Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Pathog ; 20(9): e1012599, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325829

RESUMEN

Emerging and recurrent infectious diseases caused by coronaviruses remain a significant public health concern. Here, we present a targeted approach to elicit antibodies capable of neutralizing SARS-CoV-2 variants and other SARS-related coronaviruses. By introducing amino acid mutations at mutation-prone sites, we engineered glycosylation modifications to the Receptor Binding Domain (RBD) of SARS-CoV-2, thereby exposing more conserved, yet less accessible epitopes. We developed both messenger RNA (mRNA) and recombination subunit vaccines using these engineered-RBDs (M1, M2) and the wild-type RBD as immunogens. The engineered-RBD vaccines elicited robust neutralizing responses against various SARS-CoV-2 variants as well as SARS-CoV and WIV1-CoV, and conferred protection in mice challenged with the XBB.1.16 strain. Furthermore, We highlighted that glycan masking is a decisive factor in antibody binding changes and RBD-conserved antibody response. Additionally, the glycan-engineered RBD mRNA vaccines stimulated stronger cell-mediated immune responses. Our glycan modification strategy significantly enhances broad-spectrum neutralizing efficacy and cellular immunity, providing valuable insights for the development of vaccines against a wide range of SARS-related coronaviruses.

2.
Magn Reson Med ; 92(4): 1755-1767, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38860542

RESUMEN

PURPOSE: Tractography of the facial nerve based on diffusion MRI is instrumental before surgery for the resection of vestibular schwannoma, but no excellent methods usable for the suppression of motion and image noise have been proposed. The aim of this study was to effectively suppress noise and provide accurate facial nerve reconstruction by extend a fiber trajectory distribution function based on the fourth-order streamline differential equations. METHODS: Preoperative MRI from 33 patients with vestibular schwannoma who underwent surgical resection were utilized in this study. First, T1WI and T2WI were used to obtain mask images and regions of interest. Second, probabilistic tractography was employed to obtain the fibers representing the approximate facial nerve pathway, and these fibers were subsequently translated into orientation information for each voxel. Last, the voxel orientation information and the peaks of the fiber orientation distribution were combined to generate a fiber trajectory distribution function, which was used to parameterize the anatomical information. The parameters were determined by minimizing the cost between the trajectory of fibers and the estimated directions. RESULTS: Qualitative and visual analyses were used to compare facial nerve reconstruction with intraoperative recordings. Compared with other methods (SD_Stream, iFOD1, iFOD2, unscented Kalman filter, parallel transport tractography), the fiber-trajectory-distribution-based tractography provided the most accurate facial nerve reconstructions. CONCLUSION: The fiber-trajectory-distribution-based tractography can effectively suppress the effect of noise. It is a more valuable aid for surgeons before vestibular schwannoma resection, which may ultimately improve the postsurgical patient's outcome.


Asunto(s)
Imagen de Difusión Tensora , Nervio Facial , Neuroma Acústico , Humanos , Neuroma Acústico/diagnóstico por imagen , Neuroma Acústico/cirugía , Imagen de Difusión Tensora/métodos , Nervio Facial/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , Adulto , Anciano , Algoritmos , Procesamiento de Imagen Asistido por Computador/métodos , Cuidados Preoperatorios/métodos , Adulto Joven
3.
BMC Microbiol ; 24(1): 271, 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39033096

RESUMEN

BACKGROUND: Selenium nanoparticles (SeNPs) are increasingly gaining attention due to its characteristics of low toxicity, high activity, and stability. Additionally, Bacillus licheniformis, as a probiotic, has achieved remarkable research outcomes in diverse fields such as medicine, feed processing, and pesticides, attracting widespread attention. Consequently, evaluating the activity of probiotics and SeNPs is paramount. The utilization of probiotics to synthesize SeNPs, achieving large-scale industrialization, is a current hotspot in the field of SeNPs synthesis and is currently the most promising synthetic method. To minimize production costs and maximize yield of SeNPs, this study selected agricultural by-products that are nutrient-rich, cost-effective, and readily available as culture medium components. This approach not only fulfills industrial production requirements but also mitigates the impact on downstream processes. RESULTS: The experimental findings revealed that SeNPs synthesized by B. licheniformis F1 exhibited a spherical morphology with diameters ranging from 110 to 170 nm and demonstrating high stability. Both the secondary metabolites of B. licheniformis F1 and the synthesized SeNPs possessed significant free radical scavenging ability. To provide a more robust foundation for acquiring large quantities of SeNPs via fermentation with B. licheniformis F1, key factors were identified through single-factor experiments and response surface methodology (RSM) include a 2% seed liquid inoculum, a temperature of 37 ℃, and agitation at 180 rpm. Additionally, critical factors during the optimization process were corn powder (11.18 g/L), soybean meal (10.34 g/L), and NaCl (10.68 g/L). Upon validating the optimized conditions and culture medium, B. licheniformis F1 can synthesize nearly 100.00% SeNPs from 5 mmol/L sodium selenite. Subsequently, pilot-scale verification in a 5 L fermentor using the optimized medium resulted in a shortened fermentation time, significantly reducing production costs. CONCLUSION: In this study, the efficient production of SeNPs by the probiotic B. licheniformis F1 was successfully achieved, leading to a significant reduction in fermentation costs. The exploration of the practical applications of this strain holds significant potential and provides valuable guidance for facilitating the industrial-scale implementation of microbial synthesis of SeNPs.


Asunto(s)
Bacillus licheniformis , Medios de Cultivo , Fermentación , Probióticos , Selenio , Bacillus licheniformis/metabolismo , Selenio/metabolismo , Medios de Cultivo/química , Probióticos/metabolismo , Nanopartículas/química , Nanopartículas del Metal/química
4.
Pharmacol Res ; 206: 107274, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38906205

RESUMEN

Mild traumatic brain injury (mTBI) is a known risk factor for neurodegenerative diseases, yet the precise pathophysiological mechanisms remain poorly understand, often obscured by group-level analysis in non-invasive neuroimaging studies. Individual-based method is critical to exploring heterogeneity in mTBI. We recruited 80 mTBI patients and 40 matched healthy controls, obtaining high-resolution structural MRI for constructing Individual Differential Structural Covariance Networks (IDSCN). Comparisons were conducted at both the individual and group levels. Connectome-based Predictive Modeling (CPM) was applied to predict cognitive performance based on whole-brain connectivity. During the acute stage of mTBI, patients exhibited significant heterogeneity in the count and direction of altered edges, obscured by group-level analysis. In the chronic stage, the number of altered edges decreased and became more consistent, aligning with clinical observations of acute cognitive impairment and gradual improvement. Subgroup analysis based on loss of consciousness/post-traumatic amnesia revealed distinct patterns of alterations. The temporal lobe, particularly regions related to the limbic system, significantly predicted cognitive function from acute to chronic stage. The use of IDSCN and CPM has provided valuable individual-level insights, reconciling discrepancies from previous studies. Additionally, the limbic system may be an appropriate target for future intervention efforts.


Asunto(s)
Conmoción Encefálica , Cognición , Sistema Límbico , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto , Sistema Límbico/diagnóstico por imagen , Sistema Límbico/fisiopatología , Conmoción Encefálica/diagnóstico por imagen , Conmoción Encefálica/fisiopatología , Conmoción Encefálica/psicología , Conmoción Encefálica/complicaciones , Persona de Mediana Edad , Conectoma , Adulto Joven , Disfunción Cognitiva/diagnóstico por imagen , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Estudios de Casos y Controles
5.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893338

RESUMEN

Acting as a growth regulator, Indole-3-acetic acid (IAA) is an important phytohormone that can be produced by several Bacillus species. However, few studies have been published on the comprehensive evaluation of the strains for practical applications and the effects of selenium species on their IAA-producing ability. The present study showed the selenite reduction strain Bacillus altitudinis LH18, which is capable of producing selenium nanoparticles (SeNPs) at a high yield in a cost-effective manner. Bio-SeNPs were systematically characterized by using DLS, zeta potential, SEM, and FTIR. The results showed that these bio-SeNPs were small in particle size, homogeneously dispersed, and highly stable. Significantly, the IAA-producing ability of strain was differently affected under different selenium species. The addition of SeNPs and sodium selenite resulted in IAA contents of 221.7 µg/mL and 91.01 µg/mL, respectively, which were 3.23 and 1.33 times higher than that of the control. This study is the first to examine the influence of various selenium species on the IAA-producing capacity of Bacillus spp., providing a theoretical foundation for the enhancement of the IAA-production potential of microorganisms.


Asunto(s)
Bacillus , Ácidos Indolacéticos , Selenio , Ácidos Indolacéticos/metabolismo , Bacillus/metabolismo , Bacillus/efectos de los fármacos , Selenio/química , Selenio/farmacología , Selenio/metabolismo , Nanopartículas/química , Tamaño de la Partícula
6.
Angew Chem Int Ed Engl ; 63(33): e202407417, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-38818653

RESUMEN

Realizing durative dense, dendrite-free, and no by-product deposition configuration on Zn anodes is crucial to solving the short circuit and premature failure of batteries, which is simultaneously determined by the Zn interface chemistry, electro-reduction kinetics, mass transfer process, and their interaction. Herein, this work unmasks a domino effect of the ß-alanine cations (Ala+) within the hydrogel matrix, which effectively triggers the subsequent electrostatic shielding and beneficial knock-on effects via the specifical adsorption earliest event on the Zn anode surface. The electrostatic shielding effect regulates the crystallographic energetic preference of Zn deposits and retards fast electro-reduction kinetics, thereby steering stacked stockier block morphology and realizing crystallographic optimization. Meanwhile, the mass transfer rate of Zn2+ ions was accelerated via the SO4 2- anion immobilized caused by Ala+ in bulk electrolyte, finally bringing the balance between electroreduction kinetics and mass transfer process, which enables dendrite-free Zn deposition behavior. Concomitantly, the interfacial adsorbed Ala+ cations facilitate the electrochemical reduction of interfacial SO4 2- anions to form the inorganic-organic hybrid solid electrolyte interphase layer. The above domino effects immensely improve the utilization efficiency of Zn anodes and long-term stability, as demonstrated by the 12 times longer life of Zn||Zn cells (3650 h) and ultrahigh Coulombic efficiency (99.4 %).

7.
J Cell Physiol ; 238(10): 2228-2242, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37682901

RESUMEN

Adolescent idiopathic scoliosis (AIS) is a common spinal deformity in young women, but its pathogenesis remains unclear. The primary pathogenic factors contributing to its development include genetics, abnormal bone metabolism, and endocrine factors. Bone marrow stem cells (BMSCs) play a crucial role in the pathogenesis of AIS by regulating its occurrence and progression. Noncoding RNAs (ncRNAs) are also involved in the pathogenesis of AIS, and their role in regulating BMSCs in patients with AIS requires further evaluation. In this review, we discuss the relevant literature regarding the osteogenic, chondrogenic, and lipogenic differentiation of BMSCs. The corresponding mechanisms of ncRNA-mediated BMSC regulation in patients with AIS, recent advancements in AIS and ncRNA research, and the importance of ncRNA translation profiling and multiomics are highlighted.

8.
Small ; 19(21): e2300556, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36823337

RESUMEN

Atomically dispersed Zn moieties are efficient active sites for accelerating the electrode kinetics of carbons for sodium-ion hybrid capacitors (SIHCs), but the low utilization and symmetric configuration of Zn single-atom greatly hamper the Na ion storage capability. Herein, a molecular design strategy is employed to synthesize high-density Zn single atoms with asymmetric Zn-N3 S coordination embedded in nitrogen/sulfur codoped carbon (Zn-N3 S-NSC). The key to this strategy lies in the Zn power-catalyzed condensation of trithiocyanuric acid molecules to generate S-doped g-C3 N4 , which can in situ coordinate with Zn sources to form Zn-N3 S moieties during pyrolysis. By virtue of the highly exposed Zn-N3 S moieties, Zn-N3 S-NSC presents ultrahigh reactivity, efficient electron transfer, and decreased ion diffusion barriers for SIHCs, rendering an impressive energy density of 215 Wh kg-1 and a maximum power density of 15625 W kg-1 . Moreover, the pouch cell displays a high capacity of 279 mAh g-1 after 4000 cycles. This work provides a new avenue for the regulation of the coordination configuration of single metal atoms in carbons toward high-performance electrochemical energy technologies at the molecular level.

9.
Small ; 19(22): e2300162, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36866502

RESUMEN

Electrodes made of composites with heterogeneous structure hold great potential for boosting ionic and charge transfer and accelerating electrochemical reaction kinetics. Herein, hierarchical and porous double-walled NiTeSe-NiSe2 nanotubes are synthesized by a hydrothermal process assisted in situ selenization. Impressively, the nanotubes have abundant pores and multiple active sites, which shorten the ion diffusion length, decrease Na+ diffusion barriers, and increase the capacitance contribution ratio of the material at a high rate. Consequently, the anode shows a satisfactory initial capacity (582.5 mA h g-1 at 0.5 A g-1 ), a high-rate capability, and long cycling stability (1400 cycles, 398.6 mAh g-1 at 10 A g-1 , 90.5% capacity retention). Moreover, the sodiation process of NiTeSe-NiSe2 double-walled nanotubes and underlying mechanism of the enhanced performance are revealed by in situ and ex situ transmission electron microscopy and theoretical calculations.

10.
Appl Environ Microbiol ; 89(10): e0095623, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37815340

RESUMEN

Klebsiella pneumoniae is a ubiquitous human pathogen, and its clinical treatment faces two major challenges: multidrug resistance and the pathogenesis of hypervirulent K. pneumoniae. The discovery and study of conditionally essential (CE) genes that can function as potential antimicrobial targets has always been a research concern due to their restriction in the development of novel antibiotics. However, the lack of essential functional genomic data has hampered the study of the mechanisms of essential genes related to antimicrobial susceptibility. In this study, we developed a pooled CE genes mobile clustered regularly interspaced short palindromic repeat (CRISPR) interference screening method (Mobile-CRISPRi-seq) for K. pneumoniae to identify genes that play critical roles in antimicrobial fitness in vitro and host immunity in vivo. Targeting 870 predicted CE genes in K. pneumoniae, Mobile-CRISPRi-seq uncovered the depletion of tetrahydrofolate synthesis pathway genes folB and folP under trimethoprim pressure. Our screening also identified genes waaE and fldA related to polymyxin and ß-lactam susceptibility by applying a screening strategy based on Mobile-CRISPRi-seq and comparative genomics. Furthermore, using a mouse infection model and Mobile-CRISPRi-seq, multiple virulence genes were identified, and among these genes, pal, yciS, and ribB were demonstrated to contribute to the pathogenesis of K. pneumoniae. This study provides a simple, rapid, and effective platform for screening potential antimicrobial targets and virulence genes in K. pneumoniae, and this broadly applicable system can be expanded for high-throughput functional gene study in multiple pathogenic bacteria, especially in gram-negative bacteria. IMPORTANCE The discovery and investigation of conditionally essential (CE) genes that can function as potential antimicrobial targets has always been a research concern because of the restriction of antimicrobial targets in the development of novel antibiotics. In this study, we developed a pooled CE gene-wide mobile clustered regularly interspaced short palindromic repeat (CRISPR) interference sequencing (Mobile-CRISPRi-seq) strategy in Klebsiella pneumoniae to identify genes that play critical roles in the fitness of antimicrobials in vitro and host immunity in vivo. The data suggest a robust tool to screen for loss-of-function phenotypes in a pooled gene knockdown library in K. pneumoniae, and Mobile-CRISPRi-seq may be expanded to multiple bacteria for screening and identification of genes with crucial roles in the fitness of antimicrobials and hosts.


Asunto(s)
Genes Esenciales , Klebsiella pneumoniae , Humanos , Klebsiella pneumoniae/genética , Virulencia/genética , Técnicas de Silenciamiento del Gen , Bacterias/genética , Antibacterianos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA