 178(2): 290-301.e10, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31230712

RESUMEN

How the central innate immune protein, STING, is activated by its ligands remains unknown. Here, using structural biology and biochemistry, we report that the metazoan second messenger 2'3'-cGAMP induces closing of the human STING homodimer and release of the STING C-terminal tail, which exposes a polymerization interface on the STING dimer and leads to the formation of disulfide-linked polymers via cysteine residue 148. Disease-causing hyperactive STING mutations either flank C148 and depend on disulfide formation or reside in the C-terminal tail binding site and cause constitutive C-terminal tail release and polymerization. Finally, bacterial cyclic-di-GMP induces an alternative active STING conformation, activates STING in a cooperative manner, and acts as a partial antagonist of 2'3'-cGAMP signaling. Our insights explain the tight control of STING signaling given varying background activation signals and provide a therapeutic hypothesis for autoimmune syndrome treatment.


Asunto(s)
Proteínas de la Membrana/metabolismo , Sitios de Unión , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Dimerización , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Ligandos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Nucleótidos Cíclicos/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Transducción de Señal
3.
Mol Cell ; 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38917796

RESUMEN

The innate immune cGAS-STING pathway is activated by cytosolic double-stranded DNA (dsDNA), a ubiquitous danger signal, to produce interferon, a potent anti-viral and anti-cancer cytokine. However, STING activation must be tightly controlled because aberrant interferon production leads to debilitating interferonopathies. Here, we discover PELI2 as a crucial negative regulator of STING. Mechanistically, PELI2 inhibits the transcription factor IRF3 by binding to phosphorylated Thr354 and Thr356 on the C-terminal tail of STING, leading to ubiquitination and inhibition of the kinase TBK1. PELI2 sets a threshold for STING activation that tolerates low levels of cytosolic dsDNA, such as that caused by silenced TREX1, RNASEH2B, BRCA1, or SETX. When this threshold is reached, such as during viral infection, STING-induced interferon production temporarily downregulates PELI2, creating a positive feedback loop allowing a robust immune response. Lupus patients have insufficient PELI2 levels and high basal interferon production, suggesting that PELI2 dysregulation may drive the onset of lupus and other interferonopathies.

4.
Mol Cell ; 84(2): 375-385.e7, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38103556

RESUMEN

Cyclic-oligonucleotide-based anti-phage signaling system (CBASS) is a common immune system that uses cyclic oligonucleotide signals to limit phage replication. In turn, phages encode anti-CBASS (Acb) proteins such as Acb2, which can sequester some cyclic dinucleotides (CDNs) and limit downstream effector activation. Here, we identified that Acb2 sequesters many CDNs produced by CBASS systems and inhibits stimulator of interferon genes (STING) activity in human cells. Surprisingly, the Acb2 hexamer also binds with high affinity to CBASS cyclic trinucleotides (CTNs) 3'3'3'-cyclic AMP-AMP-AMP and 3'3'3'-cAAG at a distinct site from CDNs. One Acb2 hexamer can simultaneously bind two CTNs and three CDNs. Phage-encoded Acb2 provides protection from type III-C CBASS that uses cA3 signaling molecules. Moreover, phylogenetic analysis of >2,000 Acb2 homologs encoded by diverse phages and prophages revealed that most are expected to bind both CTNs and CDNs. Altogether, Acb2 sequesters nearly all known CBASS signaling molecules through two distinct binding pockets and therefore serves as a broad-spectrum inhibitor of cGAS-based immunity.


Asunto(s)
Bacteriófagos , Nucleótidos Cíclicos , Humanos , Nucleótidos Cíclicos/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Filogenia , AMP Cíclico , Oligonucleótidos
5.
Immunity ; 53(1): 8-10, 2020 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-32668231

RESUMEN

In this issue, Wu et al. demonstrate the importance of the neglected interferon (IFN)-independent STING signaling axis in mice. They find that although this axis is important for antiviral HSV-1 resistance, it has a pro-cancer role by promoting T cell death.


Asunto(s)
Mordeduras y Picaduras , Interferones , Animales , Antivirales , Proteínas de la Membrana/genética , Ratones , Escape del Tumor
6.
Mol Cell ; 80(4): 578-591.e5, 2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33171122

RESUMEN

Extracellular 2'3'-cyclic-GMP-AMP (cGAMP) is an immunotransmitter exported by diseased cells and imported into host cells to activate the innate immune STING pathway. We previously identified SLC19A1 as a cGAMP importer, but its use across human cell lines is limited. Here, we identify LRRC8A heteromeric channels, better known as volume-regulated anion channels (VRAC), as widely expressed cGAMP transporters. LRRC8A forms complexes with LRRC8C and/or LRRC8E, depending on their expression levels, to transport cGAMP and other 2'3'-cyclic dinucleotides. In contrast, LRRC8D inhibits cGAMP transport. We demonstrate that cGAMP is effluxed or influxed via LRRC8 channels, as dictated by the cGAMP electrochemical gradient. Activation of LRRC8A channels, which can occur under diverse stresses, strongly potentiates cGAMP transport. We identify activator sphingosine 1-phosphate and inhibitor DCPIB as chemical tools to manipulate channel-mediated cGAMP transport. Finally, LRRC8A channels are key cGAMP transporters in resting primary human vasculature cells and universal human cGAMP transporters when activated.


Asunto(s)
Sistemas CRISPR-Cas , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/metabolismo , Transporte Biológico , Ciclopentanos/farmacología , Humanos , Indanos/farmacología , Lisofosfolípidos/farmacología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Esfingosina/análogos & derivados , Esfingosina/farmacología , Células U937
7.
Mol Cell ; 75(2): 372-381.e5, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31126740

RESUMEN

2'3'-cyclic-GMP-AMP (cGAMP) is a second messenger that activates the antiviral stimulator of interferon genes (STING) pathway. We recently identified a novel role for cGAMP as a soluble, extracellular immunotransmitter that is produced and secreted by cancer cells. Secreted cGAMP is then sensed by host cells, eliciting an antitumoral immune response. Due to the antitumoral effects of cGAMP, other CDN-based STING agonists are currently under investigation in clinical trials for metastatic solid tumors. However, it is unknown how cGAMP and other CDNs cross the cell membrane to activate intracellular STING. Using a genome-wide CRISPR screen, we identified SLC19A1 as the first known importer of cGAMP and other CDNs, including the investigational new drug 2'3'-bisphosphosphothioate-cyclic-di-AMP (2'3'-CDAS). These discoveries will provide insight into cGAMP's role as an immunotransmitter and aid in the development of more targeted CDN-based cancer therapeutics.


Asunto(s)
Inmunidad Innata/genética , Neoplasias/genética , Nucleótidos Cíclicos/genética , Proteína Portadora de Folato Reducido/genética , Sistemas CRISPR-Cas/genética , Línea Celular Tumoral , Membrana Celular/genética , Genoma Humano/genética , Humanos , Proteínas de la Membrana/genética , Neoplasias/inmunología , Nucleótidos Cíclicos/inmunología , Transducción de Señal/genética
8.
Nat Chem Biol ; 20(1): 30-41, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37400538

RESUMEN

Ectodomain phosphatase/phosphodiesterase-1 (ENPP1) is overexpressed on cancer cells and functions as an innate immune checkpoint by hydrolyzing extracellular cyclic guanosine monophosphate adenosine monophosphate (cGAMP). Biologic inhibitors have not yet been reported and could have substantial therapeutic advantages over current small molecules because they can be recombinantly engineered into multifunctional formats and immunotherapies. Here we used phage and yeast display coupled with in cellulo evolution to generate variable heavy (VH) single-domain antibodies against ENPP1 and discovered a VH domain that allosterically inhibited the hydrolysis of cGAMP and adenosine triphosphate (ATP). We solved a 3.2 Å-resolution cryo-electron microscopy structure for the VH inhibitor complexed with ENPP1 that confirmed its new allosteric binding pose. Finally, we engineered the VH domain into multispecific formats and immunotherapies, including a bispecific fusion with an anti-PD-L1 checkpoint inhibitor that showed potent cellular activity.


Asunto(s)
Hidrolasas Diéster Fosfóricas , Anticuerpos de Dominio Único , Hidrolasas Diéster Fosfóricas/metabolismo , Monoéster Fosfórico Hidrolasas , Microscopía por Crioelectrón
9.
Proc Natl Acad Sci U S A ; 120(52): e2313693120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38117852

RESUMEN

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) expression correlates with poor prognosis in many cancers, and we previously discovered that ENPP1 is the dominant hydrolase of extracellular cGAMP: a cancer-cell-produced immunotransmitter that activates the anticancer stimulator of interferon genes (STING) pathway. However, ENPP1 has other catalytic activities and the molecular and cellular mechanisms contributing to its tumorigenic effects remain unclear. Here, using single-cell RNA-seq, we show that ENPP1 in both cancer and normal tissues drives primary breast tumor growth and metastasis by dampening extracellular 2'3'-cyclic-GMP-AMP (cGAMP)-STING-mediated antitumoral immunity. ENPP1 loss-of-function in both cancer cells and normal tissues slowed primary tumor growth and abolished metastasis. Selectively abolishing the cGAMP hydrolysis activity of ENPP1 phenocopied ENPP1 knockout in a STING-dependent manner, demonstrating that restoration of paracrine cGAMP-STING signaling is the dominant anti-cancer mechanism of ENPP1 inhibition. Finally, ENPP1 expression in breast tumors deterministically predicated whether patients would remain free of distant metastasis after pembrolizumab (anti-PD-1) treatment followed by surgery. Altogether, ENPP1 blockade represents a strategy to exploit cancer-produced extracellular cGAMP for controlled local activation of STING and is therefore a promising therapeutic approach against breast cancer.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Inmunidad Innata , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(21): e2119189119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35588451

RESUMEN

The metazoan innate immune second messenger 2'3'-cGAMP is present both inside and outside cells. However, only extracellular cGAMP can be negatively regulated by the extracellular hydrolase ENPP1. Here, we determine whether ENPP1's regulation of extracellular cGAMP is a ubiquitous mechanism of attenuating stimulator of interferon genes (STING) signaling. We identified ENPP1H362A, a point mutation that cannot degrade the 2'-5' linkage in cGAMP while maintaining otherwise normal function. The selectivity of this histidine is conserved down to bacterial nucleotide pyrophosphatase/phosphodiesterase (NPP), allowing structural analysis and suggesting an unexplored ancient history of 2'-5' cyclic dinucleotides. Enpp1H362A mice demonstrated that extracellular cGAMP is not responsible for the devastating phenotype in ENPP1-null humans and mice but is responsible for antiviral immunity and systemic inflammation. Our data define extracellular cGAMP as a pivotal STING activator, identify an evolutionarily critical role for ENPP1 in regulating inflammation, and suggest a therapeutic strategy for viral and inflammatory conditions by manipulating ENPP1 activity.


Asunto(s)
Proteínas de la Membrana , Nucleótidos Cíclicos , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Animales , Humanos , Inmunidad Innata , Inflamación/genética , Inflamación/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Nucleótidos Cíclicos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Transducción de Señal
11.
Chem Rev ; 122(3): 3414-3458, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34870969

RESUMEN

The innate immune system is an organism's first line of defense against an onslaught of internal and external threats. The downstream adaptive immune system has been a popular target for therapeutic intervention, while there is a relative paucity of therapeutics targeting the innate immune system. However, the innate immune system plays a critical role in many human diseases, such as microbial infection, cancer, and autoimmunity, highlighting the need for ongoing therapeutic research. In this review, we discuss the major innate immune pathways and detail the molecular strategies underpinning successful therapeutics targeting each pathway as well as previous and ongoing efforts. We will also discuss any recent discoveries that could inform the development of novel therapeutic strategies. As our understanding of the innate immune system continues to develop, we envision that therapies harnessing the power of the innate immune system will become the mainstay of treatment for a wide variety of human diseases.


Asunto(s)
Inmunidad Innata , Humanos
12.
J Biol Chem ; 295(15): 4881-4892, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32127400

RESUMEN

2',5'/3',5'-cGMP-AMP (cGAMP) is a second messenger produced in response to cytosolic dsDNA that activates the stimulator of interferon genes (STING) pathway. We recently discovered that cGAMP is exported by cancer cells and that this extracellular signal is an immunotransmitter key to tumor detection and elimination by the innate immune system. The enhancement of extracellular cGAMP levels therefore holds great promise for managing cancer. However, there is still much more to understand about the basic biology of cGAMP before its full therapeutic potential can be realized. To answer these questions, we must be able to detect and quantitate cGAMP with an assay that is high-throughput, sensitive, and precise. Existing assays fall short of these needs. Here, we describe the development of cGAMP-Luc, a coupled enzyme assay that relies on the degradation of cGAMP to AMP by ectonucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) and an optimized assay for the detection of AMP by luciferase. We also developed STING-CAP, a STING-mediated method to concentrate and purify cGAMP from any type of biological sample. We conclude that cGAMP-Luc is an economical high-throughput assay that matches the accuracy of and surpasses the detection limit of MS, the current gold standard of cGAMP quantitation. We propose that cGAMP-Luc is a powerful tool that may enable discoveries that advance insights into extracellular cGAMP levels in healthy and diseased tissues, such as cancer.


Asunto(s)
Pruebas de Enzimas/métodos , Luciferasas/metabolismo , Proteínas de la Membrana/metabolismo , Neoplasias/patología , Nucleótidos Cíclicos/análisis , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/metabolismo , Células HEK293 , Células HeLa , Humanos , Luciferasas/genética , Proteínas de la Membrana/genética , Neoplasias/metabolismo , Nucleótidos Cíclicos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Pirofosfatasas/genética , Transducción de Señal
13.
Gastroenterology ; 154(6): 1822-1835.e2, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29425920

RESUMEN

BACKGROUND & AIMS: Acute pancreatitis (AP) is characterized by severe inflammation and acinar cell death. Transmembrane protein 173 (TMEM173 or STING) is a DNA sensor adaptor protein on immune cells that recognizes cytosolic nucleic acids and transmits signals that activate production of interferons and the innate immune response. We investigated whether leukocyte STING signaling mediates inflammation in mice with AP. METHODS: We induced AP in C57BL/6J mice (control) and C57BL/6J-Tmem173gt/J mice (STING-knockout mice) by injection of cerulein or placement on choline-deficient DL-ethionine supplemented diet. In some mice, STING signaling was induced by administration of a pharmacologic agonist. AP was also induced in C57BL/6J mice with bone marrow transplants from control or STING-knockout mice and in mice with disruption of the cyclic GMP-AMP synthase (Cgas) gene. Pancreata were collected, analyzed by histology, and acini were isolated and analyzed by flow cytometry, quantitative polymerase chain reaction, immunoblots, and enzyme-linked immunosorbent assay. Bone-marrow-derived macrophages were collected from mice and tested for their ability to detect DNA from dying acinar cells in the presence and absence of deoxyribonuclease (DNaseI). RESULTS: STING signaling was activated in pancreata from mice with AP but not mice without AP. STING-knockout mice developed less severe AP (less edema, inflammation, and markers of pancreatic injury) than control mice, whereas mice given a STING agonist developed more severe AP than controls. In immune cells collected from pancreata, STING was expressed predominantly in macrophages. Levels of cGAS were increased in mice with vs without AP, and cGAS-knockout mice had decreased edema, inflammation, and other markers of pancreatic injury upon induction of AP than control mice. Wild-type mice given bone marrow transplants from STING-knockout mice had less pancreatic injury and lower serum levels of lipase and pancreatic trypsin activity following induction of AP than mice given wild-type bone marrow. DNA from dying acinar cells activated STING signaling in macrophages, which was inhibited by addition of DNaseI. CONCLUSIONS: In mice with AP, STING senses acinar cell death (by detecting DNA from dying acinar cells) and activates a signaling pathway that promotes inflammation. Macrophages express STING and activate pancreatic inflammation in AP.


Asunto(s)
Muerte Celular/genética , Inflamación/genética , Proteínas de la Membrana/metabolismo , Pancreatitis/genética , Transducción de Señal/genética , Células Acinares/fisiología , Enfermedad Aguda , Animales , Ceruletida , Modelos Animales de Enfermedad , Macrófagos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleótidos Cíclicos , Páncreas/patología , Pancreatitis/inducido químicamente , Pancreatitis/patología
14.
Nat Chem Biol ; 10(12): 1043-8, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25344812

RESUMEN

Agonists of mouse STING (TMEM173) shrink and even cure solid tumors by activating innate immunity; human STING (hSTING) agonists are needed to test this therapeutic hypothesis in humans. The endogenous STING agonist is 2'3'-cGAMP, a second messenger that signals the presence of cytosolic double-stranded DNA. We report activity-guided partial purification and identification of ecto-nucleotide pyrophosphatase/phosphodiesterase (ENPP1) to be the dominant 2'3'-cGAMP hydrolyzing activity in cultured cells. The hydrolysis activity of ENPP1 was confirmed using recombinant protein and was depleted in tissue extracts and plasma from Enpp1(-/-) mice. We synthesized a hydrolysis-resistant bisphosphothioate analog of 2'3'-cGAMP (2'3'-cG(s)A(s)MP) that has similar affinity for hSTING in vitro and is ten times more potent at inducing IFN-ß secretion from human THP1 monocytes. Studies in mouse Enpp1(-/-) lung fibroblasts indicate that resistance to hydrolysis contributes substantially to its higher potency. 2'3'-cG(s)A(s)MP is therefore improved over natural 2'3'-cGAMP as a model agonist and has potential as a vaccine adjuvant and cancer therapeutic.


Asunto(s)
Antineoplásicos/farmacología , Regulación Neoplásica de la Expresión Génica , Proteínas de la Membrana/agonistas , Nucleótidos Cíclicos/metabolismo , Compuestos Organotiofosforados/farmacología , Pirofosfatasas/antagonistas & inhibidores , Animales , Antineoplásicos/síntesis química , Línea Celular Tumoral , Humanos , Hidrólisis , Interferón beta , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/patología , Nucleótidos Cíclicos/química , Nucleótidos Cíclicos/farmacología , Compuestos Organotiofosforados/síntesis química , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sistemas de Mensajero Secundario/genética , Transducción de Señal
16.
Nat Chem Biol ; 13(2): 130-131, 2017 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-28103224
17.
Proc Natl Acad Sci U S A ; 108(29): 11745-50, 2011 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-21719709

RESUMEN

In organisms, cell-fate decisions result from external cues presented by the extracellular microenvironment or the niche. In principle, synthetic niches can be engineered to give rise to patterned cell signaling, an advance that would transform the fields of tissue engineering and regenerative medicine. Biomaterials that display adhesive motifs are critical steps in this direction, but promoting localized signaling remains a major obstacle. We sought to exert precise spatial control over activation of TGF-ß signaling. TGF-ß signaling, which plays fundamental roles in development, tissue homeostasis, and cancer, is initiated by receptor oligomerization. We therefore hypothesized that preorganizing the transmembrane receptors would potentiate local TGF-ß signaling. To generate surfaces that would nucleate the signaling complex, we employed defined self-assembled monolayers that present peptide ligands to TGF-ß receptors. These displays of nondiffusible ligands do not compete with the growth factor but rather sensitize bound cells to subpicomolar concentrations of endogenous TGF-ß. Cells adhering to the surfaces undergo TGF-ß-mediated growth arrest and the epithelial to mesenchymal transition. Gene expression profiles reveal that the surfaces selectively regulate TGF-ß responsive genes. This strategy provides access to tailored surfaces that can deliver signals with spatial control.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Transducción de Señal/fisiología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Línea Celular , Cartilla de ADN/genética , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Perfilación de la Expresión Génica , Oro , Humanos , Ligandos , Ratones , Análisis por Micromatrices , Péptidos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Propiedades de Superficie
18.
Cell Chem Biol ; 31(5): 851-861, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38723635

RESUMEN

Ten years ago, the second messenger cGAMP was discovered as the activator of the anti-cancer STING pathway. The characterization of cGAMP's paracrine action and dominant extracellular hydrolase ENPP1 cemented cGAMP as an intercellular immunotransmitter that coordinates the innate and adaptive immune systems to fight cancer. In this Perspective, I look back at a decade of discovery of extracellular cGAMP biology and drug development aiming to supply or preserve extracellular cGAMP for cancer treatment. Reviewing our understanding of the cell type-specific regulatory mechanisms of STING agonists, including their transporters and degradation enzymes, I explain on a molecular and cellular level the successes and challenges of direct STING agonists for cancer therapy. Based on what we know now, I propose new ways to stimulate the STING pathway in a manner that is not only cancer specific, but also cell type specific to fully harness the anti-cancer effect of cGAMP while avoiding collateral damage.


Asunto(s)
Proteínas de la Membrana , Neoplasias , Nucleótidos Cíclicos , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Proteínas de la Membrana/metabolismo , Nucleótidos Cíclicos/metabolismo , Nucleótidos Cíclicos/farmacología , Antineoplásicos/farmacología , Antineoplásicos/química , Animales
19.
bioRxiv ; 2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38260585

RESUMEN

cGAMP is a second messenger that is synthesized in the cytosol upon detection of cytosolic dsDNA and passed between cells to facilitate downstream immune signaling. ENPP1, an extracellular enzyme, was the only metazoan cGAMP hydrolase known to regulate cGAMP levels to dampen anti-cancer immunity. Here, we uncover ENPP3 as the second and only other metazoan cGAMP hydrolase under homeostatic conditions. ENPP3 has a tissue expression pattern distinct from that of ENPP1 and accounts for all remaining cGAMP hydrolysis activity in mice lacking ENPP1. Importantly, we also show that as with ENPP1, selectively abolishing ENPP3's cGAMP hydrolase activity results in diminished cancer growth and metastasis of certain tumor types. Both ENPP1 and ENPP3 are extracellular enzymes, suggesting the dominant role that extracellular cGAMP must play as a mediator of cell-cell innate immune communication. Our work clearly shows that ENPP1 and ENPP3 non-redundantly dampen extracellular cGAMP-STING signaling, pointing to ENPP3 as a new target for cancer immunotherapy.

20.
Cell Rep ; 43(5): 114209, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38749434

RESUMEN

2'3'-Cyclic guanosine monophosphate (GMP)-AMP (cGAMP) is a second messenger synthesized upon detection of cytosolic double-stranded DNA (dsDNA) and passed between cells to facilitate downstream immune signaling. Ectonucleotide pyrophosphatase phosphodiesterase I (ENPP1), an extracellular enzyme, was the only metazoan hydrolase known to regulate cGAMP levels to dampen anti-cancer immunity. Here, we uncover ENPP3 as the second and likely the only other metazoan cGAMP hydrolase under homeostatic conditions. ENPP3 has a tissue expression pattern distinct from ENPP1's and accounts for all cGAMP hydrolysis activity in ENPP1-deficient mice. Importantly, we also show that, as with ENPP1, selectively abolishing ENPP3's cGAMP hydrolysis activity results in diminished cancer growth and metastasis of certain tumor types in a stimulator of interferon genes (STING)-dependent manner. Both ENPP1 and ENPP3 are extracellular enzymes, suggesting the dominant role that extracellular cGAMP must play as a mediator of cell-cell innate immune communication. Our work demonstrates that ENPP1 and ENPP3 non-redundantly dampen extracellular cGAMP-STING signaling, pointing to ENPP3 as a target for cancer immunotherapy.


Asunto(s)
Inmunidad Innata , Proteínas de la Membrana , Nucleótidos Cíclicos , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Animales , Nucleótidos Cíclicos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Ratones , Proteínas de la Membrana/metabolismo , Pirofosfatasas/metabolismo , Pirofosfatasas/genética , Humanos , Ratones Endogámicos C57BL , Hidrólisis , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patología , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA