Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biophys Rev (Melville) ; 5(2): 021301, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38617201

RESUMEN

Rapid advances in tissue engineering have resulted in more complex and physiologically relevant 3D in vitro tissue models with applications in fundamental biology and therapeutic development. However, the complexity provided by these models is often not leveraged fully due to the reductionist methods used to analyze them. Computational and mathematical models developed in the field of systems biology can address this issue. Yet, traditional systems biology has been mostly applied to simpler in vitro models with little physiological relevance and limited cellular complexity. Therefore, integrating these two inherently interdisciplinary fields can result in new insights and move both disciplines forward. In this review, we provide a systematic overview of how systems biology has been integrated with 3D in vitro tissue models and discuss key application areas where the synergies between both fields have led to important advances with potential translational impact. We then outline key directions for future research and discuss a framework for further integration between fields.

2.
Adv Healthc Mater ; 12(26): e2300903, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37589373

RESUMEN

Modeling the heterogeneity of the tumor microenvironment (TME) in vitro is essential to investigating fundamental cancer biology and developing novel treatment strategies that holistically address the factors affecting tumor progression and therapeutic response. Thus, the development of new tools for both in vitro modeling, such as patient-derived organoids (PDOs) and complex 3D in vitro models, and single cell omics analysis, such as single-cell RNA-sequencing, represents a new frontier for investigating tumor heterogeneity. Specifically, the integration of PDO-based 3D in vitro models and single cell analysis offers a unique opportunity to explore the intersecting effects of interpatient, microenvironmental, and tumor cell heterogeneity on cell phenotypes in the TME. In this review, the current use of PDOs in complex 3D in vitro models of the TME is discussed and the emerging directions in the development of these models are highlighted. Next, work that has successfully applied single cell analysis to PDO-based models is examined and important experimental considerations are identified for this approach. Finally, open questions are highlighted that may be amenable to exploration using the integration of PDO-based models and single cell analysis. Ultimately, such investigations may facilitate the identification of novel therapeutic targets for cancer that address the significant influence of tumor-TME interactions.


Asunto(s)
Neoplasias , Humanos , Biología , Organoides , Fenotipo , Análisis de la Célula Individual , Microambiente Tumoral
3.
Adv Healthc Mater ; 12(19): e2202422, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37086259

RESUMEN

Patient-derived organoids have emerged as a useful tool to model tumour heterogeneity. Scaling these complex culture models while enabling stratified analysis of different cellular sub-populations, however, remains a challenge. One strategy to enable higher throughput organoid cultures is the scaffold-supported platform for organoid-based tissues (SPOT). SPOT allows the generation of flat, thin, and dimensionally-defined microtissues in both 96- and 384-well plate footprints that are compatible with longitudinal image-based readouts. SPOT is currently manufactured manually, however, limiting scalability. In this study, an automation approach to engineer tumour-mimetic 3D microtissues in SPOT using a liquid handler is optimized and comparable within- and between-sample variation to standard manual manufacturing is shown. Further, a liquid handler-supported cell extraction protocol to support single-cell-based end-point analysis using high-throughput flow cytometry and multiplexed cytometry by time of flight is developed. As a proof-of-value demonstration, 3D complex tissues containing different proportions of tumour and stromal cells are generated to probe the reciprocal impact of co-culture. It is also demonstrated that primary patient-derived organoids can be incorporated into the pipeline to capture patient-level tumour heterogeneity. It is envisioned that this automated 96/384-SPOT workflow will provide opportunities for future applications in high-throughput screening for novel personalized therapeutic targets.


Asunto(s)
Neoplasias , Humanos , Flujo de Trabajo , Técnicas de Cocultivo , Neoplasias/patología , Ensayos Analíticos de Alto Rendimiento/métodos , Automatización , Organoides
4.
Biofabrication ; 14(4)2022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35896099

RESUMEN

Obesity prevalence has reached pandemic proportions, leaving individuals at high risk for the development of diseases such as cancer and type 2 diabetes. In obesity, to accommodate excess lipid storage, adipocytes become hypertrophic, which is associated with an increased pro-inflammatory cytokine secretion and dysfunction of metabolic processes such as insulin signaling and lipolysis. Targeting adipocyte dysfunction is an important strategy to prevent the development of obesity-associated disease. However, it is unclear how accurately animal models reflect human biology, and the long-term culture of human hypertrophic adipocytes in anin vitro2D monolayer is challenging due to the buoyant nature of adipocytes. Here we describe the development of a human 3Din vitrodisease model that recapitulates hallmarks of obese adipocyte dysfunction. First, primary human adipose-derived mesenchymal stromal cells are embedded in hydrogel, and infiltrated into a thin cellulose scaffold. The thin microtissue profile allows for efficient assembly and image-based analysis. After adipocyte differentiation, the scaffold is stimulated with oleic or palmitic acid to mimic caloric overload. Using functional assays, we demonstrated that this treatment induced important obese adipocyte characteristics such as a larger lipid droplet size, increased basal lipolysis, insulin resistance and a change in macrophage gene expression through adipocyte-conditioned media. This 3D disease model mimics physiologically relevant hallmarks of obese adipocytes, to enable investigations into the mechanisms by which dysfunctional adipocytes contribute to disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Ácidos Grasos , Adipocitos , Animales , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/metabolismo , Ácidos Grasos/metabolismo , Humanos , Lipólisis , Obesidad/complicaciones , Obesidad/metabolismo
5.
Biomaterials ; 291: 121883, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36343611

RESUMEN

Complex 3D bioengineered tumour models provide the opportunity to better capture the heterogeneity of patient tumours. Patient-derived organoids are emerging as a useful tool to study tumour heterogeneity and variation in patient responses. Organoid cultures typically require a 3D microenvironment that can be manufactured easily to facilitate screening. Here we set out to create a high-throughput, "off-the-shelf" platform which permits the generation of organoid-containing engineered microtissues for standard phenotypic bioassays and image-based readings. To achieve this, we developed the Scaffold-supported Platform for Organoid-based Tissues (SPOT) platform. SPOT is a 3D gel-embedded in vitro platform that can be produced in a 96- or 384-well plate format and enables the generation of flat, thin, and dimensionally-defined microgels. SPOT has high potential for adoption due to its reproducible manufacturing methodology, compatibility with existing instrumentation, and reduced within-sample and between-sample variation, which can pose challenges to both data analysis and interpretation. Using SPOT, we generate cultures from patient derived pancreatic ductal adenocarcinoma organoids and assess the cellular response to standard-of-care chemotherapeutic compounds, demonstrating our platform's usability for drug screening. We envision 96/384-SPOT will provide a useful tool to assess drug sensitivity of patient-derived organoids and easily integrate into the drug discovery pipeline.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Organoides/patología , Carcinoma Ductal Pancreático/patología , Neoplasias Pancreáticas/patología , Evaluación Preclínica de Medicamentos/métodos , Descubrimiento de Drogas , Microambiente Tumoral
6.
Biomater Sci ; 8(11): 3078-3094, 2020 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-32347842

RESUMEN

Cancer associated fibroblasts (CAFs) are a major cellular component of the tumour stroma and have been shown to promote tumour cell invasion and disease progression. CAF-cancer cell interactions are bi-directional and occur via both soluble factor dependent and extracellular matrix (ECM) remodelling mechanisms, which are incompletely understood. Previously we developed the Tissue Roll for Analysis of Cellular Environment and Response (TRACER), a novel stacked paper tumour model in which cells embedded in a hydrogel are infiltrated into a porous cellulose scaffold that is then rolled around an aluminum core to generate a multi-layered 3D tissue. Here, we use the TRACER platform to explore the impact of CAFs derived from three different patients on the invasion of two head and neck squamous cell carcinoma (HNSCC) cell lines (CAL33 and FaDu). We find that co-culture with CAFs enhances HNSCC tumour cell invasion into an acellular collagen layer in TRACER and this enhanced migration occurs independently of proliferation. We show that CAF-enhanced invasion of CAL33 cells is driven by a soluble factor independent mechanism, likely involving CAF mediated ECM remodelling via matrix metalloprotenases (MMPs). Furthermore, we find that CAF-enhanced tumour cell invasion is dependent on the spatial pattern of collagen density within the culture. Our results highlight the utility of the co-culture TRACER platform to explore soluble factor independent interactions between CAFs and tumour cells that drive increased tumour cell invasion.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Bioensayo , Línea Celular Tumoral , Técnicas de Cocultivo , Humanos
7.
Biofabrication ; 12(1): 015001, 2019 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-31553953

RESUMEN

In many types of solid cancer, interactions between tumour cells and their surrounding microenvironment significantly impact disease progression, and patient prognosis. Tissue engineered models permit investigations of cellular behaviour and interactions in the context of this diseased microenvironment. Previously our group developed the tissue roll for analysis of cellular environment and response (TRACER) platform. To improve the manufacturing robustness of the TRACER platform and to enhance its use for studies involving multiple cell types, we have developed a bioprinting process that deposits cell-laden collagen hydrogel into a thin cellulose scaffolding sheet though a contact-wicking printing process. Printed scaffolds can then be assembled into layered 3D cultures where the location of cells in 3D is dependent on their printed position in the 2D sheet. After a desired culture time 3D TRACERs can be disassembled to easily assess printed cell re-location and phenotype within the heterogeneous microenvironments of the 3D tissue. In our bioprinting manufacturing process, cells are printed into scaffolding sheets, using a modified 3D bioprinter to extrude cells encapsulated in unmodified collagen hydrogel through a polydimethylsiloxane (PDMS) printer extrusion nozzle. This nozzle design reproducibly generated bioink deposition profiles in the scaffold without causing significant cellular damage or compromising scaffold integrity. We assessed print pattern quality and reproducibility and demonstrated printing of co-culture strips containing tumour cells and fibroblasts in separate compartments (i.e. separate TRACER layers). This printing approach will potentially enable adoption of the TRACER platform to the broader community to better understand multi-cell type interactions in 3D tumours and tissues.


Asunto(s)
Automatización/métodos , Bioimpresión/métodos , Fibroblastos/citología , Animales , Automatización/instrumentación , Bioimpresión/instrumentación , Línea Celular , Supervivencia Celular , Técnicas de Cocultivo , Colágeno/química , Fibroblastos/química , Humanos , Hidrogeles/química , Ingeniería de Tejidos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA